首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
River runoff and atmospheric fallout (dust and air particulate matter) are major input sources of natural and anthropogenic terrestrial organic and inorganic components to the Arabian seas. In this study, we report on the various lipid tracer compounds that might be transported to the Arabian Gulf by rivers, dust, and air particulate matter. These are based on geochemical analysis of sediment, dust, and particulate samples collected from Iraq, Kuwait, and Saudi Arabia. The samples were extracted with a dichloromethane/methanol mixture and analyzed by gas chromatography-mass spectrometry. The extractable organic compounds (lipids) in the samples include n-alkanes, n-alkanoic acids, n-alkanols, methyl n-alkanoates, steroids, triterpenoids, carbohydrates, and petroleum hydrocarbons. The steroids and triterpenoids were major components in river and wetland samples. The major sources of these lipids were from natural vegetation, microbial (plankton and bacteria) residues in the sediments, sand, and soils, with some contribution from anthropogenic sources. Accordingly, these sources could be major inputs to the Arabian seas besides the autochthonous marine products. Future studies of the organic and inorganic biogeochemistry on river, dust, and coastal areas are needed to characterize the various regional sources, transformation, and diagenetic processes of the organic matter en route to the marine environment.  相似文献   

2.
Suspended particulate matter (SPM) of surface seawaters was collected during December 2003 to October 2004 at 10 stations in the Bay of Bengal, and analyzed for particulate organic carbon (POC), total particulate nitrogen (TPN), total particulate carbohydrate (TPCHO) and total particulate uronic acids (TPURA). The concentrations of POC, TPCHO and TPURA varied from 4.80 to 29.12, 0.85 to 4.24, 0.09 to 0.91 μM C, respectively. The TPCHO-C and TPURA-C accounted for 6.6–32.5% and 0.87–3.65% of POC. The trends observed for the distribution of these compounds were generally similar to those recorded for the distribution of chlorophyll a (Chl a). The C/N ratios varied from 3.2 to 22.3 with most of the values being < 10. This suggests that the organic matter was mostly derived from phytoplankton and bacteria. Relatively low C/N ratios and high TPCHO yield imply that freshly derived organic matter was present during SWM and FIM. Our data suggest that the quality and quantity of organic matter varied spatially and seasonally.  相似文献   

3.
Fecal pellets from the pelagic crab Pleuroncodes planipes were a substantial portion of the particulate organic matter in a sediment trap deployed at the bottom of the mixed layer in the eastern tropical North Pacific Ocean. The lipids of fresh P. planipes feces were compared to lipids of the sediment trap material, of mixed zooplankton which may comprise part of the diet of the crab, and of the crab itself in order to elucidate the source of organic compounds found in the trap. Hydrocarbons, wax esters, triacylglycerols, steroidal alcohols, steroidal ketones, and fatty acids were determined by capillary gas chromatography and gas chromatography/mass spectrometry. Significant input of lipids via sedimentation of crab fecal material is indicated, and modification of dietary lipid within the gut of the crab is inferred. Labile dietary fatty acids are depleted and sterols enriched in the fecal pellets and trap material relative to the zooplankton and crab. Nuclear saturated and unsaturated 3-ketosteroids and unsaturated steroidal hydrocarbons were detected in the crab, its feces, and in the sediment trap particulate material.  相似文献   

4.
The distribution of two classes of lipid biomarker compounds (fatty acids and sterols) was used in conjunction with several bulk parameters (total suspended solids, chlorophyll a, and particulate carbon and nitrogen concentrations) to examine spatial and temporal variability in the sources of particulate organic matter (POM) important to southern Chesapeake Bay. Based on these geochemical parameters, we found that suspended and sedimentary organic matter in the southern Chesapeake Bay is derived from autochthonous sources including a mixture of fresh and detrital phytoplankton, zooplankton, and bacteria. The dominant factor contributing to temporal variability during our study was phytoplankton productivity. Enrichments in particulate organic carbon, chlorophyll a, total fatty acids, total sterols, and a number of biomarkers specific to phytoplankton sources were found in particles collected from surface (1 m) and deep (1 m above the bottom) portions of the water column at several sites during the spring bloom in March 1996 and during a localized bloom in July 1995. Comparison of sites at the mouths of two tributaries (York and Rappahannock rivers) to southern Chesapeake Bay with two sites located in the bay mainsterm indicates spatial variation in the composition of POM was not significant in this region of the bay. The energetic nature of this region of the Chesapeake Bay most likely contributes to the observed homogeneity. Comparison with biomarker studies conducted in other estuaries suggests the high levels of productivity characteristic of the Chesapeake Bay contribute to high background levels of POM.  相似文献   

