首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The densities (p) of artificial solutions of Dead Sea waters have been measured at 20°, 25°, 30°, 35° and 40°C using a vibrating tube densimeter. The resulting relative densities (ppo, where po is the density of water) have been used to determine an equation of state for Dead Sea waters. The average deviation between experimental values and those calculated from the obtained equation was 0.000020 g ml?1. A thermal expansion coefficient and the coefficients characterizing the influence of the changes in salt or ionic concentrations on the density of Dead Sea waters were calculated, and they were shown to be temperature and concentration dependent. The densities of Dead Sea waters were found to be very sensitive to any changes in ionic composition. The partial molal volumes of salt components were calculated and discussed.  相似文献   

2.
The apparent solubility product of calcite was measured by saturometry as a function of temperature and salinity. Simplified equations for the carbonic-acid dissociation constants of Mehrbach et al., 1973 (Limnol. Oceanogr., 18: 897–907) have been derived from their experimental data and used to calculate apparent solubility product, Ksp, Ksp at 25°C and 35‰ salinity, was found to be Ksp = 4.70 × 10?7(mol2kgseawater?2) An equation was fitted to the experimental data, resulting in pKsp = 6.5795 ? 3.7159 × 105(TS) + 0.91056(T/S) ? 22.110(1.0/S)The mean activity coefficients, γ±CaCO3, were calculated at various temperatures and salinities, using the thermodynamic solubility product of Jacobson and Langmuir, 1974 (Geochim. Cosmochim. Acta, 38: 301–318) and the apparent solubility products quoted in their paper. The change in Ksp at each salinity, as a function of temperature, was used to calculate the apparent enthalpy of dissociation for calcite, ΔH′, and the extrapolated value of ΔH0 was in good agreement with that of Jacobson and Langmuir. Finally, this work was used to calculate saturation profiles for oceanic stations and as a basis for comment of the accuracy of in-situ saturometry, as well as the applicability of in-situ Ksp pressure corrections.  相似文献   

3.
Spectrophotometric measurements are reported for the first apparent dissociation constant of hydrogen sulfide in seawater over the temperature range 7.5–25°C and 2–35.8‰ salinity. These data are described by the expression pK1′ = 2.527 ? 0.169 Cl13 + 1359.96/T. The second apparent dissociation constant in potassium chloride solution was estimated potentiometrically using a sulfide specific ion electrode. A value of ~13.6 was found for pK2′ at a KCl concentration of 0.67 M. It is suggested that explicit reference to the sulfide ion, S2?, in describing equilibria in marine waters be dropped in favor of a formulation involving the bisulfide ion, HS?.  相似文献   

4.
《Marine Chemistry》1987,21(2):151-160
The adsorption on solid particles of natural organic ligand in seawater of Cu(II) ions, and of the inert Cu(II) complexes has been studied. Model solids, γ-Al2O3, Na+-0.392-γ-Al2O3, ‘Aerosil 200’, chrysotile, northupite and CaCO3 were added to seawater. It was observed that at pH 8 natural organic matter was strongly adsorbed on chrysotile and was not adsorbed on Na+ -0.392-γ-Al2O3; it was also adsorbed on γ-Al2O3 over the range of 3 < pH < 7. In this pH range, the complexing capacity and adsorption of Cu is at a minimum because Cu(II) is not adsorbed on γ-Al2O3 and natural organic matter is adsorbed. Inert CuL complexes were adsorbed at pH 8.0 on γ-Al2O3, ‘Aerosil 200’, CaCO3, and chrysotile but they were not adsorbed on northupite. The voltammetric method can be recommended for use in natural waters for distinguishing between metal ionic and metal inert complex species which are adsorbed from solution onto various solid particles.  相似文献   

5.
The dissociation constants (pK1, pK2 and pK3) for cysteine have been measured in seawater as a function of temperature (5 to 45 °C) and salinity (S = 5 to 35). The seawater values were lower than the values in NaCl at the same ionic strength. In an attempt to understand these differences, we have made measurements of the constants in Na–Mg–Cl solutions at 25 °C. The measured values have been compared to those calculated from the Pitzer ionic interaction model. The lower values of pK3 in the Na–Mg–Cl solutions have been attributed to the formation of Mg2+ complexes with Cys2− anions
Mg2+ + Cys2− = MgCys
The stability constants have been fitted to
after corrections are made for the interaction of Mg2+ with H+.The pK1 seawater measurements indicate that H3Cys+ interacts with SO42−. The Pitzer parameters β0(H3CysSO4), β1(H3CysSO4) and C(H3CysSO4) have been determined for this interaction. The formation of CaCys as well as MgCys are needed to account for the values of pK2 and pK3 in seawater.The consideration of the formation of MgCys and CaCys in seawater yields model calculated values of pK1, pK2 and pK3 that agree with the measured values to within the experimental error of the measurements. This study shows that it is important to consider all of the ionic interactions in natural waters when examining the dissociation of organic acids.  相似文献   

