首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A column bioleaching experiment was carried out to compare the effectiveness of the fungus Aspergillus fumigatus to bioleach arsenic (As) and heavy metals from the tailings using two different methods. In the first method, which is named as distribution method (DM), the fungus was distributed in the column by means of vertical and horizontal layers of coarse sand. In the other method, named as surface applied method (SAM), the fungus was cultivated on the surface of the tailings, which was covered with a few centimeters of coarse sand. Results showed that in the DM, oxalic acid production was stimulated and maximum removal of As, Fe, Mn, and Zn was 53, 51, 81, and 62%, respectively. However, Pb removal was low (8%), which might be due to the precipitation of Pb as its oxalates. On the other hand, the maximum removal of As, Fe, Mn, Pb, and Zn were 22, 28, 37, 64, and 34%, respectively, for the SAM. Results of the sequential extraction study showed that the DM was effective in removing the water soluble, exchangeable, carbonate, and Fe/Mn oxide fractions of As, Fe, Mn, and Zn. Our study suggested that A. fumigatus has a potential to be used in remediation of heavy metal contaminated sites. Distributing the fungus throughout the entire tailings columns improved the bioleaching of heavy metals by the fungus.  相似文献   

2.
The influence of large‐scale mining operations on groundwater quality was investigated in this study. Trace element concentrations in groundwater samples from the North Mara mining area of northern Tanzania were analyzed. Statistical analyses for relationships between elemental concentrations in the samples and distance of a sampling site from the mine tailings dam were also conducted. Eleven trace elements (Al, As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) were determined, and averages of Fe and Al concentrations were higher than levels accepted by the Tanzanian drinking water guideline. Levels of Pb in three samples were higher than the World Health Organization (WHO) and United States Environmental Protection Agency (USEPA) drinking water guidelines of 10 and 15 µg/L, respectively. One sample contained a higher As level than the WHO and USEPA guideline of 10 µg/L. The correlation between element concentrations and distance from the mine tailings dam was examined using the hierarchical agglomeration cluster analysis method. A significant difference in the elemental concentration existed depending on the distance from the mine tailings dam. Mann–Whitney U‐test post hoc analysis confirmed a relationship between element concentration and distance of a sampling site from the mine tailings dam. This relationship raises concerns about the increased risks of trace elements to people and ecosystem health. A metal pollution index also suggested a relationship between elemental concentrations in the groundwater and the sampling sites’ proximity from the mine tailings dam.  相似文献   

3.
Glacial meltwater and sediment at the source of the River Rhône have been analyzed to determine: 1. the partitioning of Al, Cd, Co, Cu, Cr. Fe, Mn, Ni, Pb and Zn between the water and particulate phase. 2. the particle size ranges which affect the dissolved trace metal ion composition of the meltwater and 3. the availability (potential release) of the ten trace metal ions from the sediment. Greater than 80% of the total Cd, Cu, Mn, Ni and Zn were found to be in operationally-defined (0.4 μm) dissolved forms. Fe and Al in the meltwater are primarily associated with particles in the size range 0.4–8 μm, while Cd. Cu, Mn, Ni and Zn occur with particles smaller than 0.1 μm. For the sediment, Cu, Ni and Pb were significantly present as exchangeable forms; only Cu, Ni, Pb and Zn were determined as organicallybound forms.  相似文献   

4.
The aim of this study was to assess the level of heavy metals (Al, Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) contamination and enrichment in the surface sediments of the Seyhan River, which is the receiving water body of both treated and untreated municipal and industrial effluents as well as agricultural drainage waters generated within Adana, Turkey. Sediment and water samples were taken from six previously determined stations covering the downstream of the Seyhan dam during both wet and dry seasons and the samples were then analyzed for the heavy metals of concern. When both dry and wet seasons were considered, metal concentrations varied significantly within a broad range with Al, 7210–33 967 mg kg?1 dw; Cr, 46–122 mg kg?1 dw; Cu, 6–57 mg kg?1 dw; Fe, 10 294–26 556 mg kg?1 dw; Mn, 144–638 mg kg?1 dw; Ni, 82–215 mg kg?1 dw; Pb, 11–75 mg kg?1 dw; Zn, 34–146 mg kg?1 dw in the sediments while Cd was at non‐detectable levels for all stations. For both seasons combined, the enrichment factor (EF) and the geo‐accumulation index (Igeo) for the sediments in terms of the specified metals ranged from 0.56 to 10.36 and ?2.92 to 1.56, respectively, throughout the lower Seyhan River. The sediment quality guidelines (SQG) of US‐EPA suggested the sediments of the Seyhan River demonstrated “unpolluted to moderate pollution” of Cu, Pb, and Zn, “moderate to very strong pollution” of Cr and Ni. The water quality data, on the other hand, indicated very low levels of these metals suggesting that the metal content in the surface sediments were most probably originating from fine sediments transported along the river route instead of water/wastewater discharges with high metal content.  相似文献   

