首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
Mussels (Mytilus galloprovincialis) were transplanted to seven stations around a large shipyard for 126 days to evaluate tributyltin (TBT) contamination. Although the application of TBT-based paints to ships is totally banned in Korea, butyltin compounds were found to accumulate in mussels following transplantation. Concentrations of TBT and total butyltins in transplanted mussels near the shipyard were in the range of 40-350 ng Sn/g and 74-530 ng Sn/g on a dry weight basis, respectively. Obviously, low TBT concentrations (6.0-53 ng Sn/gdw) were determined in mussels at four stations outside the shipyard. A negative gradient of TBT concentrations and TBT portion to total butyltin concentrations were found in both the surface water and transplanted mussels according to distance from the shipyard. In addition, TBT concentrations in surface water and transplanted mussels showed significant correlation (r(2) = 0.71; p < 0.001). These results indicate that the shipyard still releases fresh TBT into surrounding waters even after TBT regulation in Korea, and mussel transplantation is useful in evaluating TBT contamination in shipyard area.  相似文献   

2.
Specimens of Nassarius nitidus were collected in seven stations of the Venice Lagoon to assess the levels of tributyltin (TBT) and its metabolites monobutyltin and dibutyltin in the tissues and monitor their effect on organisms, in particular the phenomenon of imposex (superimposition of male sexual characteristics on females). The following values of population indices were found: vas deferens sequence: 1.2+/-0.7-4.0+/-0.5; relative penis length: 6-47%. The least impacted station was situated in the northern part of the Lagoon, where females without imposex were found and Butyltin (BuTs) concentrations in the organisms (average sum of BuTs=43+/-14 ngSng(-1)w.) were significantly lower than in the other stations (range of average sum of BuTs: 101+/-22-217+/-27 ngSng(-1)d.w.). Population indices were found to be related to the TBT content in the tissues. In particular VDSI had a significant logarithmic correlation: r=0.95, n=8, p<0.05.  相似文献   

3.
Restrictions on the use of tributyltin (TBT) in aquaculture and on boats in coastal regions, except for ocean-going vessels, have been in place in Japan since 1990 due to the strong toxic effects of TBT on marine organisms. However, TBT pollution along the Japanese coasts has been reported after this legislation was enacted. In order to elucidate the present status of contamination by butyltin (BT) compounds, we measured the levels of BTs [monobutyltin (MBT), dibutyltin (DBT) and TBT] in seawater and Caprella spp. samples obtained from the western part of Seto Inland Sea, Uwa Sea and Uranouchi Bay in western Japan during March to September, 2001. Butyltins were detected in more than 90% of the seawater samples (n = 59), with average concentrations of 8.2 ± 9.2 (SD) ng MBT L−1, 3.3 ± 3.0 ng DBT L−1 and 9.0 ± 7.0 ng TBT L−1. Among 41 stations situated on coastal lines, a sufficient number of Caprella organisms for chemical analysis could be collected from only 16 stations. The butyltin concentrations in seawater and Caprella samples from Uwa Sea and Uranouchi Bay, in which the dominant industry in both waters is aquaculture, showed significantly higher than or no significant differences from those samples from the western part of Seto Inland Sea, a major heavy-industry area in Japan. As the TBT concentration in seawater increased, the number of Caprella organisms collected decreased. The mean TBT concentration among the seawater samples was above the estimated lowest observable effect concentration (LOEC) that reduces the survival rate of Caprella danilevskii. Thus, the present study indicates that TBT is still a potential ecological hazard to the survival of marine invertebrates inhabiting coasts along western Japan, even 11 years after the partial ban on TBT usage was implemented.  相似文献   

4.
Tributyltin (TBT) concentrations in waters of Poole Harbour ranged between 2–139 ng l−1 (as Sn) and increased to 234–646 ng l−1 within marinas. Seasonal trends in contamination coincided with boat usage patterns and peaked during summer months. A combination of poor tidal flushing and removal of TBT to particulates restricts high levels of contamination to areas closest to marinas and moorings; TBT concentrations in benthic sediments decreased from 0.52 μg g−1 near such sites to 0.02 μg g−1 at the harbour mouth. Organotin accumulations in several benthic invertebrates including polychaetes (Nereis diversicolor), snails (Littorina littorea) and clams (Scrobicularia plana, Mya arenaria) reflect the distribution of contamination in the environment, though concentration factors (relative to water) vary considerably between species and were highest in sediment dwelling clams, notably Mya (1.3×105). Compared to organotins, biological availability of inorganic tin is low.

