首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper is the first to summarize research on fluctuations of local glaciers in Greenland (e.g. ice caps and mountain glaciers independent of the Greenland Ice Sheet) during latest Pleistocene and Holocene time. In contrast to the extensive data available for fluctuations of the Greenland Ice Sheet, surprisingly little data exist to constrain local glacier extents. Much of the available research was conducted prior to wide-spread use of AMS radiocarbon dating and the advent of surface-exposure and luminescence dating. Although there is a paucity of data, generally similar patterns of local glacier fluctuations are observed in all regions of Greenland and likely reflect changes in paleoclimate, which must have influenced at least the margins of the Inland Ice. Absolute-age data for late-glacial and early Holocene advances of local glaciers are reported from only two locations: Disko (island) and the Scoresby Sund region. Subsequent to late-glacial or early Holocene time, most local glaciers were smaller than at present or may have disappeared completely during the Holocene Thermal Maximum. In general, local glacier advances that occurred during Historical time (1200–1940 AD) are the most extensive since late-glacial or early Holocene time. Historical documents and more recent aerial photographs provide useful information about local glacier fluctuations during the last 100 yrs. In all but one area (North Greenland), local glaciers are currently receding from Historical extents.  相似文献   

2.
Disasters resulting from climate change are shown to be important determinants of people’s life choice decisions. In the literature, travel behavior choice and life choices are usually addressed separately under disasters such as flood and cyclone. However, travel behavior may be interdependent with other life choices, jointly shaping people’s adaptation decisions. To this end, the paper advances the literature by exploring the interrelationship between changes in travel behavior and job and residential location under flood disasters, while separating coastal and inland observations. For this purpose, a stated preference survey was conducted in 14 cities of Bangladesh in early 2013. An analysis approach based on structural equation modeling was developed to investigate the correlations between travel behavior change and job and residential location changes. Model estimation results suggest that flood impacts have significant influences on inland people’s life choices, while coastal people’s life choices are mainly affected by flood adaptation responses and attitudes. Significant correlations between travel behavior change and job and residential location changes are found for both observations. Moreover, both coastal and inland people tend not to change residential locations if changes in job location and travel behavior are made. Inland people may not change travel behavior if their job and/or residential locations are changed, but coastal people’s job and residential location changes are associated with changes in travel behavior. Travel behavior change is found to have more of an effect on residential location change than job location change in both regions. These findings conclude that the two-way relationship between travel behavior and life choices should be taken into account in future analyses, and thus adaptation policies to climate change disasters could be better linked with people’s behavioral responses.  相似文献   

3.
Local glaciers and ice caps (GICs) comprise only ~5.4% of the total ice volume, but account for ~14–20% of the current ice loss in Greenland. The glacial history of GICs is not well constrained, however, and little is known about how they reacted to Holocene climate changes. Specifically, in North Greenland, there is limited knowledge about past GIC fluctuations and whether they survived the Holocene Thermal Maximum (HTM, ~8 to 5 ka). In this study, we use proglacial lake records to constrain the ice‐marginal fluctuations of three local ice caps in North Greenland including Flade Isblink, the largest ice cap in Greenland. Additionally, we have radiocarbon dated reworked marine molluscs in Little Ice Age (LIA) moraines adjacent to the Flade Isblink, which reveal when the ice cap was smaller than present. We found that outlet glaciers from Flade Isblink retreated inland of their present extent from ~9.4 to 0.2 cal. ka BP. The proglacial lake records, however, demonstrate that the lakes continued to receive glacial meltwater throughout the entire Holocene. This implies that GICs in Finderup Land survived the HTM. Our results are consistent with other observations from North Greenland but differ from locations in southern Greenland where all records show that the local ice caps at low and intermediate elevations disappeared completely during the HTM. We explain the north–south gradient in glacier response as a result of sensitivity to increased temperature and precipitation. While the increased temperatures during the HTM led to a complete melting of GICs in southern Greenland, GICs remained in North Greenland probably because the melting was counterbalanced by increased precipitation due to a reduction in Arctic sea‐ice extent and/or increased poleward moisture transport.  相似文献   

