首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Land use/cover classification is a key research field in remote sensing and land change science as thematic maps derived from remotely sensed data have become the basis for analyzing many socio-ecological issues. However, land use/cover classification remains a difficult task and it is especially challenging in heterogeneous tropical landscapes where nonetheless such maps are of great importance. The present study aims at establishing an efficient classification approach to accurately map all broad land use/cover classes in a large, heterogeneous tropical area, as a basis for further studies (e.g., land use/cover change, deforestation and forest degradation). Specifically, we first compare the performance of parametric (maximum likelihood), non-parametric (k-nearest neighbor and four different support vector machines – SVM), and hybrid (unsupervised–supervised) classifiers, using hard and soft (fuzzy) accuracy assessments. We then assess, using the maximum likelihood algorithm, what textural indices from the gray-level co-occurrence matrix lead to greater classification improvements at the spatial resolution of Landsat imagery (30 m), and rank them accordingly. Finally, we use the textural index that provides the most accurate classification results to evaluate whether its usefulness varies significantly with the classifier used. We classified imagery corresponding to dry and wet seasons and found that SVM classifiers outperformed all the rest. We also found that the use of some textural indices, but particularly homogeneity and entropy, can significantly improve classifications. We focused on the use of the homogeneity index, which has so far been neglected in land use/cover classification efforts, and found that this index along with reflectance bands significantly increased the overall accuracy of all the classifiers, but particularly of SVM. We observed that improvements in producer's and user's accuracies through the inclusion of homogeneity were different depending on land use/cover classes. Early-growth/degraded forests, pastures, grasslands and savanna were the classes most improved, especially with the SVM radial basis function and SVM sigmoid classifiers, though with both classifiers all land use/cover classes were mapped with producer's and user's accuracies of ∼90%. Our classification approach seems very well suited to accurately map land use/cover of heterogeneous landscapes, thus having great potential to contribute to climate change mitigation schemes, conservation initiatives, and the design of management plans and rural development policies.  相似文献   

2.
Monitoring loss of humid tropical forests via remotely sensed imagery is critical for a number of environmental monitoring objectives, including carbon accounting, biodiversity, and climate modeling science applications. Landsat imagery, provided free of charge by the U.S. Geological Survey Center for Earth Resources Observation and Science (USGS/EROS), enables consistent and timely forest cover loss updates from regional to biome scales. The Indonesian islands of Sumatra and Kalimantan are a center of significant forest cover change within the humid tropics with implications for carbon dynamics, biodiversity maintenance and local livelihoods. Sumatra and Kalimantan feature poor observational coverage compared to other centers of humid tropical forest change, such as Mato Grosso, Brazil, due to the lack of ongoing acquisitions from nearby ground stations and the persistence of cloud cover obscuring the land surface. At the same time, forest change in Indonesia is transient and does not always result in deforestation, as cleared forests are rapidly replaced by timber plantations and oil palm estates. Epochal composites, where single best observations are selected over a given time interval and used to quantify change, are one option for monitoring forest change in cloudy regions. However, the frequency of forest cover change in Indonesia confounds the ability of image composite pairs to quantify all change. Transient change occurring between composite periods is often missed and the length of time required for creating a cloud-free composite often obscures change occurring within the composite period itself. In this paper, we analyzed all Landsat 7 imagery with <50% cloud cover and data and products from the Moderate Resolution Imaging Spectroradiometer (MODIS) to quantify forest cover loss for Sumatra and Kalimantan from 2000 to 2005. We demonstrated that time-series approaches examining all good land observations are more accurate in mapping forest cover change in Indonesia than change maps based on image composites. Unlike other time-series analyses employing observations with a consistent periodicity, our study area was characterized by highly unequal observation counts and frequencies due to persistent cloud cover, scan line corrector off (SLC-off) gaps, and the absence of a complete archive. Our method accounts for this variation by generating a generic variable space. We evaluated our results against an independent probability sample-based estimate of gross forest cover loss and expert mapped gross forest cover loss at 64 sample sites. The mapped gross forest cover loss for Sumatra and Kalimantan was 2.86% of the land area, or 2.86 Mha from 2000 to 2005, with the highest concentration having occurred in Riau and Kalimantan Tengah provinces.  相似文献   

