首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study evaluates the feasibility of hyperspectral and multispectral satellite imagery for categorical and quantitative mapping of salinity stress in sugarcane fields located in the southwest of Iran. For this purpose a Hyperion image acquired on September 2, 2010 and a Landsat7 ETM+ image acquired on September 7, 2010 were used as hyperspectral and multispectral satellite imagery. Field data including soil salinity in the sugarcane root zone was collected at 191 locations in 25 fields during September 2010. In the first section of the paper, based on the yield potential of sugarcane as influenced by different soil salinity levels provided by FAO, soil salinity was classified into three classes, low salinity (1.7–3.4 dS/m), moderate salinity (3.5–5.9 dS/m) and high salinity (6–9.5) by applying different classification methods including Support Vector Machine (SVM), Spectral Angle Mapper (SAM), Minimum Distance (MD) and Maximum Likelihood (ML) on Hyperion and Landsat images. In the second part of the paper the performance of nine vegetation indices (eight indices from literature and a new developed index in this study) extracted from Hyperion and Landsat data was evaluated for quantitative mapping of salinity stress. The experimental results indicated that for categorical classification of salinity stress, Landsat data resulted in a higher overall accuracy (OA) and Kappa coefficient (KC) than Hyperion, of which the MD classifier using all bands or PCA (1–5) as an input performed best with an overall accuracy and kappa coefficient of 84.84% and 0.77 respectively. Vice versa for the quantitative estimation of salinity stress, Hyperion outperformed Landsat. In this case, the salinity and water stress index (SWSI) has the best prediction of salinity stress with an R2 of 0.68 and RMSE of 1.15 dS/m for Hyperion followed by Landsat data with an R2 and RMSE of 0.56 and 1.75 dS/m respectively. It was concluded that categorical mapping of salinity stress is the best option for monitoring agricultural fields and for this purpose Landsat data are most suitable.  相似文献   

2.
Crop monitoring during the growing season is important for regional management decisions and biomass prediction. The objectives of this study were to develop, improve and validate a scale independent biomass model. Field studies were conducted in Huimin County, Shandong Province of China, during the 2006–2007 growing season of winter wheat (Triticum aestivum L.). The field design had a multiscale set-up with four levels which differed in their management, such as nitrogen fertilizer inputs and cultivars, to create different biomass conditions: small experimental fields (L1), large experimental fields (L2), small farm fields (L3), and large farm fields (L4). L4, planted with different winter wheat varieties, was managed according to farmers’ practice while L1 through L3 represented controlled field experiments. Multitemporal spectral measurements were taken in the fields, and biomass was sampled for each spectral campaign. In addition, multitemporal Hyperion data were obtained in 2006 and 2007. L1 field data were used to develop biomass models based on the relation between the winter wheat spectra and biomass: several published vegetation indices, including NRI, REP, OSAVI, TCI, and NDVI, were investigated. A new hyperspectral vegetation index, which uses a four-band combination in the NIR and SWIR domains, named GnyLi, was developed. Following the multiscale concept, the data of higher levels (L2 through L4) were used stepwise to validate and improve the models of the lower levels, and to transfer the improved models to the next level. Lastly, the models were transferred and validated at the regional scale using Hyperion images of 2006 and 2007. The results showed that the GnyLi and NRI models, which were based on the NIR and SWIR domains, performed best with R2 > 0.74. All the other indices explained less than 60% model variability. Using the Hyperion data for regionalization, GnyLi and NRI explained 81–89% of the biomass variability. These results highlighted that GnyLi and NRI can be used together with hyperspectral images for both plot and regional level biomass estimation. Nevertheless, additional studies and analyses are needed to test its replicability in other environmental conditions.  相似文献   