Levels of TBT in parts of Poole Harbour exceed Environmental Quality Targets designed to protect marine life and may be responsible for poor recruitment, particularly in bivalves, at heavily contaminated sites.  相似文献   


5.
Despite the huge amount of literature available on butyltins (BuTs), few studies addressed the environmental levels of phenyltins (PhTs), octyltins (OcTs) and total tin (SnT) in environmental samples. In 2006 a mussel watch survey was developed for the Portuguese coast (total of 29 sampling sites) in order to describe the concentrations of BuTs , PhTs, OcTs and SnT in the whole tissues of Mytilus galloprovincialis (Lamarck, 1819). BuTs were detected in all analyzed samples accounting, in average, for 98.6% of total organotins (∑OTs = BuTs + PhTs + OcTs), and presented highest values in the vicinity of harbors. Tributyltin (TBT) was the dominant butyltin, representing, in average, 62% of ∑BuTs (∑BuTs = TBT + DBT + MBT) suggesting that fresh inputs of TBT are still occurring in the Portuguese coast, particularly near harbors. The contribution of organotin compounds derived from antifouling paints to the total tin levels in M. galloprovincialis is discussed.  相似文献   

6.
The present study was undertaken to evaluate the distribution and accumulation of tributyltin (TBT) and triphenyltin (TPhT) in seawater, sediments and selected organisms from a cage mariculture area in southern Taiwan, Hsiao Liouchiou Island. Our results show that ΣOTs were found in concentrations as high as 196 ng/L in seawater collected from the sites in Pai-Sa harbor, and up 1040 ng/g dry wt. in sediments dredged from sites within Da-Fu harbor. Also, ΣOTs concentrations of 859 ng/g dry wt. were observed in the liver of cobia (Rachycentron canadum) from mariculture cages. As most published studies have focused on the acute toxicity and bioaccumulation of organotins in mussels, the effects of organotins on cobia and other marine fauna are still poorly understood. This study highlights the significance of ΣBTs accumulation in cobia, as well as in the sediments and seawater surrounding their culture facilities.  相似文献   

7.
The marine environment continues to be adversely affected by tributyltin (TBT) release from maritime traffic. Therefore the concentrations of TBT, dibutyltin (DBT) and monobutyltin (MBT) were measured in barnacles, mussels and fish along the Eastern Aegean coastline. The average concentrations of TBT ng Sn g−1 were found to be 235 in fish, 116 in mussels and 635 in barnacles. The highest concentrations of TBT, DBT and MBT were observed in the barnacles which had been sampled in marinas and harbors. All mussels sampled showed values of TBT + DBT, which were below the “tolerable average residue level (TARL)” as currently accepted. This indicates a lack of risk to the consumer. However, 7 out of the 15 fish sampled displayed TBT + DBT levels above the TARL, which indicates that a fish consumer group may be at risk. Barnacles have high potential as biomonitors for the presence of organotin in the Aegean Sea.  相似文献   

8.
《Marine pollution bulletin》2009,58(6-12):883-888
Mussels (Mytilus galloprovincialis) were transplanted to seven stations around a large shipyard for 126 days to evaluate tributyltin (TBT) contamination. Although the application of TBT-based paints to ships is totally banned in Korea, butyltin compounds were found to accumulate in mussels following transplantation. Concentrations of TBT and total butyltins in transplanted mussels near the shipyard were in the range of 40–350 ng Sn/g and 74–530 ng Sn/g on a dry weight basis, respectively. Obviously, low TBT concentrations (6.0–53 ng Sn/g dw) were determined in mussels at four stations outside the shipyard. A negative gradient of TBT concentrations and TBT portion to total butyltin concentrations were found in both the surface water and transplanted mussels according to distance from the shipyard. In addition, TBT concentrations in surface water and transplanted mussels showed significant correlation (r2 = 0.71; p < 0.001). These results indicate that the shipyard still releases fresh TBT into surrounding waters even after TBT regulation in Korea, and mussel transplantation is useful in evaluating TBT contamination in shipyard area.  相似文献   