3.
Monitoring ecological indicators is important for assessing impacts of human activities on ecosystems. A means of identifying and applying appropriate indicators is a prerequisite for: environmental assessment; better assessment and understanding of ecosystem health; elucidation of biogeochemical trends; and more accurate predictions of future responses to global change, particularly those due to anthropogenic disturbance. The challenge is to derive meaningful indicators of change that capture the complexities of ecosystems yet can be monitored consistently over large areas and across time. In this study, methods for monitoring indicators of land cover (LC) and forest change were developed using multi-sensor Landsat imagery. Mapping and updating procedures were applied to the Humber River Basin (HRB) in Newfoundland and Labrador, one of four test sites in Canada selected for testing the development of national-scale methods. Procedures involved unsupervised clustering and labeling of baseline imagery, followed by image-to-image spectral clustering to derive binary change masks within which new LC types were classified for non-baseline imagery. Updated maps were compatible with the baseline map and reflected change in LC for three time periods: 1976–1990, 1990–2001, and 2001–2007. From the LC products, several change indicators were quantified including: forest depletion, forest regeneration, forest change, net forest change, and annual rates of change. The procedures were validated using field plots to assess the accuracy of the 2007 LC product (74.2% for 10 LC classes) and change classes observed from 2001 to 2007 (87.8% for four change classes: depletion, regeneration, non-treed class no change, and treed class no change). Methods were considered to be highly efficient and operationally feasible over large areas spanning multiple Landsat scenes. Specific results for the test site provided trend information supporting land and resource management in the HRB region.  相似文献   

4.
The study examined the capability of dual-polarization SAR data for forest cover mapping and change assessment in the Brazilian Amazon Forest regions. Shuttle Imaging Radar (SIR)-C and Advanced Land Observing Satellite Phased Array L-band Synthetic Aperture Radar (ALOS PALSAR) data were analysed to map and quantify deforestation. The images were classified using hybrid classifier, where each land cover was grouped in various spectral sub-classes interpreted on the imagery and later merged together to generate the desired land cover classes. The classification accuracy for forest was reasonably high (>90%). The technique applied in this study can be extended for operational mapping and monitoring of deforestation in the tropics, particularly for those regions which are often covered by cloud.  相似文献   

5.
This study tested the degree to which single date, near-nadir AVHRR image could provide forest cover estimates comparable to the phase I estimates obtained from the traditional photo-based techniques of the Forest Inventory and Analysis (FIA) program. FIA program is part of the United States Department of Agriculture-Forest Service (USFS). A six-county region in east Texas was selected for this study. Manual identification of ground control points (GCPs) was necessary for geo-referencing this image with higher precision. Through digital image classification techniques forest classes were separated from other non-forest classes in the study area. Classified AVHRR imagery was compared to two verification datasets: photo-center points and the USFS FIA plots. The overall accuracy values obtained were 67 and 71%, respectively. Analyses of the error matrices indicated that the AVHRR image correctly classified more forested areas than non-forested areas; however, most of the errors could be attributed to certain land cover and land use classes. Several pastures with tree cover, which were field-identified as non-forest, were misclassified as forest in the AVHRR image using the image classification system developed in this study. Recently harvested and young pine forests were misclassified as non-forest in the imagery. County-level forest cover estimates obtained from the AVHRR imagery were within the 95% confidence interval of the corresponding estimates from traditional photo-based methods. These results indicate that AVHRR imagery could be used to estimate county-level forest cover; however, the precision associated with these estimates was lower than that obtained through traditional photo-based techniques.  相似文献   

6.
Inaccurate information on forest resources could hamper forest conservation, reforestation and sustainable management. Remote-sensing products have emerged as key tools in forest cover monitoring. The Global Forest Watch (GFW) dataset as an interactive remote sensing product, is now applied by more than 2 million users including researchers, conservationists and local communities for analyzing forest cover changes. The quality of this product varies spatially, and local validations are recommended before using the data for inventory and management tasks. Our study evaluated the accuracy and suitability of the GFW dataset for analyzing China’s forest cover. We conducted a validation based on a streamlined visual interpretation procedure using high-resolution optical imagery on Google Earth to map the uncertainties and inaccuracies of GFW Tree Cover 2000 in China. We then estimated China’s forest area after considering the data uncertainty, made a comparison with the data reported by the National Forest Inventory of China (CNFI) to understand where and how the land-based inventory differs from the presence/absence-based remote sensing data. The results showed that the overall accuracy of the GFW Tree Cover 2000 data reached 94.5 %. The user’s and producer’s accuracy of forest classification was 89.26 % and 82.13 %. The sample-based area estimation using GFW showed a larger forest area than the figure reported by CNFI in mainland China, while data discrepancy varied at provincial levels. The study provides a detailed performance assessment of GFW in terms of accuracy of defining forest, and we advise the consideration of data uncertainty in forest cover estimates for future forest management.  相似文献   