3.
The presence of salt in the soil profile negatively affects the growth and development of vegetation. As a result, the spectral reflectance of vegetation canopies varies for different salinity levels. This research was conducted to (1) investigate the capability of satellite-based hyperspectral vegetation indices (VIs) for estimating soil salinity in agricultural fields, (2) evaluate the performance of 21 existing VIs and (3) develop new VIs based on a combination of wavelengths sensitive for multiple stresses and find the best one for estimating soil salinity. For this purpose a Hyperion image of September 2, 2010, and data on soil salinity at 108 locations in sugarcane (Saccharum officina L.) fields were used. Results show that soil salinity could well be estimated by some of these VIs. Indices related to chlorophyll absorption bands or based on a combination of chlorophyll and water absorption bands had the highest correlation with soil salinity. In contrast, indices that are only based on water absorption bands had low to medium correlations, while indices that use only visible bands did not perform well. From the investigated indices the optimized soil-adjusted vegetation index (OSAVI) had the strongest relationship (R2 = 0.69) with soil salinity for the training data, but it did not perform well in the validation phase. The validation procedure showed that the new salinity and water stress indices (SWSI) implemented in this study (SWSI-1, SWSI-2, SWSI-3) and the Vogelmann red edge index yielded the best results for estimating soil salinity for independent fields with root mean square errors of 1.14, 1.15, 1.17 and 1.15 dS/m, respectively. Our results show that soil salinity could be estimated by satellite-based hyperspectral VIs, but validation of obtained models for independent data is essential for selecting the best model.  相似文献   

4.
Remote sensing technology is the important tool of digital earth, it can facilitate nutrient management in sustainable cropping systems. In the study, two types of radial basis function (RBF) neural network approaches, the standard radial basis function (SRBF) neural networks and the modified type of RBF, generalized regression neural networks (GRNN), were investigated in estimating the nitrogen concentrations of oilseed rape canopy using vegetation indices (VIs) and hyperspectral reflectance. Comparison analyses were performed to the spectral variables and the approaches. The Root Mean Square Error (RMSE) and determination coefficients (R2) were used to assess their predictability of nitrogen concentrations. For all spectral variables (VIs and hyperspectral reflectance), the GRNN method produced more accurate estimates of nitrogen concentrations than did the SRBF method at all ranges of nitrogen concentrations, and the better agreements between the measured and the predicted nitrogen concentration were obtained with the GRNN method. This indicated that the GRNN method is prior to the SRBF method in estimation of nitrogen concentrations. Among the VIs, the Modified Chlorophyll Absorption in Reflectance Index (MCARI), MCARI1510, and Transformed Chlorophyll Absorption in Reflectance Index are better than the others in estimating oilseed rape canopy nitrogen concentrations. Compared to the results from VIs, the hyperspectral reflectance data also gave an acceptable estimation. The study showed that nitrogen concentrations of oilseed rape canopy could be monitored using remotely sensed data and the RBF method, especially the GRNN method, is a useful explorative tool for oilseed rape nitrogen concentration monitoring when applied on hyperspectral data.  相似文献   

5.
Developing spectral models of soil properties is an important frontier in remote sensing and soil science. Several studies have focused on modeling soil properties such as total pools of soil organic matter and carbon in bare soils. We extended this effort to model soil parameters in areas densely covered with coastal vegetation. Moreover, we investigated soil properties indicative of soil functions such as nutrient and organic matter turnover and storage. These properties include the partitioning of mineral and organic soil between particulate (>53 μm) and fine size classes, and the partitioning of soil carbon and nitrogen pools between stable and labile fractions. Soil samples were obtained from Avicennia germinans mangrove forest and Juncus roemerianus salt marsh plots on the west coast of central Florida. Spectra corresponding to field plot locations from Hyperion hyperspectral image were extracted and analyzed. The spectral information was regressed against the soil variables to determine the best single bands and optimal band combinations for the simple ratio (SR) and normalized difference index (NDI) indices. The regression analysis yielded levels of correlation for soil variables with R2 values ranging from 0.21 to 0.47 for best individual bands, 0.28 to 0.81 for two-band indices, and 0.53 to 0.96 for partial least-squares (PLS) regressions for the Hyperion image data. Spectral models using Hyperion data adequately (RPD > 1.4) predicted particulate organic matter (POM), silt + clay, labile carbon (C), and labile nitrogen (N) (where RPD = ratio of standard deviation to root mean square error of cross-validation [RMSECV]). The SR (0.53 μm, 2.11 μm) model of labile N with R2 = 0.81, RMSECV= 0.28, and RPD = 1.94 produced the best results in this study. Our results provide optimism that remote-sensing spectral models can successfully predict soil properties indicative of ecosystem nutrient and organic matter turnover and storage, and do so in areas with dense canopy cover.  相似文献   