6.
A novel technique to determine complexing capacities for zinc is presented. The free zinc concentration is determined by cathodic stripping voltammetry preceded by adsorptive collection of complexes of zinc with ammonium pyrrolidine dithiocarbamate (APDC). The reduction peak of zinc is depressed as a result of ligand competition by natural organic material in the sample. Sufficient time is allowed to reach equilibrium between this material and added APDC, and equilibrium is maintained during the measurement. Both electrochemically reversible and irreversible complexes can therefore be investigated. Values for KZnAPDC are calibrated against NTA and EDTA in seawater of several salinities; log KZnAPDC was found to be 4.40 at 36‰, 4.36 at 24‰, 4.43 at 12‰, and 4.87 at 2.3‰. The ligand concentration and conditional stability constant, KZnL, for complexing ligands in a sample from the Irish Sea were determined in the presence of 4 × 10?5 M APDC and with added zinc concentrations between 5 × 10?9 and 3 × 10?7 M. The data best fitted a complexation model containing two ligands with concentrations of 2.6 and 6.2 and 10?8 M, and with values for log KZnL of 8.4 and 7.5, respectively. These results are comparable to those obtained with other equilibrium techniques, but the values of the constants are greater than those from ASV measurements.  相似文献   

7.
The dissociation constants (pK1 and pK2) for methionine have been measured in artificial seawater as a function of salinity (S = 5 to 35) and temperature (5 to 45 °C). The seawater pK2 values were lower than the values in NaCl at the same ionic strength while the pK1 values in seawater were lower only at S = 35. In an attempt to understand these differences, we have made measurements of the constants in Na–Mg–Cl solutions at 25 °C. The measured values have been used to determine the formation of Mg2+ complexes and Pitzer interaction parameters for Mg2+ with methionine. The seawater model with the interaction parameters accounts for the differences between the value of pK1 and pK2 between NaCl and seawater. This study demonstrates that it is important to consider all of the ionic interactions in natural waters when examining the dissociation of organic acids.  相似文献   

8.
The protonization constant of HS? (K12) has been determined potentiometrically (glass electrode) at atmospheric pressure in synthetic seawater in the salinity range 2.5–40‰ at 5 and 25°C and in NaCl solutions in the formal ionic strength of 0.1–0.8 M at 5 and 25°C. The difference between synthetic seawater and an NaCl solution with the same formal ionic strength can be explained in terms of the complexation of H+ by sulphate in seawater. These results can be used to compare the pH scales suggested by Hansson (1973c) and Bates (1975). Furthermore, comparison between the present values of K12 and those of Goldhaber and Kaplan (1975) makes it possible to compare the conventional pH scale with Hansson's titration pH scale. The conditional protonization constant of HS? in seawater of different salinities can be used to modify the Gran plots (Hansson and Jagner, 1973) for alkalinity measurements in anoxic seawater. Ion-pair formation between HS? and Mg2+ or Ca2+ seems to be very weak.  相似文献   

9.
Measurements have been made, by amperometric titration using anodic stripping voltammetry, of the zinc binding properties of organic material released by Skeletonema costatum in culture, after the stationary growth phase had been reached. Titration curves showed two inflection points, interpreted as indicating the presence of two analytically distinguishable ligand assemblages (L1 and L2). The complexing capacities of these assemblages increased with time and the associated conditional stability constants K1 and K2 decreased with time. This apparent reduction in stability constants could be accounted for by complex dissociation. Several methods for the calculation of complexing capacity and stability constant were employed and although the calculated concentrations of CL varied, each method showed similar trends.Size fractionation of the organic moieties revealed that CL, was composed of organic assemblages with apparent molecular weight greater than 3 × 104. The ligands L2 were of mixed size composition.  相似文献   

10.
A new method is proposed for the determination of complexing capacities and conditional stability constants for complexes of copper(II) with dissolved organic ligands in seawater. This method is based on ligand competition by the added ligand catechol for free metal ions. The concentration of copper-catechol complex ions is measured with great sensitivity by cathodic stripping voltammetry. The concentration of the free copper ion is calculated from the concentration of copper-catechol complex ions. Ligand concentrations and conditional stability constants are obtained from a titration of the ligands with copper. Two techniques for treatment of the data are compared. A seawater sample, originating from open oceanic conditions, is analysed and two complexing ligands were detected, having concentrations of 1.1 × 10?8 and 3.3 × 10?8 M, and conditional stability constants (log KCuL) of 12.2 and 10.2, respectively.  相似文献   