5.
Phytoremediation, a plant‐based and cost‐effective technology for the cleanup of contaminated soil and water, is receiving increasing attention. In this study, the aquatic macrophyte Eleocharis acicularis was examined for its ability to take up multiple heavy metals and its potential application for phytoremediation at an abandoned mining area in Hokkaido, Japan. Elemental concentrations were measured in samples of E. acicularis, water, and soil collected from areas of mine tailing and drainage. The results reveal that Pb, Fe, Cr, Cu, Ni, and Mn accumulation in the plants increased over the course of the experiment, exceeding their initial concentrations by factors of 930, 430, 60, 25, 10, and 6, respectively. The highest concentrations of Fe, Pb, Zn, Mn, Cr, Cu, and Ni within the plants were 59500, 1120, 964, 388, 265, 235, and 47.4 mg/kg dry wt., respectively, for plants growing in mine drainage after 11 months of the experiment. These results indicate that E. acicularis is a hyperaccumulator of Pb. We also found high Si concentrations in E. acicularis (2.08%). It is likely that heavy metals exist in opal‐A within cells of the plant. The bioconcentration factors (BCF: ratio of metal concentration in the plant shoots to that in the soil) obtained for Cr, Cu, Zn, Ni, Mn, and Pb were 3.27, 1.65, 1.29, 1.26, 1.11, and 0.82, respectively. The existence of heavy metals as sulphides is thought to have restricted the metal‐uptake efficiency of E. acicularis at the mine site. The results of this study indicate that E. acicularis shows great potential in the phytoremediation of mine tailing and drainage rich in heavy metals.  相似文献   

6.
Removal of Al, As, Cd, total Cr (Tot. Cr), Cu, Total Fe (Tot. Fe), Mn, Ni, Pb, Sb, Sn, and Zn from urban effluent by wastewater treatment plants (WWTPs) operated under five‐stage Bardenpho® process were investigated and water soluble metals in the dewatered sludge were quantified. Samples were collected from two WWTPs on a weekly basis over an approximately 2.5‐year time span. Tot. Fe and Al were the most abundant, As, Pb, Ni, Cu, and Cd were the least abundant metals in the influents of both WWTPs. Removal efficiencies above 75% were achieved for Tot. Cr, Tot. Fe, Al, and Cu, whereas, no significant removal was observed for As, Cd, Pb, Sb, and Sn. Removal of Tot. Cr, Cu, Tot. Fe, Zn, Al, Mn, and Ni were influenced by influent suspended solids concentrations, and of Tot. Cr, Zn, and Cd were influenced by their initial content in the influent. Zn removal efficiency of biological nutrient removal (BNR) system in this study was higher and Cd removal efficiency was lower than that of conventional activated sludge reported in the literature. No remarkable difference for metals such as Cu, Mn, Ni, and Pb was observed between the removal efficiencies of conventional system and BNR system.  相似文献   