6.
Spectroscopic techniques have become attractive to assess soil properties because they are fast, require little labor and may reduce the amount of laboratory waste produced when compared to conventional methods. Imaging spectroscopy (IS) can have further advantages compared to laboratory or field proximal spectroscopic approaches such as providing spatially continuous information with a high density. However, the accuracy of IS derived predictions decreases when the spectral mixture of soil with other targets occurs. This paper evaluates the use of spectral data obtained by an airborne hyperspectral sensor (ProSpecTIR-VS – Aisa dual sensor) for prediction of physical and chemical properties of Brazilian highly weathered soils (i.e., Oxisols). A methodology to assess the soil spectral mixture is adapted and a progressive spectral dataset selection procedure, based on bare soil fractional cover, is proposed and tested. Satisfactory performances are obtained specially for the quantification of clay, sand and CEC using airborne sensor data (R2 of 0.77, 0.79 and 0.54; RPD of 2.14, 2.22 and 1.50, respectively), after spectral data selection is performed; although results obtained for laboratory data are more accurate (R2 of 0.92, 0.85 and 0.75; RPD of 3.52, 2.62 and 2.04, for clay, sand and CEC, respectively). Most importantly, predictions based on airborne-derived spectra for which the bare soil fractional cover is not taken into account show considerable lower accuracy, for example for clay, sand and CEC (RPD of 1.52, 1.64 and 1.16, respectively). Therefore, hyperspectral remotely sensed data can be used to predict topsoil properties of highly weathered soils, although spectral mixture of bare soil with vegetation must be considered in order to achieve an improved prediction accuracy.  相似文献   

7.
Motivated by the increasingly availability and importance of hyperspectral remote sensing data, this study aims to determine whether current generation narrowband hyperspectral remote sensing data could be used to estimate vegetation Leaf Area Index (LAI) accurately than the traditional broadband multispectral data. A comparative study has been carried out to evaluate the performance of the narrowband Normalized Difference Vegetation Index (NDV1) derived from Hyperion hyperspectral sensor with that of derived from IRS LISS-III for the estimation of LAI of some major agricultural crops (e.g. cotton, sugarcane and rice) in part of Guntur district, India. It has been found that the narrowband NDVI derived from Hyperion has shown better results over its counterpart derived from broadband LISS-III. Linear regression models have been used which with selected subsets of individual Hyperion bands performed better to predict LAI than those based on the broadband datasets, although the potential to overfit models using the large number of available Hyperion bands is a concern for further research.  相似文献   

8.
The use of multispectral satellite sensors for generation of hyperspectral indices is restricted because of their coarse spectral resolutions. In this study, we attempted to synthesize a few of these hyperspectral indices, viz. RedEdge Normalized Difference Vegetation Index (NDVI705), Plant Senescence Reflectance Index (PSRI) and Normalized-Difference-Infrared-Index (NDII), for crop stress monitoring at regional scale using multispectral images, simulated from Hyperion data. The Hyperion data were resampled and simulated to corresponding spatial and spectral resolutions of AWiFS, OCM-2 and MODIS sensors using their respective filter function. Different possible combinations of two bands (i.e. simple difference, simple ratio and normalized difference) were computed using synthetic spectral bands of each sensor, and were regressed with NDVI705, PSRI and NDII. Models with highest correlation were selected and inverted on Hyperion data of another date to synthesize respective multispectral indices. Synthetic broad band indices of multispectral sensors with their respective narrow band indices of Hyperion were found to be in good agreement.  相似文献   

