首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
To explain the variety of observed optical emission stratification in the shells around Wolf-Rayet stars, we have calculated the nonstationary cooling of a homogeneous gas layer heated to a temperature (0.4–2) × 105 K. We have assumed that the nebula is ionized by its central star and consists of a rarefied gas and a set of clouds with different densities through which adiabatic shock waves produced by the stellar wind propagate. Based on this model, we have determined the sequence in which the emission in Hα and in nebular oxygen lines appears. The Hα emission attributable to the electron-collision excitation of hydrogen atoms is produced earliest on the periphery of nebulae, the [O III] line emission follows next, and, finally, the Hα recombination emission is produced. The results obtained are in good agreement with the observational data.  相似文献   

2.
We present the first C-shock and radiative transfer model that calculates the evolution of the line profiles of neutral and ion species like SiO, H13CO+ and HN13C for different flow times along the propagation of the shock through the unperturbed gas. We find that the line profiles of SiO characteristic of the magnetic precursor stage have very narrow linewidths and are centered at velocities close to the ambient cloud velocity, as observed toward the young shocks in the L1448-mm outflow. Consistently with previous works, our model also reproduces the broad SiO emission detected in the high velocity gas in this outflow, for the downstream postshock gas in the shock. This implies that the different velocity components observed in L1448-mm are due to the coexistence of different shocks at different evolutionary stages.  相似文献   

3.
The structure and kinematics of ionized supershells in the star-forming region in the BCD galaxy VII Zw 403 (UGC 6456) are analyzed using observations with the SCORPIO focal reducer on the 6-m Special Astrophysical Observatory telescope in three modes: direct imaging (in the Hα, [O III], and [S II] lines), long-slit spectroscopy, and spectroscopy with a scanning Fabry-Perot interferometer. In addition to the previously known bright H II regions and the faint giant ring that surrounds the entire starforming region, many new faint diffuse and arc structures have been detected. A fine structure of the giant ring has been revealed. We do not confirm the previously detected expansion of the bright shells around young stellar associations with a velocity of 50–70 km s?1. We have estimated their expansion velocities to be no higher than 15–20 km s?1; the corresponding kinematic age, no younger than 3–4 Myr, agrees well with the age of the compact OB associations associated with them. We correlate the faint extended filamentary and diffuse regions of ionized gas identified almost in the entire central region of the galaxy and the giant H II ring with the older (10 Myr) stellar population of the most recent starburst. Weak high-velocity [O III] and Hα line wings (up to 300 km s?1 from the line center) have been detected in the brightest H II region. Such velocities have been observed in the galaxy for the first time. The previously published Hα luminosity measurements for the galaxy are refined.  相似文献   

4.
We present the results of study of the ionized gas velocity fields in 28 nearby (systemic velocity below 1000 km s?1) dwarf galaxies. The observations were made at the 6-m BTA telescope of the SAO RAS with the scanning Fabry-Perot interferometer in the Hα emission line. We were able to measure regular circular rotation parameters in 25 galaxies. As a rule, rotation velocities measured in HII are in a good agreement with the data on the HI kinematics at the same radii. Three galaxies reveal position angles of the kinematic axis in the HII velocity fields that strongly (tens of degrees) differ from the measurements in neutral hydrogen at large distances from the center or from the orientation of the major axis of optical isophotes. The planes of the gaseous and stellar disks in these galaxies most likely do not coincide. Namely, in DDO99 the gaseous disk is warped beyond the optical radius, and in UGC3672 and UGC8508 the inclination of orbits of gas clouds varies in the inner regions of galaxies. It is possible that the entire ionized gas in UGC8508 rotates in the plane polar to the stellar disk.  相似文献   

5.
We studied a sample of galaxies from the Sloan Digital Sky Survey Data Release 7 that exhibited the He II λ 468.6 nm nebular line (an indicator of hard radiation in H II regions) in their spectra. The intensity of this line in the spectra of H II regions from our sample increased with decreasing metallicity, thus confirming the results of earlier studies. However, the theoretical models of population synthesis predict that the He II line intensity must decrease with decreasing metallicity. A possible connection between hard UV radiation and Wolf-Rayet stars was investigated. Only 30% of spectra from our sample exhibited both the nebular emission and the broad He II emission of Wolf-Rayet stars. This fact does not rule out the possibility that Wolf-Rayet stars serve as sources of hard ionizing radiation in some H II regions. However, other possible sources, such as the fast radiative shock waves, seem to be more likely to produce this hard ionizing radiation.  相似文献   