7.
Overlying bottom water samples were collected in the Vistula River plume, southern Baltic Sea, (Poland) and analysed for dissolved and labile particulate (1 M HCl extractable) Cu, Pb, Zn, Mn, Fe and Ni, hydrological parameters being measured simultaneously. Particulate organic matter (POM), chlorophyll a and dissolved oxygen are key factors governing the chemical behaviour of the measured metal fractions. For the dissolved Cu, Pb, Zn, Fe and Ni two maxima, in the shallow and in the deeper part of the river plume, were found. In the shallow zone desorption from seaward fluxing metal-rich riverine particles account for markedly increased metal concentrations, as confirmed also by high particulate metal contents. For Pb, atmospheric inputs were also considered to have contributed to the elevated concentrations of dissolved Pb adjacent to the river mouth. In the deep zone desorption from detrital and/or resuspended particles by aerobic decomposition of organic material may be the main mechanism responsible for enrichment of particle-reactive metals (Cu, Pb, Zn) in the overyling bottom waters. The increased concentrations of dissolved Fe may have been due to reductive dissolution of Fe oxyhydroxides within the deep sediments by which dissolved Ni was released to the water. The distribution of Mn was related to dissolved oxygen concentrations, indicating that Mn is released to the water column under oxygen reduced conditions. However, Mn transfer to the dissolved phase from anoxic sediments in deeper part of the Vistula plume was hardly evidenced suggesting that benthic flux of Mn occurs under more severe reductive regime than is consistent with mobilization of Fe. Behaviour of Mn in a shallower part has been presumably affected by release from porewaters and by oxidization into less soluble species resulting in seasonal removal of this metal (e.g. in April) from the dissolved phase. The particulate fractions represented from about 6% (Ni) and 33% (Mn, Zn, Cu) to 80% (Fe) and 89% (Pb) of the total (labile particulate plus dissolved) concentrations. The affinity of the metals for particulate matter decreased in the following order: Pb > Fe > Zn > or = > Cu > Mn > Ni. Significant relationships between particulate Pb-Zn-Cu reflected the affinity of these metals for organic matter, and the significant relationship between Ni-Fe reflected the adsorption of Ni onto Fe-Mn oxyhydroxides. A comparison of metal concentrations with data from other similar areas revealed that the river plume is somewhat contaminated with Cu, Pb and Zn which is in agreement with previous findings on anthropogenic origin of these metals in the Polish zone of southern Baltic Sea.  相似文献   

8.
A multi‐element ion‐pair extraction method was described for the preconcentration of Cd(II), Co(II), Cr(III), Cu(II), Fe(III), Mn(II), Ni(II), Pb(II), and Zn(II) ions in environmental samples prior to their determinations by flame atomic absorption spectrometry (FAAS). As an ion‐pair ligand 2‐(4‐methoxybenzoyl)‐N′‐benzylidene‐3‐(4‐methoxyphenyl)‐3‐oxo‐N‐phenyl‐propono hydrazide (MBMP) was used. Some analytical parameters such as pH of sample solution, amount of MBMP, shaking time, sample volume, and type of counter ion were investigated to establish optimum experimental conditions. No interferences due to major components and some metal ions of the samples were observed. The detection limits of the proposed method were found in the range of 0.33–0.9 µg L?1 for the analyte ions. Recoveries were found to be higher than 95% and the relative standard deviation (RSD) was less than 4%. The accuracy of the procedure was estimated by analyzing the two certified reference materials, LGC6019 river water and RTC‐CRM044 soil. The developed method was applied to several matrices such as water, hair, and food samples.  相似文献   

9.
A simple, rapid, and accurate method was developed for separation and preconcentration of trace levels of iron(III) and zinc(II) ions in environmental samples. Methyl‐2‐(4‐methoxy‐benzoyl)‐3‐(4‐methoxyphenyl)‐3‐oxopropanoylcarbamate (MMPC) has been proposed as a new complexing agent for Fe(III) and Zn(II) ions using solvent extraction prior to their determination by flame atomic absorption spectrometry (FAAS). Fe(III) and Zn(II) ions can be selectively separated from Fe(II), Pb(II), Co(II), Cu(II), Mn(II), Cr(III), Ni(II), Cd(II), Ag(I), Au(III), Pd(II), Cr(VI), and Al(III) ions in the solution by using the MMPC reagent. The analytical parameters such as pH, sample volume, shaking time, amount of MMPC reagent, volume of methyl isobutyl ketone (MIBK), effect of ionic strength, and type of back extractant were investigated. The recovery values for Fe(III) and Zn(II) ions were greater than 95% and the detection limits for Fe(III) and Zn(II) ions were 0.26 and 0.32 µg L?1, respectively. The precision of the method as the relative standard deviation changed between 1.8 and 2.1%. Calibration curves have a determination coefficient (r2) of at least 0.997 or higher. The preconcentration factor was found to be 100. Accuracy of the method was checked by analyzing of a certified reference material and spiked samples. The developed method was applied to several matrices such as water, hair, and food samples.  相似文献   