9.
The relationship between soil salinity parameters and their influence on soil spectral characteristics were analyzed using both satellite data (Hyperion) and reflectance data of soil samples collected from parts of Ahmedabad district of Gujarat, India. The soil spectral reflectance curves were assessed using absorption feature parameters by DISPEC software to identify suitable spectral band for salinity characterization. The Hyperion data of the study area were processed and classified into different classes by spectral angle mapper algorithm using spectral library generated from soil spectra. The results showed that among all the observed soil parameters Electrical Conductivity, Exchangeable Sodium Percentage, Cation Exchange Capacity and Mg++ predictions can be made accurately based on partial least square regression models developed from selected wavelengths. Out of the total study area moderately saline-sodic, severely saline-sodic, severely saline and slightly saline soils occupy 23.5, 12.6, 10.9 and 0.04%, respectively.  相似文献   

10.
申鑫  曹林  佘光辉 《遥感学报》2016,20(6):1446-1460
精确估算森林生物量对全球碳平衡以及气候变化的研究有重要意义。以亚热带天然次生林为研究对象,借助地面实测样地数据,通过对机载LiCHy(LiDAR,CCD and Hyperspectral)传感器同时获取的高光谱和高空间分辨率数据进行信息提取和数据融合,建模反演森林生物量。首先通过面向对象分割方法进行单木冠幅提取,然后融合从高光谱数据提取的光谱特征变量和从高空间分辨率数据提取的单木冠幅统计变量,构建多元回归模型估算地上、地下生物量,最后利用地面实测生物量经交叉验证评价模型精度。结果表明,综合模型的精度(R~2为0.54—0.62)高于高光谱模型(R~2为0.48—0.57);在高光谱模型中地上生物量模型精度(R~2为0.57)高于地下生物量模型(R~2为0.48);在综合模型中地上生物量模型精度(R~2为0.62)同样高于地下生物量模型(R~2为0.54)。交叉验证结果表明,与仅使用高光谱数据(单一数据源)相比,通过集成高光谱和高空间分辨率数据的生物量反演效果有所提升,可以更加有效地估算亚热带森林生物量。  相似文献   

11.
Abstract

Determining oil slick thickness plays an important role in assessing oil spill volume and its environmental impacts on the ocean. In this study, we used a Hyperion image of an oil spill accident area and seawater and fresh crude oil samples collected in the Bohai Sea of China. A well-controlled laboratory experiment was designed to simulate spectral responses to different oil slick thicknesses. Spectral resampling and normalization methods were used to reduce the differences in spectral reflectances between the experimental background seawater sample and real background seawater. Fitting the analysis with laboratory experimental data results showed a linear relationship between normalized oil slick reflectance and normalized oil slick thickness [20th band (R 2=0.92938, n=49, p<0.01), 26th band (R 2=0.93806, n=49, p<0.01), 29th band (R 2=0.93288, n=49, p<0.01)]. By using these statistical models, we successfully determined the normalized oil slick thickness with the Hyperion image. Our results indicate that hyperspectral remote sensing technology is an effective method to monitor oil spills on water. The spectral ranges of visible green and red light were the optimal bands for estimating oil slick thickness in case 2 water. The high, stabilized spectral reflectance of background seawater will be helpful in oil slick thickness inversion.  相似文献   

12.
天宫一号高光谱数据是继美国Hyperion之后,另一种可应用于地质领域的成像光谱数据.面向地质应用特点与需求,针对反射率产品开展全面、定量的数据质量评价对于深化应用研究具有重要意义.但是,由于航天成像光谱数据与地面实测波谱空间尺度差异甚大,在荒漠戈壁区选取自然地物进行波谱测试,并对其开展评价,特别是定量评价,非常困难.本文以航空HyMap数据为传递,完成了天宫一号成像光谱数据质量的定量评价.结果表明,在矿物识别采用的主要短波红外谱段,天宫一号高光谱数据的信噪比明显优于Hyperion数据.采用2190—2230 nm、2310—2355 nm两个谱段的吸收深度初步对天宫一号高光谱短波红外数据真实性进行了评价,经过校正后,天宫一号数据Al-OH、Mg-OH/CO32-矿物大类或组合的漏提率从71%、67%减小至29%、28%,可有效提高弱信息的检出率.  相似文献   