7.
On the Caribbean island of Puerto Rico, forest, urban/built-up, and pasture lands have replaced most formerly cultivated lands. The extent and age distribution of each forest type that undergoes land development, however, is unknown. This study assembles a time series of four land cover maps for Puerto Rico. The time series includes two digitized paper maps of land cover in 1951 and 1978 that are based on photo interpretation. The other two maps are of forest type and land cover and are based on decision tree classification of Landsat image mosaics dated 1991 and 2000. With the map time series we quantify land-cover changes from 1951 to 2000; map forest age classes in 1991 and 2000; and quantify the forest that undergoes land development (urban development or surface mining) from 1991 to 2000 by forest type and age. This step relies on intersecting a map of land development from 1991 to 2000 (from the same satellite imagery) with the forest age and type maps. Land cover changes from 1991 to 2000 that continue prior trends include urban expansion and transition of sugar cane, pineapple, and other lowland agriculture to pasture. Forest recovery continues, but it has slowed. Emergent and forested wetland area increased between 1977 and 2000. Sun coffee cultivation appears to have increased slightly. Most of the forests cleared for land development, 55%, were young (1-13 yr). Only 13% of the developed forest was older (41-55+ yr). However, older forest on rugged karst lands that long ago reforested is vulnerable to land development if it is close to an urban center and unprotected.  相似文献   

8.
This paper presents novel techniques to estimate the uncertainty in extrapolations of spatially-explicit land-change simulation models. We illustrate the concept by mapping a historic landscape based on: 1) tabular data concerning the quantity in each land cover category at a distant point in time at the stratum level, 2) empirical maps from more recent points in time at the grid cell level, and 3) a simulation model that extrapolates land-cover change at the grid cell level. This paper focuses on the method to show uncertainty explicitly in the map of the simulated landscape at the distant point in time. The method requires that validation of the land-cover change model be quantified at the grid-cell level by Kappa for location (Klocation). The validation statistic is used to estimate the certainty in the extrapolation to a point in time where an empirical map does not exist. As an example, we reconstruct the 1951 landscape of the Ipswich River Watershed in Massachusetts, USA. The technique creates a map of 1951 simulated forest with an overall estimated accuracy of 0.91, with an estimated users accuracy ranging from 0.95 to 0.84. We anticipate that this method will become popular, because tabular information concerning land cover at coarse stratum-level scales is abundant, while digital maps of the specific location of land cover are needed at a finer spatial resolution. The method is a key to link non-spatial models with spatially-explicit models.  相似文献   

9.
Abstract

Visualization techniques have been developed to recreate natural landscapes, but little has been done to investigate their potential for illustrating land cover change using spatio‐temporal data. In this work, remote sensing, geographic information systems (GIS) and visualization techniques were applied to generate realistic computer visualizations depicting the dynamic nature of forested environments. High resolution digital imagery and aerial photography were classified using object‐oriented methods. The resulting classifications, along with preexisting land cover datasets, were used to drive the correct placement of vegetation in the visualized landscape, providing an accurate representation of reality at various points in time. 3D Nature's Visual Nature Studio was used to construct a variety of realistic images and animations depicting forest cover change in two distinct ecological settings. Visualizations from Yellowstone National Park focused on the dramatic impact of the 1988 fire upon the lodgepole pine forest. For a study area in Kansas, visualization techniques were used to explore the continuous human‐land interactions impacting the eastern deciduous forest and tallgrass prairie ecotone between 1941 and 2002. The resulting products demonstrate the flexibility and effectiveness of visualizations for representing spatio‐temporal patterns such as changing forest cover. These geographic visualizations allow users to communicate findings and explore new hypotheses in a clear, concise and effective manner.  相似文献   