10.
Several coastal rocky shores in northern Chile have been affected by the discharges of copper mine tailings. The present study aims to analyze the chemical speciation of heavy metals in relation to the diversity of sessile species in the rocky intertidal benthic community on the northern Chilean coast, which is influenced by the presence of copper mine tailings. In particular, the chemical forms of Cd, Cu, Fe, Mn, Ni, Pb and Zn in beach sediment samples collected in the area influenced by El Salvador mine tailings were studied using a sequential chemical extraction method. In general, all the elements present a maximum concentration in the area near the actual discharge point (Caleta Palito). With regard to Cu and Mn, the concentrations range between 7.2-985 and 746-22,739 microg/g respectively, being lower than background levels only in the control site of Caleta Zenteno. Moreover, the correlation coefficients highlight that Fe, Mn and Ni correlate significantly and positively in the studied area, showing a possible common, natural origin, whilst Cu shows a negative correlation with Fe, Mn and Ni. It could be possible that Cu has an anthropogenic origin, coming from mining activity in the area. Cd, Fe, Mn, Ni, Pb and Zn are mostly associated with the residual phase, whilst Cu presents a different speciation pattern, as resulted from selective extractions. In fact, Cu is highly associated with organic and exchangeable phases in contaminated localities, whilst it is mainly bound to the residual phase in control sites. Moreover, our results, compared to local biological diversity, showed that those sites characterized by the highest metal concentrations in bioavailable phase had the lowest biodiversity.  相似文献   

11.
The values for the partition coefficient (Kd) were calculated for Ca, Mg, Cd, Cr, Cu, Fe, Mn, Pb, Ni, and Zn at 19 sites in the Capivara hydroelectric reservoir in Brazil. It was found that the relative values of Kd follow the order: Cr > Mn > Fe > Cu > Zn > Ni > Pb > Ca > Cd, differing from the values reported for Kd in aquatic systems in the northern hemisphere. A hierarchical cluster analysis and linear correlations showed that Cr is strongly associated with Fe and Cu, and that Cd is the only metal found in complexation with organic matter, explaining its higher solubility.  相似文献   

12.
Concentrations of heavy metals (Cd, Cu, Pb and Zn) on suspended sediments during a flood event at Thwaite Mills, River Aire, were analysed using a five step sequential extraction technique to determine their major chemical associations (exchangeable, surface oxide and carbonate, Fe and Mn oxides, organic and residual metal ions). Total metal concentrations were lowest at higher discharges, resulting from dilution by clean sediment. The major transport fractions are the Fe and Mn oxides, which carry 29% of the total metals. Knowledge of the chemical forms of heavy metals on suspended sediment is essential for estimating their biological availability and physicochemical reactivity. © 1998 John Wiley & Sons, Ltd.  相似文献   

13.
This article describes laboratory batch sorption and column transport experiments that were conducted using heterogeneous alluvial sediments with a wide physical characteristic from wells, located between Lake Mogan and Lake Eymir, Gölbaşı, Ankara. The batch sorption experiment was conducted in two separate systems, that is, single and multicomponents. Single batch experiment was performed to determine equilibrium condition between the heavy metal ions and the soil adsorption sites. The sorption isotherms data from multibatch experiments were used to calculate the sorption parameters. Single batch experiment indicated that equilibrium was attained within 9 days from the start of the sorption test. As a result of multicomponents batch experiments, for Zn and Mn, the sorption process was well described by the Freundlich or Langmuir isotherm model, whereas sorption of Cu was better described by the linear isotherm model. The Kd of Cu were found to be highest in soil 1 (32550.350 L kg−1) and lowest in soil 5 (18170.76 L kg−1). The maximum and minimum sorption capacity values for Zn were found to be in soil 1 (10985.148 mg kg−1) and in soil 2 (8597.14 mg kg−1) units, respectively. [Correction added after online publication 15 July, 2010: In the preceding sentence, the words “minimum” and “maximum” were initially switched.] Similarly, soil 1 (7587.391 mg kg−1) and soil 5 (4908.695 mg kg−1) units provided the maximum and minimum values for Mn. In the column experiments, flow and tracer transport was studied under saturated conditions using conservative tracer to determine the transport parameters. Transport parameter values were obtained by curve-fitting using the nonlinear least-squares optimization code CXTFIT. Results of the column experiments indicated that the dispersivity values obtained for soil samples were in the range of 0.024 to 1.13 cm.  相似文献   