11.
12.
Phillipsite occurs in the deep sea in areas of very slow sedimentation and as the final alteration product of basalt, suggesting that it is thermodynamically stable. The thermodynamic data for gibbsite, kaolinite, K-feldspar, Na-feldspar, analcime and H4 SiO4 (aq), as well as the activities of seawater constituents are reasonably well known. These values and estimated entropies for Na- and K-phillipsites permit an estimate of the free energy of formation (at 25°C) for Na-phillipsite (5337.6 ± 6.7 kcal/mole) and for K-phillipsite (5382.4 ± 1.9 kcal/mole). The decomposition of phillipsite to analcime at 250°C yields the same result, suggesting that phillipsite is indeed a stable mineral.Phillipsite does not regulate the concentration of Na+ and K+ in seawater, but probably affects the pH of bottom waters and the composition of interstitial waters. No indications exist of “frozen in” equilibria from hydrothermal reactions at 100–200°C as could be expected by submarine volcanism.  相似文献   

13.
Laboratory measurements of all four CO2 parameters [fCO2 ( = fugacity of CO2), pH, TCO2 ( = total dissolved inorganic carbon), and TA ( = total alkalinity)] were made on the same sample of Gulf Stream seawater (S = 35) as a function of temperature (5–35 °C) and the ratio of TA/TCO2 (X) (1.0–1.2). Overall the measurements were consistent to ±8 μ atm in fCO2, ± 0.004 in pH, ± 3 μ mol kg−1 in TCO2, and ± 3 μ mol kg−1 in TA with the thermodynamic constants of Goyet and Poisson (1989), Roy et al. (1993), and Millero (1995). Deviations between the measured pH, TCO2, TA and those calculated from various input combinations increase with increasing X when the same constants are used. This trend in the deviations indicates that the uncertainties in pK2 become important with increasing X (surface waters), but are negligible for samples with the lower X (deep waters). This trend is < 5 μ mol kg−1 when the pK2 values of Lee and Millero (1995) are used.The overall probable error of the calculated fCO2 due to uncertainties in the accuracy of the parameters (pH, TCO2, TA, pK0, pk1, and pK2) is ± 1.2%, which is similar to the differences between the measured values and those calculated using the thermodynamic constants of Millero (1995).The calculated values of pK1, (from fCO2-TCO2-TA) agree to within ± 0.004 compared to the results of Dickson and Millero (1987), Goyet and Poisson (1989), Roy et al. (1993), and Millero (1995) over the same experimental conditions. The calculated values of pK2 (from pH-TCO2-TA) are in good agreement (± 0.004) with the results of Lee and Millero (1995) and also in reasonable agreement (± 0.008) with the results of Goyet and Poisson (1989), Roy et al. (1993), and Millero (1995). The salinity dependence of our derived values of pK1 and pK2, (S = 35) can be estimated using the equations determined by Millero (1995).  相似文献   

14.
In the summers of 1999 and 2003, the 1st and 2nd Chinese National Arctic Research Expeditions measured the partial pressure of CO2 in the air and surface waters (pCO2) of the Bering Sea and the western Arctic Ocean. The lowest pCO2 values were found in continental shelf waters, increased values over the Bering Sea shelf slope, and the highest values in the waters of the Bering Abyssal Plain (BAP) and the Canadian Basin. These differences arise from a combination of various source waters, biological uptake, and seasonal warming. The Chukchi Sea was found to be a carbon dioxide sink, a result of the increased open water due to rapid sea-ice melting, high primary production over the shelf and in marginal ice zones (MIZ), and transport of low pCO2 waters from the Bering Sea. As a consequence of differences in inflow water masses, relatively low pCO2 concentrations occurred in the Anadyr waters that dominate the western Bering Strait, and relatively high values in the waters of the Alaskan Coastal Current (ACC) in the eastern strait. The generally lower pCO2 values found in mid-August compared to at the end of July in the Bering Strait region (66–69°N) are attributed to the presence of phytoplankton blooms. In August, higher pCO2 than in July between 68.5 and 69°N along 169°W was associated with higher sea-surface temperatures (SST), possibly as an influence of the ACC. In August in the MIZ, pCO2 was observed to increase along with the temperature, indicating that SST plays an important role when the pack ice melts and recedes.  相似文献   