6.
In this paper, recent results obtained on highly radiative shocks generated in a xenon filled gas cell using the GEKKO XII laser facility are presented. Data show extremely high shock velocity (??150 km/s) never achieved before in gas. Preliminary analyses based on theoretical dimensionless numbers and numerical simulations suggest that these radiative shocks reach a new radiative regime where the radiative pressure plays a role in the dynamics and structure of the shock. A major effect observed is a strong anisotropic emission in the downstream gas. This unexpected feature is discussed and compared to available 2D radiation hydrodynamic simulations.  相似文献   

7.
A high velocity radiative shock, or one moving into high-metallicity gas, provides an efficient means to generate a strong local UV photon field. The optical emission from the shock and precursor region is dominated by the photoionised gas, rather than by the cooling region, and the total optical + UV emission scales as the mechanical energy flux through the shock. In this paper, such models are applied to oxygen-rich supernova remnants and AGN. For AGN, the degree of magnetic support in the post-shock gas is an important parameter. LINER and cooling flow spectra can be understood as resulting from high velocity shocks without precursors, while Seyfert 1.5–2 galaxy emission line ratios result from high velocity shocks with their photoionised precursor HII regions. This model explains the problem of the high electron temperatures observed in both classes of object.  相似文献   

8.
We present long-term spectral observations (R = 20000) of IN Com in the region of the Hα, Hβ, and He I 5876 lines. One distinguishing characteristic of the stellar spectrum is the presence in the Hα line of an extended two-component emission with limits up to ±400 km/s. Emission parameters show the rotation modulation with the stellar rotation period and a significant variability on the long-term scale. Similar emissions are also observed in the Hβ and He I 5876 lines. Our results allow us to conclude that observational emission profiles are formed in an optically thin hot gas. This is a result of the presence of a circumstellar gas disk around IN Com. Its size does not exceed several stellar radii. The material for the disk is supported by the stellar wind from IN Com. The detected variability of Hα-emission parameters shows a clear connection with the photopolarimetric activity of the star. This fact allows us to associate the long-term spectral variability with cycles of stellar activity of IN Com.  相似文献   

9.
10.
In this paper I will review some recent developments in the field of circumstellar shocks, particularly as they relate to colliding stellar winds. I shall review the basic physics of colliding winds and shocks, and discuss recent developments in hydrodynamic modelling of colliding winds. I shall also report on recent X-ray observations of shock emission in Wolf-Rayet binary systems where high resolution X-ray spectra of colliding wind shock emission is being seen. I will discuss the occurrence of colliding winds to such diverse systems as Wolf-Rayet binaries, pre-main sequence binaries, symbiotic stars as well as the Galactic center object IRS 7, where recent results on interacting winds are yielded insight into the structure of winds in general.  相似文献   

11.
Colliding winds in binaries are discussed mainly from an observational point of view. Collisions are especially energetic in the case of hot, luminous stars, which drive strong, fast winds. Emphasis is therefore devoted to binaries containing Wolf-Rayet stars. The subject is divided up into (1) continuum radiation (X-ray and non-thermal radio from the hot bow shock head, IR from dust formed in some WC + O binaries far downstream in the collision shock cone) and (2) line radiation (optical and UV, both from various regions downstream from the bow shock head). The latter is particularly useful in providing constraints on the velocity field and hence ultimately the geometry of the wind collision and the binary system itself. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
We investigated the kinematics of the pulsar wind nebula (PWN) in the old supernova remnant CTB 80 using the Fabry-Perot interferometer of the 6-m Special Astrophysical Observatory telescope. In addition to the previously known expansion of the system of bright filaments with a velocity of 100–200 km s?1, we detected weak high-velocity features in the Hα line at least up to velocities of 400–450 km s?1. We analyzed the morphology of the PWN in the Hα, [S II], and [O III] lines using HST archival data and discuss its nature. The shape of the central filamentary shell, which is determined by the emission in the [O III] line and in the radio continuum, is shown to be consistent with the bow-shock model for a significant (about 60°) inclination of the pulsar’s velocity vector to the plane of the sky. In this case, the space velocity of the pulsar is twice as high as its tangential velocity, i.e., it reaches ?500 km s?1, and PSR B1951+32 is the first pulsar whose radial velocity about 40 km s?1 has been estimated from PWN observations. The shell-like Hα-structures outside the bow shock front in the east and the west could be associated with both the pulsar’s jets and the pulsar wind breakthrough due to the layered structure of the extended CTB 80 shell.  相似文献   

13.
A comparison between the observed UV spectra and detailed consistent calculations of the Cygnus Loop is presented. The results demonstrate that the spectra can be explained by supposing that the Cygnus Loop (C.L.) moves into a fully ionized gas. The [O III]/H ratio is shown to be an indicator to the fraction of He++ in the gas entering the shock.Further results are:(a) Observed shocks of higher velocity propagation move into regions of lower density; (b) the optical and UV spectra are emitted by very close and almost overlapping shocks (c) fast shocks (v240 km s–1) propagation in the intercloud medium produce the X-ray emission, however, they can also produce faint H on impinging interstellar clouds.We find that carbon (CI, CII, CIII, and CIV) depletion relative to other heavy elements is not more than a factor 3; whereas, we confirm that all heavy elements, relative to their solar abundance, are depleted by a factor 10. Heavy elemental depletion is likely to result formation of grains, sputtering and molecules in ISM.  相似文献   