4.
Three clearly defined abrupt cooling events (ACEs) can be observed within Greenland Interstadial (GI)-1 in the Greenland ice-core records. However, the spatial variation in amplitude and timing of these ACEs is poorly understood due to the paucity of well-dated records with quantified temperature reconstructions. This study presents high-resolution chironomid-inferred July air temperature (TJul) and oxygen isotope (δ18O) records from Crudale Meadow (Orkney Isles, UK). Three centennial-scale ACEs punctuate the Windermere Interstadial at Crudale Meadow. The largest ACE shows an amplitude of 5.4 °C and a 1% isotopic decline and is centred on ~14.0 ka bp , consistent with the timing of the GI-1d event in the Greenland stratigraphy. The two other observed ACEs are of smaller magnitude and are centred on ~13.6 ka bp and ~13.2 ka bp , with these smaller magnitude events tentatively correlated with the GI-1cii and GI-1b events, respectively, but lack sufficient chronological constraint to fully assess their timing. When comparing the Crudale Meadow record with other locations in the British Isles a strong relationship can be observed between the magnitude of TJul cooling and latitude, with a reduced signal in more southerly locations, indicating that oceanic forcing may be a key driver of the ACEs.  相似文献   

5.
张璇  韦恒叶 《沉积学报》2020,38(3):476-484
二叠纪发生了两次重大生物灭绝事件,一次是位于吴家坪初期即瓜德鲁普世末生物灭绝事件,另一次是位于长兴末期即晚二叠世末生物灭绝事件。在这两次生物灭绝事件之间的大约八百万年时间里,其环境变化研究相对较少,古海洋的氧化还原条件变化目前尚未清楚。通过分析湖北秭归县杨林剖面的黄铁矿形态来探讨吴家坪组-长兴组界线氧化还原条件及其意义。研究结果表明:吴家坪组与长兴组石灰岩沉积时期的古海水主要是贫氧至氧化环境。在吴家坪组上部至长兴组下部地层沉积时期古水体出现间歇性硫化现象。该硫化缺氧事件不仅出现在秭归地区,还广泛分布于鄂西盆地、扬子台地南缘南盘江盆地、阿拉伯地台以及东格陵兰盆地地区。这说明吴家坪-长兴组界线沉积时期的间歇性硫化缺氧事件有可能是一个全球性事件。该事件可能与二叠末事件有一定的关联。  相似文献   

6.
Holocene relative sea level (RSL) changes have been investigated by analysing and dating isolation sequences from five lakes near Sisimiut in south‐western Greenland. The transitions between marine and lacustrine sediments were determined from elemental analyses and analyses of macroscopic plant and animal remains. Radiocarbon dating was used to provide minimum ages for the transitions and to construct a RSL curve. Dating of a shell of the marine bivalve Macoma balthica indicates that deglaciation of the lowlands occurred in the early Holocene, at around 10 900 cal a BP. The RSL curve shows initial rapid regression from the marine limit at around 140 m, implying strong glacio‐isostatic rebound. We suggest that the margin of the Greenland Ice Sheet was located at the shelf break during the Last Glacial Maximum. Frequent remains of the ostracode Sarcypridopsis aculeata, which is a thermophilous brackish water species that is unknown from the extant fauna of Greenland, in one of the basins around 8500 cal a BP may mark the beginning of the Holocene thermal maximum in the region. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
Chronology of the last recession of the Greenland Ice Sheet   总被引:1,自引:0,他引:1  
A new deglaciation chronology for the ice‐free parts of Greenland, the continental shelf and eastern Ellesmere Island (Canada) is proposed. The chronology is based on a new compilation of all published radiocarbon dates from Greenland, and includes crucial new material from southern, northeastern and northwestern Greenland. Although each date provides only a minimum age for the local deglaciation, some of the dates come from species that indicate ice‐proximal glaciomarine conditions, and thus may be connected with the actual ice recession. In addition to shell dates, dates from marine algae, lake sediments, peat, terrestrial plants and driftwood also are included. Only offshore and in the far south have secure late‐glacial sediments been found. Other previous reports of late‐glacial sediments (older than 11.5 cal. kyr BP) from onshore parts of Greenland need to be confirmed. Most of the present ice‐free parts of Greenland and Nares Strait between Greenland and Ellesmere Island were not deglaciated until the early Holocene. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
Direct traces of past sea levels are based on the elevation of old coral reefs at times of sea level highstands. However, these measurements are discontinuous and cannot be easily correlated with climate records from ice cores. In this study we show a new approach to recognizing the imprint of sea level changes in continuous sediment records taken from the continental slope at locations that were continuously submerged, even during periods of sea level lowstand. By using a sediment core precisely synchronized with Greenland ice cores, we were able to recognize major floods of the Mediterranean continental shelf over the past 270 kyr. During the last glacial period five flooding events were observed at the onset of the warmest Greenland interstadials. Consistent correspondence between warm climate episodes and eustatic sea level rises shows that these global flooding events were generated by pronounced melting of the Northern Hemisphere ice sheets, due to rapid intensification of Atlantic Meridional Overturning Circulation.The method described in this study opens a new perspective for inter-hemispheric synchronization of marine climate records if applied in other continental margins from the Southern Hemisphere or the equatorial regions.  相似文献   