15.
16.
Geochemical and rock-magnetic investigations were carried out on a sediment core collected from the SE Arabian Sea at 1420 m depth in oxygenated waters below the present-day oxygen minimum zone. The top 250 cm of the core sediments represent the last 35 kaBP. The · 18O values of Globigerinoides ruber are heaviest during the Last Glacial Maximum (LGM) and appear unaffected by low-saline waters transported from the Bay of Bengal by the strong northeast monsoon and West Indian coastal current. The signatures of Bølling-Allerød and Younger Dryas events are distinct in the records of magnetic susceptibility, organic carbon (OC) and · 18O. Glacial sediments show higher OC, CaCO3, Ba, Mo, U and Cd, while the early-to-late Holocene sediments show increasing concentrations of OC, CaCO3, Ba, Cu, Ni and Zn and decreasing concentrations of Mo, U and Cd. Productivity induced low-oxygenated bottom waters and reducing sedimentary conditions during glaciation, and productivity and oxygenated bottom waters in the Holocene are responsible for their variation. The core exhibits different stages of diagenesis at different sediment intervals. The occurrence of fine-grained, low-coercivity, ferrimagnetic mineral during glacial periods is indicative of its formation in organic-rich, anoxic sediments, which may be analogous to the diagenetic magnetic enhancement known in sapropels of the Mediterranean Sea and Japan Sea. The glacial sediments exhibiting reductive diagenesis with anoxic sedimentary environment in this core correspond to reductive diagenesis and intermittent bioturbation (oxygenation) reported in another core in the vicinity. This suggests that the poorly oxygenated bottom water conditions during glacial times should not be generalized, but are influenced locally by productivity, sedimentation rates and sediment reworking.  相似文献   

17.
The precision of spectrophotometric measurements of indicator absorbance ratios is sufficient to allow evaluation of small isotopically induced differences in the dissociation constant of boric acid (KB). The quotient of 11KB and 10KB, obtained using isotopically ⩾99% pure borate/boric acid buffers, provides an equilibrium constant for the reaction 10B(OH)3+11B(OH)411B(OH)3+10B(OH)4 which heretofore had not been experimentally determined. Previous theoretical and semi-empirical evaluations of this equilibrium, which is important for assessments of the paleo-pH of seawater and the paleo-pCO2 of the atmosphere, have yielded constants, 11–10KB=10KB/11KB, that have ranged between 1.0194 and approximately 1.033. The experimentally determined value 11–10KB=1.0285±0.0016 (mean±95% confidence interval) obtained at 25 °C and 0.63 molal (mol kg−1 H2O) ionic strength is in much better agreement with recent theoretical assessments of 11–10KB that have ranged between 1.026 and 1.033, than the much-cited original estimate (1.0194) of Kakihana et al. (1977) [Fundamental studies on the ion-exchange separation of boron isotopes. Bulletin of Chemical Society of Japan 50, 158–163]. Since the activity quotient for the fractionation reaction is almost equal to unity, it is expected that the 11–10KB value obtained in this study will be applicable over a wide range of solution compositions and ionic strengths.  相似文献   

18.
An experimental method for the continuous determination of the partial pressure of carbon dioxide was attempted during a cruise in the Mediterranean Sea. The method, which uses infrared analysis of air continuously equilibrated with pumped seawater, is described. Calculations to obtain pCO2 in seawater from measured pCO2 are given with an example of the results.  相似文献   

19.
Estimates of vertical turbulent diffusion coefficient (K t ) in the Black Sea pycnohalocline have been obtained from data of simultaneous observations of seawater temperature, salinity, density, and horizontal current velocity, obtained in the northeastern part of the Black Sea during 2013–2014 with a moored Aqualog profiler. A Munk and Andersson (1948) type parameterization, adapted for the Black Sea environment, is proposed for calculating K t . Strong short-period (several days) variability of turbulent exchange is revealed, induced by vertical shear variations of the current velocity.  相似文献   

20.
The rate of iron(II) oxidation in North Sea water of pH 5.5–10 in the range 10–25°C has been studied. The oxygenation rate depends linearly on the iron(II) and dissolved oxygen concentrations. The second-order dependence on [OH?], found by several investigators for synthetic solutions, was confirmed in seawater, but only for pOH > 6.9. For pOH < 5.9 the rate appeared to be independent of the pOH. In the intermediate range, pOH 5.9–6.9, corresponding to the natural pH of seawater, a first-order dependence on the pOH is obeyed. The important discrepancy in the literature between the second-order rate constant for NaCHO3 solutions and for seawater can be attributed predominantly to the incorrect assumption of a second-order pOH dependence in natural seawater. The results can be useful, for example, in predicting the effect of dumping acidic iron waste from the titanium-dioxide industry into the ocean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号