13.
机载激光雷达及高光谱的森林乔木物种多样性遥感监测   总被引:1,自引:0,他引:1  
利用机载LiDAR和高光谱数据并结合37个地面调查样本数据,基于结构差异与光谱变异理论,通过相关分析法分别筛选了3个最优林冠结构参数和6个最优光谱指数,在单木尺度上利用自适应C均值模糊聚类算法,在神农架国家自然保护区开展森林乔木物种多样性监测,实现了森林乔木物种多样性的区域成图。研究结果表明,(1)基于结合形态学冠层控制的分水岭算法可以获得较高精度的单木分割结果(R~2=0.88,RMSE=13.17,P0.001);(2)基于LiDAR数据提取的9个结构参数中,95%百分位高度、冠层盖度和植被穿透率为最优结构参数,与Shannon-Wiener指数的相关性达到R~2=0.39—0.42(P0.01);(3)基于机载高光谱数据筛选的16个常用的植被指数中,CRI、OSAVI、Narrow band NDVI、SR、Vogelmann index1、PRI与Shannon-Wiener指数的相关性最高(R~2=0.37—0.45,P0.01);(4)在研究区,利用以30 m×30 m为窗口的自适应模糊C均值聚类算法可预测的最大森林乔木物种数为20,物种丰富度的预测精度为R~2=0.69,RMSE=3.11,Shannon-Wiener指数的预测精度为R~2=0.70,RMSE=0.32。该研究在亚热带森林开展乔木物种多样性监测,是在区域尺度上进行物种多样性成图的重要实践,可有效补充森林生物多样性本底数据的调查手段,有助于实现生物多样性的长期动态监测及科学分析森林物种多样性的现状和变化趋势。  相似文献   

14.
We present here the examples that show how fusing data from hyperspectral sensors with data from high spatial resolution sensors can enhance overall road detection accuracy. The fusion of hyperspectral and high spatial resolution data combines their superior respective spectral and spatial information. IKONOS (MSS) and Hyperion images were fused using the principal component analysis (PCA) method. The approach for road extraction integrates multiresolution segmentation and object oriented classification. Road extraction is done from an IKONOS (MSS) image and a Hyperion and IKONOS (MSS) merged image and comparisons are made depending on accuracy and quality measures such as completeness and correctness. This article also emphasises the types of roads which are giving better accuracy of extraction after fusion with hyperspectral image. This can vary because of types of material and condition of roads. The methodology was applied on roads of Dehradun, India.  相似文献   

15.
Landscape assessment of soil moisture is critical to understanding the hydrological cycle at the regional scale and in broad-scale studies of biophysical processes affected by global climate changes in temperature and precipitation. Traditional efforts to measure soil moisture have been principally restricted to in situ measurements, so remote sensing techniques are often employed. Hyperspectral sensors with finer spatial resolution and narrow band widths may offer an alternative to traditional multispectral analysis of soil moisture, particularly in landscapes with high spatial heterogeneity. This preliminary research evaluates the ability of remotely sensed hyperspectral data to quantify soil moisture for the Little River Experimental Watershed (LREW), Georgia. An airborne hyperspectral instrument with a short-wavelength infrared (SWIR) sensor was flown in 2005 and 2007 and the results were correlated to in situ soil moisture values. A significant statistical correlation (R 2 value above 0.7 for both sampling dates) for the hyperspectral instrument data and the soil moisture probe data at 5.08 cm (2 inches) was determined. While models for the 20.32 cm (8 inches) and 30.48 cm (12 inches) depths were tested, they were not able to estimate soil moisture to the same degree.  相似文献   