5.
 Surface sediments, suspended particulate matter and fluffy-layer material, collected in the Arkona Basin and the Pomeranian Bay during 1995–1997, as well as air particulate matter, collected on the island of Rügen during August 1995, were analysed for total organic carbon content, saturated and polycyclic aromatic hydrocarbons (PAH). The resulting concentrations and distributions of these compounds and molecular PAH ratios are discussed in terms of matrix, origin of the organic matter and seasonal variations. The data show that the Oder river can be identified as a major source for PAH transported into the southern part of the Arkona Basin. A strong atmospheric input of PAH is noted for the central and northern part of the basin. In general, anthropogenic and bacterially degraded hydrocarbons bound to organic carbon-rich and small particles are mainly deposited in the basin center, whereas their natural counterparts accumulate mainly on the basin flanks covered by coarser grained sediments. Received: 2 March 1999 · Accepted: 8 June 1999  相似文献   

6.
Samples of water, suspended solids, and bottom sediments from the Madeira River, Rondônia state, Brazil, were physically and chemically analyzed to investigate the actual Hg mobilization in the aquatic environment and compare it with that of other heavy metals and elements in the area. Two dimensionless Hg preference ratios were defined, expressing (1) the ratio of Hg and other elements in the liquid phase divided by the ratio of Hg and other elements in bottom sediments (Pl.phase) and (2) the ratio of Hg and other elements in the particulate matter divided by the ratio of Hg and other elements in bottom sediments (Ps.solids). These preference ratios are useful for comparing Hg transport in three different phases (liquid, particulate matter, and bottom sediments). They also were applicable to any analyzed element in the area studied, because they generated an almost constant value when the maximum calculated was divided by the minimum (Pl.phase=2931; Ps.solids=84) and because of their sensitivity to the dominance of sorption processes by Fe oxides and hydroxides. Mercury could be transported preferentially to other analyzed elements in the particulate phase only if its concentration reached values at least 104-fold higher than those expected or quantified in the area.  相似文献   

7.
Along the transatlantic section from Ushuaia to Gdańsk (March 26–May 7, 2015; cruise 47 of R/V Akademik Ioffe), data were obtained on the concentrations of aerosols in the near-water layer of the atmosphere and of particulate matter in surface waters, as well as of organic compounds within the considered matter (Corg, chlorophyll a, lipids, and hydrocarbons). The concentrations of aerosols amounted to 1237–111 739 particles/L for the fraction of 0.3–1 μm and to 0.02–34.4 μg/m2/day for the matter collected by means of the network procedure. The distribution of aerosols is affected by circumcontinental zoning and by the fluxes from arid areas of African deserts. The maximum concentration of the treated compounds were found in the river–sea frontal area (the runoff of the Colorado River, Argentina), as well as when nearing the coasts, especially in the English Channel.  相似文献   

8.
Individual particles of malachite, tenorite, paratenorite, laurionite and sphalerite, as well as several intermediate compounds of Cu, Zn, Pb, Cl, S, OH and CO3 have been identified among paniculate matter filtered from Atlantic and Pacific deep water samples. These particulate matter samples were provided mainly by the GEOSECS 1972 and 1974 cruises. The detection and the identification of the individual heavy metal compounds were made by a combination of light microscopy, SEM, EMP and XRD. The highest frequency of heavy metal compounds has been found at several North Atlantic, and at one Antarctic stations. Their origin can, at least partly, be ascribed to technological influences, since metallic copper and brass particles are sometimes found associated with, or included in the heavy metal compounds. Others, however, result clearly from growth in the water.  相似文献   