14.
The origin of rovibrational H2 emission in the central galaxies of cooling flow clusters is poorly understood. Here we address this issue using data from our near-infrared spectroscopic survey of 32 of the most line-luminous such systems, presented in the companion paper by Edge et al.
We consider excitation by X-rays from the surrounding intracluster medium (ICM), ultra-violet (UV) radiation from young stars, and shocks. The   v = 1–0  K -band lines with upper levels within  104 K  of the ground state appear to be mostly thermalized (implying gas densities  ≳105 cm−3  ), with the excitation temperature typically exceeding 2000 K, as found earlier by Jaffe, Bremer & van der Werf. Together with the lack of strong   v = 2–0  lines in the H -band, this rules out UV radiative fluorescence.
Using the cloudy photoionization code, we deduce that the H2 lines can originate in a population of dense clouds, exposed to the same hot  ( T ∼ 50 000 K)  stellar continuum as the lower density gas which produces the bulk of the forbidden optical line emission in the Hα-luminous systems. This dense gas may be in the form of self-gravitating clouds deposited directly by the cooling flow, or may instead be produced in the high-pressure zones behind strong shocks. Furthermore, the shocked gas is likely to be gravitationally unstable, so collisions between the larger clouds may lead to the formation of globular clusters.  相似文献   

15.
Based on a self-consistent solution of the equations of gas dynamics, kinetics of hydrogen atomic level populations, and radiative transfer, we analyze the structure of a shock wave that propagates in a partially ionized hydrogen gas. We consider the radiative transfer at the frequencies of spectral lines by taking into account the effects of a moving medium in the observer's frame of reference. The flux in Balmer lines is shown to be formed behind the shock discontinuity at the initial hydrogen recombination stage. The Doppler shift of the emission-line profile is approximately one and a half times smaller than the gas flow velocity in the Balmer emission region, because the radiation field of the shock wave is anisotropic. At Mach numbers M1?10 and unperturbed gas densities σ1=10?10 g cm?3, the Doppler shift is approximately one third of the shock velocity U1. The FWHM of the emission-line profile δ ? is related to the shock velocity by δ ? k ? U1, where k ? = 1, 0.6, and 0.65 for the Hα, Hβ, and Hγ lines, respectively.  相似文献   

16.
The temporal variations of the radial velocity and profile of the Hα line in the spectrum of α Cyg are analyzed based on 240 CCD spectra taken with the coude spectrograph attached to the 2-m telescope of Shamaha Astrophysical Observatory of the National Academy of Sciences of Azerbaijan in 1998–2000. The results obtained are inconsistent with the conclusion made by the Heidelberg group concerning the behavior of the variability of the Hα-line profile [1]. The observed pattern of radial-velocity variations is due to nonradial pulsations and differs for the blue and red halves of the absorption profile. The pulsation parameters differ for different levels of residual intensity for both halves of the absorption profile. The amplitude and period increase from the core toward the wing of the line for the red half of the absorption profile, and, on the contrary, decrease toward the line wing for the blue half of the profile. Absorption features are observed on the blue half of the absorption profile. Their emergence and disappearance, as well as minor migrations are indicative of the clumpy structure of the stellar envelope. The similarity of the variability behavior of the absorption and emission profiles indicates that the latter too owe their variability to nonradial pulsations. Thus the variability of the stellar wind in its formation regions is partly due to the nonradial pulsations of the underlying layers of the atmosphere. On the whole, the variability of the position and photometric parameters of the absorption and emission components of the profile is indicative of the nonstationary nature and asymmetric shape of the stellar wind.  相似文献   

17.
《New Astronomy Reviews》2000,44(4-6):235-240
The analysis of the long-slit spectral observations of 40 Wolf-Rayet (WR) galaxies with heavy element mass fraction ranging over two orders of magnitudes from Z/50 to 2Z are presented. We derive the number of O stars from the luminosity of the Hβ emission line, the number of early carbon Wolf-Rayet stars (WCE) from the luminosity of the red bump (broad CIV λ5808 emission) and the number of late nitrogen Wolf-Rayet stars (WNL) from the luminosity of the blue bump (broad emission near λ4650). We identified some of weak WR emission lines, most often the N III λ4512 and Si III λ4565 lines, which have very rarely or never been seen and discussed before in WR galaxies. A new technique for deriving the number of WNL stars (WN7–WN8) from the N III λ4512 and the number of WN9–WN11 from Si III λ4565 emission lines has been proposed. This technique is potentially more precise than the blue bump method because it does not suffer from contamination of WCE and early WN (WNE) stars and nebular gaseous emission. We find that the fraction of WR stars relative to all massive stars increases with increasing metallicity, in agreement with predictions of evolutionary synthesis models. The relative number ratios N(WC)/N(WN) and the equivalent widths of the blue and red bumps derived from observations are also in satisfactory agreement with theoretical predictions, except for the most metal-deficient WR galaxies. A possible source of disagreement is too low a line emission luminosity adopted for a single WCE star in low-metallicity models.  相似文献   