10.
In this study, we assessed land cover land use (LCLU) changes and their potential environmental drivers (i.e., precipitation, temperature) in five countries in Eastern & Southern (E&S) Africa (Rwanda, Botswana, Tanzania, Malawi and Namibia) between 2000 and 2010. Landsat-derived LCLU products developed by the Regional Centre for Mapping of Resources for Development (RCMRD) through the SERVIR (Spanish for “to serve”) program, a joint initiative of NASA and USAID, and NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS) data were used to evaluate and quantify the LCLU changes in these five countries. Given that the original development of the MODIS land cover type standard products included limited training sites in Africa, we performed a two-level verification/validation of the MODIS land cover product in these five countries. Precipitation data from CHIRPS dataset were used to evaluate and quantify the precipitation changes in these countries and see if it was a significant driver behind some of these LCLU changes. MODIS Land Surface Temperature (LST) data were also used to see if temperature was a main driver too.Our validation analysis revealed that the overall accuracies of the regional MODIS LCLU product for this African region alone were lower than that of the global MODIS LCLU product overall accuracy (63–66% vs. 75%). However, for countries with uniform or homogenous land cover, the overall accuracy was much higher than the global accuracy and as high as 87% and 78% for Botswana and Namibia, respectively. In addition, the wetland and grassland classes had the highest user’s accuracies in most of the countries (89%–99%), which are the ones with the highest number of MODIS land cover classification algorithm training sites.Our LCLU change analysis revealed that Botswana’s most significant changes were the net reforestation, net grass loss and net wetland expansion. For Rwanda, although there have been significant forest, grass and crop expansions in some areas, there also have been significant forest, grass and crop loss in other areas that resulted in very minimal net changes. As for Tanzania, its most significant changes were the net deforestation and net crop expansion. Malawi’s most significant changes were the net deforestation, net crop expansion, net grass expansion and net wetland loss. Finally, Namibia’s most significant changes were the net deforestation and net grass expansion.The only noticeable environmental driver was in Malawi, which had a significant net wetland loss and could be due to the fact that it was the only country that had a reduction in total precipitation between the periods when the LCLU maps were developed. Not only that, but Malawi also happened to have a slight increase in temperature, which would cause more evaporation and net decrease in wetlands if the precipitation didn’t increase as was the case in that country. In addition, within our studied countries, forestland expansion and loss as well as crop expansion and loss were happening in the same country almost equally in some cases. All of that implies that non-environmental factors, such as socioeconomics and governmental policies, could have been the main drivers of these LCLU changes in many of these countries in E&S Africa. It will be important to further study in the future the detailed effects of such drivers on these LCLU changes in this part of the world.  相似文献   

11.
Deforestation is recognized as one of the most significant components in LULCC and global changes scenario. It is imperative to assess its trend and the rate at which it is occurring. The changes will have long-lasting impact on regional climate and in turn on biodiversity. Present study was taken up in Kanakapura and surrounding areas located on the fringes of Western Ghats biodiversity hot-spots. Temporal satellite data from Landsat was classified into forest cover maps. Drivers of forest cover changes such as roads and settlements were used in order to create predicted map of the region using GEOMOD tool in Idrisi Andes. The predicted map was then validated using actual land cover map of same year prepared from Landsat data. The validated map was found to be 84.26 % accurate. The validation was also tested using ROC approach which was found to be 0.614. The model was then further extended to predict forest cover losses for year 2015. The results highlight ongoing deforestation in the areas adjoining Western Ghats. It also presents an application of the tool and the validation methods which can be used in predictive modeling related studies.  相似文献   

12.
<正>Land cover is a fundamental variable that links many facets of the natural environment and a key driver of global environmental change.Alterations in its status can have significant ramifications at local,regional and global levels.Hence,it is imperative to map land cover at a range of spatial and temporal scales with a view to understanding the inherent patterns for effective characterization,prediction and management of the potential environmental impacts.This paper presents the results of an effort to map land cover patterns in Kinangop division,Kenya,using geospatial tools.This is a geographic locality that has experienced rapid land use transformations since Kenya's independence culminating in uncontrolled land cover changes and loss of biodiversity.The changes in land use/cover constrain the natural resource base and presuppose availability of quantitative and spatially explicit land cover data for understanding the inherent patterns and facilitating specific and multi-purpose land use planning and management.As such,the study had two objectives viz.(i) mapping the spatial patterns of land cover in Kinangop using remote sensing and GIS and;(ii) evaluating the quality of the resultant land cover map.ASTER satellite imagery acquired in January 23,2007 was procured and field data gathered between September l0 and October 16,2007.The latter were used for training the maximum likelihood classifier and validating the resultant land cover map.The land cover classification yielded 5 classes,overall accuracy of 83.5%and kappa statistic of 0.79,which conforms to the acceptable standards of land cover mapping. This qualifies its application in environmental decision-making and manifests the utility of geospatial techniques in mapping land resources.  相似文献   