9.
Concentrations and composition of suspended particulate matter and organic compounds (OC), including Сorg, lipids, hydrocarbons (HC), and pigments, were determined in the near-water aerosol layer and in surface waters on the meridional section across the Atlantic Ocean from the port of Ushuaia to the port of Gdansk (Cruise 47th of the R/V Akademic Ioffe, March 26–May, 7, 2015). It was established that the distribution of OC (except for pigments) in aerosols, in general, repeats the distribution of particle number and weight concentrations of aerosols, with maximums in the influence zone of fluxes from Patagonia and African deserts. The concentrations of aerosols changed within wide ranges: from 1237 to 111739 particles/L for 0.3–1 μm fraction; and from 0.02 to 19.890 μg/m3 for aerosols collected by network method (flux of 0.02–34.4 mg/m2 day). The contrasting mineral composition of aeolian material reflects the diversity of its provenances. In surface waters, the studied compounds were accumulated in the frontal river–sea area (runoff of the Rio-Colorado River) and with approaching the coast, especially in the English Channel. A simultaneous change of concentrations of suspended particulate matter and OC is observed only in open oceanic waters.  相似文献   

10.
The occurrence and distribution of polycyclic musks in the Lippe River system (a tributary of the Rhine River, Germany) was investigated in order to observe the dynamic transport and partitioning of these compounds between aqueous and particulate phases after their discharge into the river by sewage effluents. 1,3,4,6,7,8-Hexahydro-4,6,6,7,8,8-hexamethylcyclopenta[g]-2-benzopyrane (HHCB), 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4-tetrahydronaphthalene (AHTN), 6-acetyl-1,1,2,3,3,5-hexamethylindane (AHMI) and 4-acetyl-1,1-dimethyl-6-tert.-butylindane (ADBI) concentrations were determined in 19 water and surface sediment samples which were taken from a longitudinal section of the river. HHCB and AHTN were present in each of the water samples at concentrations ranging from <10 to 180 ng l−1 and <10 to 70 ng l−1, respectively. The load of dissolved HHCB and AHTN was calculated on the basis of compound concentrations in water and the corresponding river runoff data and ranged from 3 to 293 g day−1 and from 1 to 108 g day−1, respectively. Increasing loads of HHCB and AHTN along the river reflect a high input of sewage effluents to the densely populated areas along the central part of the river. Decreasing loads at the lower reaches indicate that in the corresponding river sections the rate of removal of musks was higher than the rate of input. Degradation and/or adsorption to particulate matter are processes that might explain this phenomenon. Consequently, high concentrations of HHCB and AHTN were detected in surface sediments from the Lippe River (from 5 to 191 μg kg−1 and from 2 to 1399 μg kg−1, respectively). HHCB/AHTN ratios in sediment samples were lower (average 1.2) than in water samples (average 2.9), suggesting the preferential adsorption of AHTN to particulate matter.  相似文献   

11.
Aliphatic hydrocarbon compositions were quantitatively characterized in plankton, sediment trap-collected particulate materials and sediments from Dabob Bay using high resolution glass capillary gas chromatography. The average net accumulation of individual hydrocarbons measured in a 1-yr series of sediment traps was compared with the net accumulation of corresponding compounds measured in three depth intervals of 210Pb-dated bottom sediments. Systematic and rapid decreases in the net accumulation of individual hydrocarbons were observed from the sediment traps to the sediments. Most pronounced decreases were measured for planktonically derived hydrocarbon constituents (e.g. pristane and two unsaturated compounds) which are rapidly remineralized at or near the sediment-water interface. Consequently, the amount of each compound measured in deposited sediments is not necessarily a quantitative indication of its initial flux to the sediments. The n-alkanes (C25,27,29,31). characteristic of terrestrial plant waxes, are the predominant hydrocarbons measured by 4–6 cm depth in these sediments and show reasonably constant net accumulation below this interval.Significant diagenetic alteration of the bulk organic matter contained in the average sediment trap particulate material is also noted through comparison with bottom sediments on the basis of organic C/N and δ13C measurements. Organic matter elementally similar to marine plankton is preferentially remineralized upon deposition of the sedimentary particulates. The residual organic matter remaining and buried in the bottom sediments closely resembles terrestrial organic matter.  相似文献   