14.
Biosorption potential of Cedrus deodara sawdust (CDS) in terms of sorption of Zn(II) ion across liquid phase has been evaluated in the present investigation. The surface of the CDS biomass before the sorption of Zn(II) ions seemed to be more porous, non‐crystalline and heterogeneous. The maximum uptake capacity of CDS was 97.39 mg g?1. Sorption of Zn(II) ion on the surface of CDS sawdust was maximum at pH 5, temperature 45°C, initial concentration of Zn(II) ion 100 mg L?1, biomass dose 1 g L?1, contact time 150 min, and agitation rate 160 rpm. Pseudo second‐order kinetics with the highest linear regression coefficient (R2 = 0.99), and lowest values of error functions, i.e., chi (χ2) and sum of square errors (SSE) against pseudo first‐order rate kinetics showed that the sorption of Zn(II) ion on the surface of CDS was mediated by chemosoprtive forces of attraction rather than physical adsorption. Mechanistically, relatively higher proportion of sorption of Zn(II) ion in early phase of contact time was profoundly explained by Bangham's equation and film diffusivity (Df). Intraparticle or pore diffusion (Dp) of Zn(II) ion inside the pores of CDS was rate limiting step at the later stage of contact time. Furthermore, the thermodynamic study on sorption of metal ion delineated the fact that the Zn(II) sorption on the surface of CDS was spontaneous, endothermic together with increased entropy at solid liquid interface.  相似文献   

15.
Four 2–3 m sediment cores were taken at the sites on the periphery of mussel raft concentrations in the subtidal zone of the inner Ría de Vigo (Galicia, NW Spain) with a view to evaluate the potential risk to mariculture from sediment-borne trace elements (As, Cd, Cr, Cu, Mn, Ni, Pb and Zn). The distribution of each of these elements in reactive, organic, pyrite and silicate-bound fractions was determined at 64 samples, and these data were used to calculate the degree of trace metal pyritization (DTMP) of each metal/metalloid. In the top 10–20 cm, relatively oxic conditions led to As, Cd, Cu, Pb and Zn having large reactive fractions due to their association with Fe and Mn oxyhydroxides. At lower levels, anoxic conditions favoured by intense diagenesis led to the precipitation of trace metals and metalloids as sulphides, with or without association with pyrite. Particularly large pyrite fractions in the 20–100 cm layer are attributed to the organic matter of this layer being more marine in origin than that of deeper sediments. DTMP was greatest for Cu and As, and least for Pb, Zn and Cr. The risk of trace element toxicity in the event of disturbances instituting oxic conditions in these sediments is discussed.  相似文献   

16.
Phytoremediation is an environmental remediation technique that takes advantage of plant physiology and metabolism. The unique property of heavy metal hyperaccumulation by the macrophyte Eleocharis acicularis is of great significance in the phytoremediation of water and sediments contaminated by heavy metals at mine sites. In this study, a field cultivation experiment was performed to examine the applicability of E. acicularis to the remediation of water contaminated by heavy metals. The highest concentrations of heavy metals in the shoots of E. acicularis were 20 200 mg Cu/kg, 14 200 mg Zn/kg, 1740 mg As/kg, 894 mg Pb/kg, and 239 mg Cd/kg. The concentrations of Cu, Zn, As, Cd, and Pb in the shoots correlate with their concentrations in the soil in a log‐linear fashion. The bioconcentration factor for these elements decreases log‐linearly with increasing concentration in the soil. The results indicate the ability of E. acicularis to hyperaccumulate Cu, Zn, As, and Cd under natural conditions, making it a good candidate species for the phytoremediation of water contaminated by heavy metals.  相似文献   