13.
In recent years, land use/cover dynamic change has become a key subject that needs to be dealt with in the study of global environmental change. In this paper, remote sensing and geographic information systems (GIS) are integrated to monitor, map, and quantify the land use/cover change in the southern part of Iraq (Basrah Province was taken as a case) by using a 1:250 000 mapping scale. Remote sensing and GIS software were used to classify Landsat TM in 1990 and Landsat ETM+ in 2003 imagery into five land use and land cover (LULC) classes: vegetation, sand, urban area, unused land, and water bodies. Supervised classification and normalized difference build-up index (NDBI) were used respectively to retrieve its urban boundary. An accuracy assessment was performed on the 2003 LULC map to determine the reliability of the map. Finally, GIS software was used to quantify and illustrate the various LULC conversions that took place over the 13-year span of time. Results showed that the urban area had increased by the rate of 1.2% per year, with area expansion from 3 299.1 km2 in 1990 to 3 794.9 km2 in 2003. Large vegetation area in the north and southeast were converted into urban construction land. The land use/cover changes of Basrah Province were mainly caused by rapid development of the urban economy and population immigration from the countryside. In addition, the former government policy of “returning farmland to transportation and huge expansion in military camps” was the major driving force for vegetation land change. The paper concludes that remote sensing and GIS can be used to create LULC maps. It also notes that the maps generated can be used to delineate the changes that take place over time. Supported by the Al-Basrah University, Iraq, the Geo-information Science and Technology Program (No. IRT 0438)China).  相似文献   

14.
Human activities have diverse and profound impacts on ecosystem carbon cycles. The Piedmont ecoregion in the eastern United States has undergone significant land use and land cover change in the past few decades. The purpose of this study was to use newly available land use and land cover change data to quantify carbon changes within the ecoregion. Land use and land cover change data (60-m spatial resolution) derived from sequential remotely sensed Landsat imagery were used to generate 960-m resolution land cover change maps for the Piedmont ecoregion. These maps were used in the Integrated Biosphere Simulator (IBIS) to simulate ecosystem carbon stock and flux changes from 1971 to 2010. Results show that land use change, especially urbanization and forest harvest had significant impacts on carbon sources and sinks. From 1971 to 2010, forest ecosystems sequestered 0.25 Mg C ha?1 yr?1, while agricultural ecosystems sequestered 0.03 Mg C ha?1 yr?1. The total ecosystem C stock increased from 2271 Tg C in 1971 to 2402 Tg C in 2010, with an annual average increase of 3.3 Tg C yr?1. Terrestrial lands in the Piedmont ecoregion were estimated to be weak net carbon sink during the study period. The major factors contributing to the carbon sink were forest growth and afforestation; the major factors contributing to terrestrial emissions were human induced land cover change, especially urbanization and forest harvest. An additional amount of carbon continues to be stored in harvested wood products. If this pool were included the carbon sink would be stronger.  相似文献   

15.
At present the biodiversity in Eastern Ghats is threatened by loss of habitats, exploitation and unscientific management of natural resources, forest fire, biological invasion and other anthropogenic pressures. In this context, we have assessed the forest cover changes, fragmentation and disturbance in the R.V. Nagar Range of Eastern Ghats region, Andhra Pradesh using satellite remote sensing and GIS techniques. Satellite data of IRS-1A LISS II of 1988 and IRS-P6 LISS III of 2006 were assessed for forest cover changes in 1 sq.km grid and generated as Sensitivity Index map. Further the road and settlement buffer of 1000 m was generated to represent Threat Index map. From 1988 to 2006, the forest cover had a total cover loss of 35.2 sq.km and increase in scrub cover by 7.2%. Over all change analysis from 1988 to 2006 with reference to forest cover indicates, negative changes (loss of forest area) accounted for 48.1 sq.km area and positive changes (gain of forest) for an area of 12.1 sq.km of area. The results of the change detection using multi-date satellite imagery suggest degradation in forest cover over two decades, which necessitates the conservation measures in this range with high priority.  相似文献   

16.
Abstract

Coastal wetland is a major part of wetlands in the world. Land cover and vegetation mapping in a deltaic lowland environment is complicated by the rapid and significant changes of geomorphic forms. Remote sensing provides an important tool for coastal land cover classification and landscape analysis. The study site in this paper is the Yellow River Delta Nature Reserve (YRDNR) at the Yellow River mouth in Shangdong province, China. Yellow River Delta is one of the fastest growing deltas in the world. YRDNR was listed as a national level nature reserve in 1992. The objectives of this paper are two fold: to study the land cover status of YRDNR, and to examine the land cover change since it was declared as a nature reserve. Land cover and vegetation mapping in YRDNR was developed using multi‐spectral Landsat Thematic Mapper (TM) imagery acquired in 1995. Land cover and landscape characteristics were analyzed with the help of ancillary GIS. Land use investigation data in 1991 were used for comparison with Landsat classification map. Our results show that YRDNR has experienced significant landscape change and environmental improvement after 1992.  相似文献   