12.
为科学认识淄博市区大气颗粒物污染状况,探讨颗粒物的污染水平和元素在颗粒物中的分布与分配特征,对颗粒物中元素的来源进行分析。于2015年冬季和夏季期间分别布设45个和16个采样点采集悬浮颗粒物(TSP)、PM10及PM2.5样品,分析了颗粒物和18种元素(或化合物)的质量浓度。结果表明:1)大气颗粒物中冬季TSP、PM10及PM2.5的质量浓度均值高于夏季;PM10和PM2.5质量浓度均超过国家标准,其中冬季PM2.5质量浓度是标准限值的1.96倍。2)不同粒径的颗粒物中元素质量分数差别显著,As、Cd、Cr、Cu、Ni、Pb、Zn等多数重金属元素主要富集在PM2.5中,且PM2.5约占PM10的65%(冬季)和73%(夏季)。3)颗粒物PM2.5中Al2O3、CaO、Fe2O3、K2O、MgO等氧化物主要受土壤扬尘控制;As、Cd、Hg、Pb、Se、Zn等元素主要源于人为污染;Se的富集因子最高,反映了PM2.5污染主要来源于燃煤;Co、Cu、Ni、Na2O受土壤扬尘和人类活动的共同作用,而Cr具有混合污染的特点。  相似文献   

13.
Amino sugars (AS) are important constituents of organic matter. However, very little is known about their cycling in marine waters. In this research, we assessed the distribution and cycling of these compounds in waters of the Bay of Bengal. For this purpose, samples of suspended particu late matter (SPM) were collected from 8 depths (surface to 1000 m) at 6 locations during the 166th cruise of the ORV Sagar Kanya in the Bay of Bengal in July/August 2001. The SPM samples were analysed for particulate organic carbon (POC), particulate nitrogen (PN) and AS concentrations and composition. The AS varied between 0.4 and 17.5 nmol/l. Concentrations were high in the surface waters and generally decreased with increasing depth. AS concentration decreased from the south to north. AS accounted for 0.01 to 0.71% and 0.05 to 2.37% of POC and PN, respectively. Rapid decrease in AS-C% and AS-N% with depth indicates that these compounds were preferentially degraded relative to bulk POC and PN. The composition of AS suggests that glucosamine (GLU-N) and galactosamine (GAL-N) were present in the surface SPM samples, and their abundance decreased from surface downwards. Relatively, low values of GLU-N/GAL-N ratio indicate that the organic matter was mostly derived from the detritus of micro-organisms. Our data suggest that chitin, a polymer of the glucosamine produced by many marine organisms was not the major source of AS in the Bay. Rapid cycling of these compounds indicates their importance in the cycling of nitrogen in marine waters  相似文献   

14.
Concentrations of volatile hydrogen sulfide (H2S), carbonyl sulfide (OCS), methane thiol (MeSH), dimethyl sulfide (DMS), and dimethyl disulfide (DMDS) in the Seine estuary (France) were investigated in spring 2005 using samples collected from the first meter beneath the surface. Levels of dissolved metals (Ag, Cd, Cu, Zn, Ni, Co, Pb), suspended particulate matter, and particular organic carbon were also assessed. Maximum concentrations were 0.80 nM for H2S, 0.64 nM for OCS, 3.06 nM for MeSH, 11.06 nM for DMS, and 1.18 nM for DMDS, and different features were observed for the five volatile reduced sulfur compounds (VRSCs). Experiments were conducted to determine silver–VRSC conditional stability constants. Major interactions were observed between H2S and Ag, which may partially account for the absence of volatile H2S at the lowest salinities. OCS, MeSH, and DMS did not interact with Ag, as revealed by their insignificant K′ values. Variations in concentrations along the salinity gradient may be explained by the influence of phytoplanktonic compounds.  相似文献   

15.
《Applied Geochemistry》2001,16(13):1545-1565
Smoke particulate matter from deciduous trees (angiosperms) subjected to controlled burning, both under smoldering and flaming conditions, was sampled by high volume air filtration on precleaned quartz fiber filters. The filtered particles were extracted with dichloromethane and the crude extracts were methylated for separation by thin layer chromatography into hydrocarbon, carbonyl, carboxylic acid ester and polar fractions. Then, the total extract and individual fractions were analyzed by gas chromatography and gas chromatography–mass spectrometry. The major organic components directly emitted in smoke particles were straight chain aliphatic compounds from vegetation wax and triterpenoid acids (biomarkers) from gums and mucilages. The major natural products altered by combustion included derivatives from phenolic (lignin) and monosaccharide (cellulose) biopolymers and oxygenated and aromatic products from triterpenoids. Steroid biomarkers and polycyclic aromatic hydrocarbons (PAH) were also present, however, as minor constituents. Although the concentrations of organic compounds in smoke aerosols are highly variable and dependent on combustion temperature, the biomarkers and their combustion alteration products are in these cases source specific. The major components are adsorbed or trapped on particulate matter and thus may be utilized as molecular tracers in the atmosphere for determining fuel type and source contributions from biomass burning.  相似文献   