9.
In the yachting sector of the UK antifouling market, organic biocides are commonly added to antifouling preparations to boost performance. Few data presently exist for concentrations of these compounds in UK waters. In this study the concentrations of tributyltin (TBT) and eight booster biocides were measured before and during the 1998 yachting season. The Crouch Estuary, Essex, Sutton Harbour, Plymouth and Southampton Water were chosen as representative study sites for comparison with previous surveys of TBT concentrations. Diuron and Irgarol 1051 were the only organic booster biocides found at concentrations above the limits of detection. Diuron was measured at the highest concentrations, whilst detectable concentrations of both Irgarol 1051 and diuron were determined in areas of high yachting activity (e.g. mooring areas and marinas). Maximum measured values were 1,421 and 6,740 ng/l, respectively. Lower concentrations of both compounds were found in open estuarine areas, although non-antifouling contributions of diuron may contribute to the overall inputs to estuarine systems. TBT was found to be below or near the environmental quality standard (EQS) of 2 ng/l for all samples collected from estuarine areas frequented by pleasure craft alone, but with much higher concentrations measured in some marinas, harbours and in areas frequented by large commercial vessels. Using the limited published environmental fate and toxicity data available for antifouling booster biocides, a comparative assessment to evaluate the risk posed by these compounds to the aquatic environment is described. TBT still exceeds risk quotients by the greatest margins, but widespread effects due to Irgarol 1051 and less so diuron cannot be ruled out (particularly if use patterns change) and more information is required to provide a robust risk assessment.  相似文献   

10.
Due to deleterious effects on non-target organisms, the use of organotin compounds on boat hulls of small vessels (<25 m) has been widely prohibited. The International Maritime Organisation (IMO) resolved that the complete prohibition on organotin compounds acting as biocides in antifouling systems should commence in 2008. As a result of restrictions on the use of organotin based paints, other antifouling formulations containing organic biocides have been utilised. This survey was conducted to assess the contamination of replacement biocides in the marine environment following the ban of TBT-based paints. Surface sediments samples were collected in the major ports and marinas along the France Mediterranean coastline (Cote d’Azur) and analysed for organotin compounds, Irgarol 1051, Sea-nine 211TM, Chlorothalonil, Dichlofluanid and Folpet. Every port and marina exhibited high levels of organotin compounds, with concentrations in sediments ranging from 37 ng Sn g−1dry wt in Menton Garavan to over 4000 ng Sn g−1dry wt close to the ship chandler within the port of Villefranche-sur-Mer. TBT degradation indexes suggested that fresh inputs are still made. Among the other antifoulants monitored, only Irgarol 1051 exhibited measurable concentrations in almost every port, with concentrations ranging from 40 ng g−1dry wt (Cannes) to almost 700 ng g−1dry wt (Villefranche-sur-Mer, ship chandler).  相似文献   

11.
《Marine pollution bulletin》2014,78(1-2):201-208
Seawater samples from major enclosed bays, fishing ports, and harbors of Korea were analyzed to determine levels of tributyltin (TBT) and booster biocides, which are antifouling agents used as alternatives to TBT. TBT levels were in the range of not detected (nd) to 23.9 ng Sn/L. Diuron and Irgarol 1051, at concentration ranges of 35–1360 ng/L and nd to 14 ng/L, respectively, were the most common alternative biocides present in seawater, with the highest concentrations detected in fishing ports. Hot spots were identified where TBT levels exceeded environmental quality targets even 6 years after a total ban on its use in Korea. Diuron exceeded the UK environmental quality standard (EQS) value in 73% of the fishing port samples, 64% of the major bays, and 42% of the harbors. Irgarol 1051 levels were marginally below the Dutch and UK EQS values at all sites.  相似文献   

12.
Surface water samples from marinas, commercial ports and open bay areas collected from Biscayne Bay and the Miami River, Florida, USA, were analyzed for the occurrence of IRGAROL 1051 by GC/MS. The anifouling boosting herbicide was found in 80% (46/57) of the samples collected between March 1999 and September 2000. Concentrations within the bay range between non-detected (<1 ppt) and 61 ppt (ng/L) and were generally low compared with levels reported in European or Japanese waters. Aside from the elevated concentrations observed along the Miami River South Fork (61 ppt), the highest concentrations observed in the bay corresponded to marinas with high density of pleasure craft and restricted water circulation. In contrast, occurrence of IRGAROL 1051 along the commercial port or the cruise line terminal was generally lower (<1-2.2 ppt). Concentrations around Coconut Grove Marina were consistently higher (5-12 ppt) than the rest of the bay waters during the whole period of time surveyed.  相似文献   