17.
This paper describes a simple and adaptive methodology for large area forest/non-forest mapping using Landsat ETM+ imagery and CORINE Land Cover 2000. The methodology is based on scene-by-scene analysis and supervised classification. The fully automated processing chain consists of several phases, including image segmentation, clustering, adaptive spectral representativity analysis, training data extraction and nearest-neighbour classification. This method was used to produce a European forest/non-forest map through the processing of 415 Landsat ETM+ scenes. The resulting forest/non-forest map was validated with three independent data sets. The results show that the map’s overall point-level agreement with our validation data generally exceeds 80%, and approaches 90% in central European conditions. Comparison with country-level forest area statistics shows that in most cases the difference between the forest proportion of the derived map and that computed from the published forest area statistics is below 5%.  相似文献   

18.
This paper describes an operational application of AVHRR satellite imagery in combination with the satellite-based land cover database CORINE Land Cover (CLC) for the comprehensive observation and follow-up of 10000 fire outbreaks and of their consequences in Greece during summer 2000. In the first stage, we acquired and processed satellite images on a daily basis with the aim of smoke-plume tracking and fire-core detection at the national level. Imagery was acquired eight times per day and derived from all AVHRR spectral channels. In the second stage, we assessed the consequences of fire on vegetation by producing a burnt-area map on the basis of multi-annual normalised vegetation indices using AVHRR data in combination with CLC. In the third stage we used again CLC to assess the land cover of burnt areas in the entire country. The results compared successfully to available inventories for that year. Burnt area was estimated with an accuracy ranging from 88% to 95%, depending on the predominant land cover type. These results, along with the low cost and high temporal resolution of AVHRR satellite imagery, suggest that the combination of low-resolution satellite data with harmonised CLC data can be applied operationally for forest fire and post-fire assessments at the national and at a pan-European level.  相似文献   

19.
The classification of satellite imagery into land use/cover maps is a major challenge in the field of remote sensing. This research aimed at improving the classification accuracy while also revealing uncertain areas by employing a geocomputational approach. We computed numerous land use maps by considering both image texture and band ratio information in the classification procedure. For each land use class, those classifications with the highest class-accuracy were selected and combined into class-probability maps. By selecting the land use class with highest probability for each pixel, we created a hard classification. We stored the corresponding class probabilities in a separate map, indicating the spatial uncertainty in the hard classification. By combining the uncertainty map and the hard classification we created a probability-based land use map, containing spatial estimates of the uncertainty. The technique was tested for both ASTER and Landsat 5 satellite imagery of Gorizia, Italy, and resulted in a 34% and 31% increase, respectively, in the kappa coefficient of classification accuracy. We believe that geocomputational classification methods can be used generally to improve land use and land cover classification from imagery, and to help incorporate classification uncertainty into the resultant map themes.  相似文献   

20.
Large and growing archives of orbital imagery of the earth’s surface collected over the past 40 years provide an important resource for documenting past and current land cover and environmental changes. However uses of these data are limited by the lack of coincident ground information with which either to establish discrete land cover classes or to assess the accuracy of their identification. Herein is proposed an easy-to-use model, the Tempo-Spatial Feature Evolution (T-SFE) model, designed to improve land cover classification using historical remotely sensed data and ground cover maps obtained at later times. This model intersects (1) a map of spectral classes (S-classes) of an initial time derived from the standard unsupervised ISODATA classifier with (2) a reference map of ground cover types (G-types) of a subsequent time to generate (3) a target map of overlaid patches of S-classes and G-types. This model employs the rules of Count Majority Evaluation, and Subtotal Area Evaluation that are formulated on the basis of spatial feature evolution over time to quantify spatial evolutions between the S-classes and G-types on the target map. This model then applies these quantities to assign G-types to S-classes to classify the historical images. The model is illustrated with the classification of grassland vegetation types for a basin in Inner Mongolia using 1985 Landsat TM data and 2004 vegetation map. The classification accuracy was assessed through two tests: a small set of ground sampling data in 1985, and an extracted vegetation map from the national vegetation cover data (NVCD) over the study area in 1988. Our results show that a 1985 image classification was achieved using this method with an overall accuracy of 80.6%. However, the classification accuracy depends on a proper calibration of several parameters used in the model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号