16.
Data are presented on dissolved oxygen (DO) concentrations and their relationship to salinity, suspended particulate matter (SPM), concentrations, and the turbidity maximum in the Humber-Ouse Estuary, United Kingdom, during summer 1995. Measurements in the upper Humber during March 1995 showed DO in the range 82% to 87% of saturation. Suspended particulate matter concentrations were <5000 mg l?1 and salinity was in the range 0.5 to 12. In contrast, a pronounced DO sag occurred in the upper reaches of the Ouse during medium and spring tide, summer conditions. The DO minimum was essentially an anoxic level and was associated with the location of the turbidity maximum, at salinities between about 0.4 and 1.5. SPM concentrations at 1 m beneath the surface reached 25,000 mg l?1 in the turbidity maximum, between about 20 km and 40 km from the tidal limit. Suspended particulate matter concentrations were much lower at neap tides, although dense suspensions of SPM (>60,000 mg l?1) occurred within 1 m of the bed in the turbidity maximum region. A spring-neap record showed a dramatic and tidally controlled decrease in DO at very low salinities as the tides progressed from neaps to springs. An anchor station located down-channel of the turbidity maximum showed that about 95% of the variance in DO, which varied from 28% at low-water slack to 67% at high-water slack, could be explained in terms of salinity variation. At the up-channel margins of the turbidity maximum, DO increased from zero (anoxia) near high water to 60% near low water slack, in contrast to the behavior down-channel of the turbidity maximum. About 82% of the variance in DO could be explained in terms of salinity variations alone. Only 43% of the DO variance could be explained in terms of SPM alone. Up-channel of the turbidity maximum, SPM concentrations were relatively low (<3000 mg l?1) and DO levels varied from 48% of saturation near high water to 83% near low water slack. About 76% of the variance in DO could be explained in terms of salinity variations alone. Within the turbidity maximum region, DO varied from <2% saturation on the early flood and late ebb and maximized around 7% at high water slack. About 63% of the variance in DO could be explained in terms of salinity variation alone. This increased to 70% when suspended particulate matter was taken into account. Only 29% of the DO variance could be explained in terms of suspended particulate matter alone. Because bacteria were likely to have been the cause of the observed reduction in DO, the numbers of bacteria, both free-living and attached to particles, were measured in the turbidity maximum region. Numbers of free-living bacteria were low and most of the bacteria were attached to sediment particles. There was a linear correlation between total bacterial number and suspended particulate matter concentration, suggesting that the strong DO demand was exerted locally as a result of bacterial activity associated with increased suspended particulate matter concentrations. An order of magnitude analysis of DO consumption within the Ouse’s turbidity maximum, based on the premise that DO depletion was directly related to suspended particulate matter concentrations and that DO addition was due to reaeration, indicates that complete deoxygenation could have occurred with an oxygen depletion rate of ~0.01 mg DO h?1/g suspended particulate matter during the residence time of waters within the turbidity maximum (~7 d). This rate was sufficiently fast that anoxic to aerobic conditions were able to develop a spring-neap periodicity within the turbidity maximum, but too slow to generate substantial intratidal fluctuations in DO. This is in accordance with the observations, which show that relatively little of the intratidal variance in DO could be explained in terms of suspended particulate matter fluctuations, whereas most of the variance could be explained in terms of salinity, which behaved as a surrogate measure for the proximity of the turbidity maximum.  相似文献   