13.
This study was undertaken to examine the use of imposex in the tropical neogastropod whelk Morula granulata as bioindicator of tributyltin (TBT) contamination. Samples were collected from sites throughout the Dampier Archipelago; both impact sites close to intensive shipping activity and remote control sites. TBT in this area originates mainly from commercial vessels using the Port of Dampier that are >25 m in length and exempt from legislation controlling the use of TBT in antifouling paints. A field survey was undertaken in July 1997; 100 M. granulata were taken at each of 18 sites with varying vessel activity, and examined for imposex. The level of TBT contamination in the Archipelago was low; ranging from <0.3 to 25 ng Sn l−1 in water,<0.3 to 80 ng Sn g−1 in oyster tissue (Saccostrea cuccullata – prey of M. granulata), and <0.3 to 33 ng Sn g−1 in whelks. Percentage of imposex in M. granulata ranged from 0% to 57%, and was correlated with distance to vessel activity (r=0.646, p<0.05). The only significant relationship of imposex with butyltin concentrations was with TBT in oysters (r=0.826, p<0.05), and dibutyltin (DBT) in whelks (r=0.783, p<0.05). It is postulated that this is because of interspecies variation in ability to metabolize TBT to DBT and MBT (monobutyltin), as well as induction of imposex in earlier life stages, so that imposex in adults could be a reflection of prior contamination. M. granulata is a suitable bioindicator of TBT contamination in the Dampier Archipelago, which could be used throughout the Indo-Pacific given its abundance in the region.  相似文献   

14.
Hatched juveniles of Caprella danilevskii (Crustacea: Amphipoda) were exposed to one of two concentrations of tributyltin (TBT) (1.1 and 10.7 ng TBTL(-1)) for 49 d at 20 degrees C. These concentrations are near or below ambient levels in seawater. In both treatments and control, the survival rate was 100% at maturation, and >85% at the end of the experiments. Females reached maturation at 20 (median) to 21.5d at instar VII, and repeated spawning 4-5 times during the experiment. The total number of juveniles per female decreased significantly from 39.5 in the control to 24.5 and 17.5 in 1.1 ng L(-1) and 10.7 ng L(-1) treatments, respectively. An earlier study reported that as the TBT concentration in seawater increased from a 0-10 ng L(-1) regime to a 10-20 ng L(-1) regime, the number of stations where Caprella spp. could be collected decreased along the coast of the Seto Inland Sea, of Japan. Thus, the present study indicates the possibility that the extremely low concentration of TBT measured in Japanese waters after 2000 lead to a reduction in reproductive success of Caprella spp.  相似文献   

15.
TBT toxicity on the marine microalga Nannochloropsis oculata   总被引:1,自引:0,他引:1  
Commercial antifouling formulations containing TBT are the major source of organotin contamination in coastal waters. In view of the persisting TBT residues (13 ng Sn l−1) in the coastal waters of South Korea, an attempt has been made to evaluate the growth response and biochemical composition of laboratory-cultured Nannochloropsis oculata to TBT toxicity. It is evident that the persisting concentration level of TBT is high enough to cause adverse effect on the microalgal species. The EC50 (24 h) was found to be at 0.89 nM level of TBT for this marine eustigmatophyte N. oculata. Photosynthetic pigment content was significantly affected. At elevated TBT concentrations of 1.0 nM, especially pronounced changes in biochemical composition was found. TBT tolerance of N. oculata and its growth as well as biochemical responses are discussed.  相似文献   

16.
A study of the distribution of the 'booster' biocide 2-methylthio-4-tert-butylamino-6-cyclopropyl amino-s-triazine (Irgarol 1051) was carried out in the coastal waters of Bermuda. Irgarol 1051 concentrations (as determined by GC/MS) up to 590 ng l-1 have been measured within Hamilton Harbour. The data presented herein unequivocally demonstrate contamination of the coastal system of Bermuda by Irgarol 1051. Concurrently, TBT concentrations were measured and results indicate that levels are falling through legislated changes in antifouling treatments, from 220 ng l-1 in 1990 to < 20 ng l-1 (as Sn) by 1995, in the open water area of Hamilton Harbour. Concentrations of TBT immediately offshore from a boatyard were found to be > 600 ng l-1 (Sn), indicating continuing release due to painting operations and sediments in the area.  相似文献   