17.
Using X-ray Energy Spectroscopy trace metal concentrations (Ti, V, Mn, Fe, Ni, Cu, Zn, As, Pb) were measured in specimens of Eudistylia vancouveri (feather duster tube worms) collected from floating wharves near and far from a storm water outfall in a metropolitan area. As for the well-studied bio-accumulator Mytilus edulis (mussels), higher metal concentrations were noted in specimens near the pollution source. In particular the worms accumulated certain metals, namely vanadium and titanium, not picked up by the mussels, signaling that a new sentinel organism could be available.  相似文献   

18.
将人工繁育的"标准化"背角无齿蚌(Anodonta woodiana)移殖至太湖五里湖,并以仍养殖在未受污染的中国水产科学研究院淡水渔业研究中心南泉基地的同批蚌作为对照,进行为期9个月的主动监测研究.每3个月回收一次蚌样,应用电感耦合等离子质谱仪(ICP-MS)测定15种重金属(Al、Cr、Mn、Fe、Co、Ni、Cu、Zn、As、Mo、Ag、Cd、Ba、Tl和Pb)的含量.结果表明,南泉基地对照组和五里湖移殖组的蚌样对重金属均产生了明显的生物积累.培养3个月的五里湖移殖组蚌样中As的含量显著高于同期南泉基地对照组,而前者Mn、Fe、Zn和Ba含量显著低于后者;培养6个月的五里湖移殖组蚌样中Al和Pb的含量显著低于同期南泉基地对照组;培养9个月的五里湖移殖组蚌样中Pb含量显著低于同期南泉基地对照组.然而,南泉基地对照组和五里湖移殖组蚌样中重金属(Cr、Cu、As、Cd和Pb)含量均低于我国及国际上的相关标准.培养3、6和9个月的南泉基地对照组及五里湖移殖组蚌样的重金属污染指数分别为1.8、1.8,2.4、2.1和8.3、16.8,均值综合污染指数分别为0.0218、0.0289,0.0337、0.0218和0.0560、0.0732,属于正常背景水平,并且两水体蚌样的重金属污染指数和均值综合污染指数无显著差异,提示五里湖和南泉基地均未受到明显的重金属污染.  相似文献   

19.
An eco‐friendly and inexpensive technique for wastewater treatment originated from inductively coupled plasma‐optical emission spectrometry (ICP‐OES) is presented within this paper. The proposed process comprised of loading waste crab shells in packed column for adsorption of heavy metal ions, followed by desorption using 0.01 M HCl. An exhaustive physical and chemical characterization of ICP‐OES wastewater revealed the complex nature of effluent, including the presence of 15 different metals and metalloid under strong acidic condition (pH 1.3). Based on the preliminary batch experiments, it was identified that solution pH played a major role in metal sequestration by crab shell with pH 3.5 identified as optimum pH. Rapid metal biosorption kinetics along with complete desorption and subsequent reuse for three cycles was possible with crab shell‐based treatment process. Continuous flow‐through column experiments confirmed the high performance of crab shell towards multiple metal ions with the column able to operate for 22 h at a flow rate of 10 mL/min before outlet concentration of arsenic reached 0.25 times of its inlet concentration. Other metal ions such as Cu, Cd, Co, Cr, Pb, Ni, Zn, Mn, Al, and Fe were only in trace levels in the treated water until 22 h. The performance of the treatment process was compared with trade effluent discharge standards, and the process flow diagram along with cost analysis was suggested.  相似文献   

20.
At the beginning of August 1997, 72 samples of flood sediments were taken along the Upper and Middle Odra river and its tributaries. The concentrations of Zn, Pb, Cu, Cd, Co, Ni, Cr, Mn, and Fe in the bulk samples and in the <20 μm fraction were determined by AAS method. The contents of metals vary in wide ranges and are significantly higher in the <20 μm fraction of sediments. The range concentrations vary as following: Zn 274...3 656 mg/kg, Pb 79...1 773 mg/kg, Cd 1.7...11.8 mg/kg, Cu 38...2 244 mg/kg, Cr 14...384 mg/kg, Co 4...73 mg/kg, Hg 0.2...3.9 mg/kg, Mn 214...6 972 mg/kg, and Fe 1.5...16.3 %. The highest amount of the metals was found in the Wrocław and Głogów regions. The mobile (exchangeable and carbonatic fractions) portions of metals reached up to 50 % of Zn, 40 % of Pb and Cu and 60 % of Mn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号