16.
This study aims to quantify the landscape spatio-temporal dynamics including Land Use/Land Cover (LULC) changes occurred in a typical Mediterranean ecosystem of high ecological and cultural significance in central Greece covering a period of 9 years (2001–2009). Herein, we examined the synergistic operation among Hyperion hyperspectral satellite imagery with Support Vector Machines, the FRAGSTATS® landscape spatial analysis programme and Principal Component Analysis (PCA) for this purpose. The change analysis showed that notable changes reported in the experimental region during the studied period, particularly for certain LULC classes. The analysis of accuracy indices suggested that all the three classification techniques are performing satisfactorily with overall accuracy of 86.62, 91.67 and 89.26% in years 2001, 2004 and 2009, respectively. Results evidenced the requirement for taking measures to conserve this forest-dominated natural ecosystem from human-induced pressures and/or natural hazards occurred in the area. To our knowledge, this is the first study of its kind, demonstrating the Hyperion capability in quantifying LULC changes with landscape metrics using FRAGSTATS® programme and PCA for understanding the land surface fragmentation characteristics and their changes. The suggested approach is robust and flexible enough to be expanded further to other regions. Findings of this research can be of special importance in the context of the launch of spaceborne hyperspectral sensors that are already planned to be placed in orbit as the NASA’s HyspIRI sensor and EnMAP.  相似文献   

17.
Abstract

This study proposes the development of a multi-sensor, multi-spectral composite from Landsat-8 and Sentinel-2A imagery referred to as ‘LSC’ for land use land cover (LULC) characterisation and compared with respect to the hyperspectral imagery of the EO1: Hyperion sensor. A three-stage evaluation was implemented based on the similarity observed in the spectral response, supervised classification results and endmember abundance information obtained using linear spectral unmixing. The study was conducted for two areas located around Dhundi and Rohtak in Himachal Pradesh and Haryana, respectively. According to the analysis of the spectral reflectance curves, the spectral response of the LSC is capable of identifying major LULC classes. The kappa accuracy of 0.85 and 0.66 was observed for the classification results from LSC and Hyperion data for Dhundi and Rohtak datasets, respectively. The coefficient of determination was found to be above 0.9 for the LULC classes in both the datasets as compared to Hyperion, indicating a good agreement. Thus, these three-stage results indicated the significant potential of a composite derived from freely available multi-sensor multi-spectral imagery as an alternative to hyperspectral imagery for LULC studies.  相似文献   

18.
樊彦国  张磊 《遥感学报》2012,16(2):378-389
土壤中石油类含量的检测对石油污染的预防与治理具有重要的实际意义。本文首先进行孤东油田土壤样品高光谱反射率的室内测定及石油含量的检测,然后利用单变量预测模型和逐步回归方法分析了土壤光谱特征参数与石油类含量之间的线性和非线性关系,结果表明:包络线分析的第三折线段斜率与石油类含量相关性最好,该段斜率的三次曲线函数为石油类含量的最佳单变量估算模型。标准正态变量变换对光谱的预处理效果最好,利用变换后光谱建立多元模型,其调整的判定系数R2是0.826,总均方根RMSE是0.531,且自变量个数较少,为最优预测模型。本文提出的利用高光谱数据检测土壤中石油类含量的方法,为土壤石油类污染检测提供了一种有效的新思路。  相似文献   

19.
The present study was carried out to evaluate the satellite-based hyperspectral data available from Hyperion onboard EO-1 of NASA for agricultural applications. The study was carried out for Daurala block of Meerut district, using data of March 2005. The preliminary data analysis showed that there are 196 usable bands out of a total of 242 bands. Principal component (PC) analysis showed that about 99% of the information explained in 10 PCs. The atmospherically corrected reflectance, derived from satellite data had good agreement with the ground reflectance, observed using handheld spectroradiometer, with r2 ranging from 0.85 to 0.98. A set of twenty most usable bands was selected by the criteria of maximum contribution to first five PCs and the band combinations with least inter-band correlations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号