17.
The release of tributyltin (TBT) from maritime traffic represents one of the main problems of direct, diffuse, and continued contamination of the marine environment. In the present survey, the concentrations of TBT and dibultytin (DBT) in brackish waters, sediments, and the gastropods Nassarius nitidus were evaluated in order to estimate the contamination of the southern part of the Venice lagoon. TBT and DBT were determined by GC-MS/MS. Recent contamination of TBT was found in brackish waters near marinas, whereas the highest concentrations of TBT and DBT were observed in surface sediments at dockyards and harbours. High content of organotin in the gastropods sampled near the dockyards, harbours, and marinas showed a mobilisation from the sediments through the food web. The present study allowed assessment of whether, despite the ban on the use of TBT paints, waters, sediments, and biota were still being contaminated by organotin compounds in the southern Venice lagoon.  相似文献   

18.
Organotin and Irgarol-1051 contamination in Singapore coastal waters   总被引:5,自引:0,他引:5  
The seas surrounding Singapore are principally utilized by the shipping industry but are now also increasingly used for a variety of other purposes, including desalination for supplies of drinking water and intensive aquaculture of food fish. While stringent environmental pollution standards are in place for industrial effluents, there is currently no legislative control over pollution from anti-fouling paints in Singapore. In this study, the concentrations of toxic antifouling agents tributyltin (TBT), triphenyltin (TPhT) and Irgarol-1051 (2-methylthio-4-tert-butylamino-6-cyclopropylamino-s-triazine) were determined from seawater obtained from 26 locations along and off the coast of Singapore in October and November 2000. These compounds were isolated by liquid-liquid extraction derivatized under controlled microwave heating and quantified by gas chromatography-mass spectrometry. TBT concentrations in seawater ranged between 0.43 and 3.20 microg 1(-1) with a mean value of 1.40 +/- 0.60 micro 1(-1). The mean values of DBT and MBT were 1.07 +/- 0.80 microg 11(-1) and 0.34 +/- 0.50 microg 1(-1) respectively, while TPhT concentrations of up to 0.40 microg 1(-1) were found. Monophenyltin and diphenyltin were not detected in all samples analysed. Irgarol-1051 was found to be present at concentrations of between 3.02 microg 1(-1) and 4.20 microg 1(-1) in seawater with a mean value of 2.00 +/- 1.20 microg 1(-1).  相似文献   

19.
Commercial antifouling formulations containing TBT are the major source of organotin contamination in coastal waters. In view of the persisting TBT residues (13 ng Sn l−1) in the coastal waters of South Korea, an attempt has been made to evaluate the growth response and biochemical composition of laboratory-cultured Nannochloropsis oculata to TBT toxicity. It is evident that the persisting concentration level of TBT is high enough to cause adverse effect on the microalgal species. The EC50 (24 h) was found to be at 0.89 nM level of TBT for this marine eustigmatophyte N. oculata. Photosynthetic pigment content was significantly affected. At elevated TBT concentrations of 1.0 nM, especially pronounced changes in biochemical composition was found. TBT tolerance of N. oculata and its growth as well as biochemical responses are discussed.  相似文献   

20.
Antifouling herbicides in the coastal waters of western Japan   总被引:1,自引:0,他引:1  
Residue analyses of some antifouling herbicides (Diuron, Irgarol 1051 and the latter's degradation product M1, which is also known as GS26575), were conducted in waters collected along the coast of western Japan. In total, 142 water samples were collected from fishery harbours (99 sites), marinas (27 sites), and small ports (16 sites) around the Seto Inland Sea, the Kii Peninsula, and Lake Biwa, in August 1999. A urea-based herbicide, Diuron, was positively identified for the first time in Japanese aquatic environments. Diuron was detected in 121 samples (86%) up to a highest concentration of 3.05 microg/l, and was found in 86% of samples from fishery harbours, 89% from marinas, and 75% from ports. Four freshwater samples out of 11 collected at Lake Biwa contained Diuron. Neither Irgarol 1051 nor M1 was found in the lake waters, but both were found in many coastal waters. Irgarol 1051 was found in 84 samples (60%) at a highest concentration of 0.262 microg/l. The concentrations detected were of similar magnitude to those in our previous surveys, taken in 1997 and 1998. M1 was found in 40 samples (28%) up to a highest concentration of 0.080 microg/l. The concentrations detected were generally lower than those found in our previous surveys. The detection frequency among fishery harbours, marinas, and ports was 57-70% for Irgarol 1051 and 25-30% for M1. Ninety-five per cent of the coastal waters in which M1 was detected also contained Irgarol 1051, and 93% of the samples in which Irgarol 1051 was detected also contained Diuron. These results clearly suggest that commercial ship-bottom paints containing both Diuron and Irgarol 1051 are used extensively in the survey area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号