18.
A study of circumnuclear star-forming regions (CNSFRs) in several early-type spirals has been carried out in order to investigate their main properties: stellar and gas kinematics, dynamical masses, ionising stellar masses, chemical abundances and other properties of the ionised gas. Both high resolution (R~20,000) and moderate resolution (R~5000) have been used. In some cases, these regions (about 100–150 pc in size) are composed of several individual star clusters with sizes between 1.5 and 4.9 pc, estimated from Hubble Space Telescope images. Stellar and gas velocity dispersions are found to differ by about 20 to 30 km?s?1, with the Hβ emission lines being narrower than both the stellar lines and the [Oiii]λ5007 Å lines. The twice ionised oxygen, on the other hand, shows velocity dispersions comparable to those of stars. We have applied the virial theorem to estimate dynamical masses of the clusters, assuming that the systems are gravitationally bounded and spherically symmetric, and using previously measured sizes. The measured values of the stellar velocity dispersions yield dynamical masses of the order of 107 to 108 M for the full CNSFRs. We obtain oxygen abundances which are comparable to those found in high-metallicity disc Hii regions from direct measurements of electron temperatures and consistent with solar values within the errors. The region with the highest oxygen abundance is R3+R4 in NGC3504, 12+log(O/H)=8.85, about 1.5 times solar. The derived N/O ratios are, on average, larger than those found in high-metallicity disc Hii regions, and they do not seem to follow the trend of N/O vs. O/H which marks the secondary behaviour of nitrogen. On the other hand, the S/O ratios span a very narrow range—between 0.6 and 0.8 times solar. Compared to high-metallicity disc Hii regions, CNSFRs show values of the O23 and the N2 parameters whose distributions are shifted to lower and higher values, respectively. Hence, even though their derived oxygen and sulphur abundances are similar, higher values would in principle be obtained for the CNSFRs if pure empirical methods were used to estimate abundances. CNSFRs also exhibit lower ionisation parameters than their disc counterparts, as derived from [Sii]/[Siii]. Their ionisation structure also seems to be different, with CNSFRs showing radiation-field properties more similar to Hii galaxies than to disc high-metallicity Hii regions.  相似文献   

19.
We analyze the peculiarities of the optical spectra of luminous stars with circumstellar gas and dust envelopes: the time variability of the absorption-emission profiles of the Hα line, the presence of stationary emission and absorption molecular bands, multicomponent absorption-emission profiles of the Na I D doublet lines. We show that the peculiarities of the line profiles (the presence of an emission component in the Na I D doublet lines, the specific type of the molecular features, the asymmetry and splitting of the profiles of strong absorption features with low excitation potential of the low level) can be associated with the kinematic and chemical properties of the envelope and its morphological type.  相似文献   

20.
Based on our high-spectral-resolution observations performed with the NES echelle spectrograph of the 6-m telescope, we have studied the peculiarities of the spectrum and the velocity field in the atmosphere and envelope of the cool supergiant V1027 Cyg, the optical counterpart of the infrared source IRAS 20004+2955. A splitting of the cores of strong absorptions of metals and their ions (Si II, Ni I, Ti I, Ti II, Sc II, Cr I, Fe I, Fe II, BaII) has been detected in the stellar spectrum for the first time. The broad profile of these lines contains a stable weak emission in the core whose position may be considered as the systematic velocity V sys = 5.5 km s?1. Small radial velocity variations with an amplitude of 5–6 km s?1 due to pulsations have been revealed by symmetric low- and moderate-intensity absorptions. A long-wavelength shift of the Hα profile due to line core distortion is observed in the stellar spectrum. Numerous weak CN molecular lines and the KI 7696 Å line with a P Cyg profile have been identified in the red spectral region. The coincidence of the radial velocities measured from symmetric metal absorptions and CN lines suggests that the CN spectrum is formed in the stellar atmosphere. We have identified numerous diffuse interstellar bands (DIBs) whose positions in the spectrum, V r (DIBs) = ?12.0 km s?1, correspond to the velocity of the interstellar medium in the Local Arm of the Galaxy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号