17.
《Applied Geochemistry》2006,21(6):919-940
Smoke particulate matter from grasses (Gramineae, temperate, tropical and arctic) subjected to controlled burning, both under smoldering and flaming conditions, was sampled by high volume air filtration on pre-cleaned quartz fiber filters. The filtered particles were extracted with dichloromethane/methanol and the crude extracts were methylated for separation by thin layer chromatography into hydrocarbon, carbonyl, carboxylic acid ester and polar fractions. Then, the total extract and individual fractions were analyzed by GC–MS. The major organic components directly emitted in grass smoke particles were the homologous series of n-alkanoic acids from plant lipids, n-alkanes from epicuticular wax, and sterols and triterpenols. The major natural products altered by combustion included pyrolysis products from cellulose and lignin biopolymers, and oxidation products from triterpenoids and sterols. Polycyclic aromatic hydrocarbons (PAH) were also present; however, only as minor components. Although the concentrations of organic compounds in smoke aerosols are highly variable and dependent on combustion temperature, the biomarkers and their combustion alteration products are in these cases source specific. The major components are adsorbed on or trapped in smoke particulate matter and thus may be utilized as molecular tracers in the atmosphere for determining fuel type and source contributions from grass burning.  相似文献   

18.
《Applied Geochemistry》2001,16(13):1513-1544
Smoke particulate matter from conifers subjected to controlled burning, both under smoldering and flaming conditions, was sampled by high volume air filtration on precleaned quartz fiber filters. The filtered particles were extracted with dichloromethane and the crude extracts were methylated for separation by thin layer chromatography into hydrocarbon, carbonyl, carboxylic acid ester and polar fractions. Then, the total extract and individual fractions were analyzed by gas chromatography and gas chromatography–mass spectrometry. The major organic components directly emitted in smoke particles were straight chain aliphatic compounds from vegetation wax and diterpenoid acids (biomarkers) from resin. The major natural products altered by combustion included derivatives from phenolic (lignin) and monosaccharide (cellulose) biopolymers and oxygenated and aromatic products from diterpenoids. Other biomarkers present as minor components included phytosterols, both the natural and altered products, and unaltered high molecular weight wax esters. Polycyclic aromatic hydrocarbons (PAH) were also present, however, only as minor constituents. Although the concentrations of organic compounds in smoke aerosols are highly variable and dependent on combustion temperature, the biomarkers and their combustion alteration products are source specific. The major components are adsorbed or trapped on particulate matter and thus may be utilized as molecular tracers in the atmosphere for determining fuel type and source contributions from biomass burning.  相似文献   

19.
Organic matter contained in particulate matter in Lake Michigan waters and sediments has been characterized by CN ratios and by distributions of biomarker fatty acids, alkanols, sterols, and aliphatic hydrocarbons. Differences in organic constituents of particulate matter from various depths and distances from shore indicate a complex interaction of production, transformation, and destruction of the organic matter contained in sinking particles. Near-surface material contains important contributions of landderived organic matter, presumably of eolian input. Midwater particles have predominantly aquatic organic material of algal origin. At the sediment-water interface, selective suspension of the finer fractions of surficial sediments enriches bottom nepheloid layers with these sediment size classes. As a result, near-bottom particulate matter has an aquatic biomarker character. Organic matter associated with sinking particles undergoes substantial degradation during passage to the bottom of Lake Michigan, and aquatic components are selectively destroyed relative to terrigenous components.  相似文献   

20.
Data on hydrography, nutrients, suspended particles, and sedimented particles were collected at weekly intervals from November to May during 1995 to 1997 at a station in the coastal waters of Dona Paula Bay, India. Suspended and sedimented particles were analyzed for total suspended matter (SPM), total sedimented particulate matter (TPM), particulate organic carbon (POC), particulate organic nitrogen (PON), chlorophylla (chla), and diatom abundance. Variations in hydrography and nutrients influenced the quantity and composition of sedimented particles. The TPM, POC, PON, and chla fluxes showed small-scale seasonal variations and were higher in the summer (February to May) than in the winter (November to January). Resuspension of carbon accounted for approximately 25% of the gross POC and was highest in April 1997 (45%). The mean net POC flux was 197±90 mg C m−2 d−1 and accounts for 4.6% of the TPM. The average C∶N (w∶w) ratio of the sedimented material was 13.2±6.6. The POC:chla ratio was relatively higher in the sedimented material as compared to the suspended material. The particulate carbon reaching the bottom sediment was 39% of the primary production. The low organic carbon concentration (approximately 0.1% of dry sediment) in the sediments implies that about 98% of the sedimented carbon was either consumed at the sedimentwater interface or resuspended/advected before it was finally buried into the sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号