9.
We present new results for relative sea‐level change for southern Greenland for the interval from 9000 cal. yr BP to the present. Together with earlier work from the same region this yields a nearly complete record from the time of deglaciation to the present. Isolation and/or transgression sequences in one lake and five tidal basins have been identified using lithostratigraphic analyses, sedimentary characteristics, magnetic susceptibility, saturated induced remanent magnetisation (SIRM), organic and carbonate content, and macrofossil analyses. AMS radiocarbon dating of macrofossils and bulk sediment samples provides the timescale. Relative sea level fell rapidly and reached present‐day level at ~9300 cal. yr BP and continued falling until at least 9000 cal. yr BP. Between 8000 and 6000 cal. yr BP sea level reached its lowest level of around ~10 m below highest astronomical tide. At around 5000 cal. yr BP, sea level had reached above 7.8 m below highest astronomical tide and slowly continued to rise, not reaching present‐day sea level until today. The isostatic rebound caused rapid isolation of the basins that are seen as distinct isolation contacts in the sediments. In contrast, the late Holocene transgressions are less well defined and occurred over longer time intervals. The late Holocene sea‐level rise may be a consequence of isostatic reloading by advancing glaciers and/or an effect of the delayed response to isostatic rebound of the Laurentide ice sheet. One consequence of this transgression is that settlements of Palaeo‐Eskimo cultures may be missing in southern Greenland. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
At the Pingorsuit Glacier in North-West Greenland, an organic-rich deposit that had recently emerged from the retreating ice cap was discovered at an elevation of 480 m above sea level. This paper reports on macrofossil analyses of a coarse detritus gyttja and peaty soil, which occurred beneath a thin cover of till and glacifluvial deposits. The sediments contained remains of vascular plants, mosses, beetles, caddisflies, midges, bryozoans, sponges and other invertebrates. The flora includes black spruce, tree birch, boreal shrubs and wetland and aquatic taxa, which shows that mires, lakes and ponds were present in the area. We describe a new extinct waterwort species Elatine odgaardii. The fossils were deposited in a boreal environment with a mean July air temperature that was at least 9 °C higher than at present. The fossil assemblages show strong similarities with others from Greenland that have been assigned an Early Pleistocene age, and we suggest a similar age for the sediments found at the margin of the Pingorsuit Glacier. At the Pingorsuit Glacier in North-West Greenland, an organic-rich deposit was discovered at an elevation of 480 m above sea level. The sediments contained remains of vascular plants, mosses, beetles, caddisflies, midges, bryozoans, sponges and other invertebrates. The fossils were deposited in a boreal environment with a mean July air temperature that was at least 9 °C higher than at present.  相似文献   

11.
12.
Svalbard is located in the north-west corner of the Barents Sea shelf and the Eurasian Plate, in a key area for interpreting Caledonian and older orogens in the Arctic region. Recent U–Pb dating in the Nordaustlandet Terrane of eastern Svalbard shows this terrane to consist of a Grenville-age basement, overlain by Neoproterozoic to early Palaeozoic platformal sediments, and intruded by Caledonian anatectic granites. Deformation, metamorphism and crustal anatectic magmatism occurred both during the Grenvillian (960–940 Ma) and Caledonian (450–410 Ma) orogenies. This evolution shows great similarities with that of eastern Greenland. In the classical model, eastern Svalbard is placed outboard of central east Greenland in pre-Caledonian time. Alternatively, it may have been located north-east of Greenland and transferred west and rotated anticlockwise during Caledonian continent–continent collision. In the Neoproterozoic, easternmost Svalbard may have been part of a wider area of Grenville-age crust, now fragmented and dispersed around the Arctic.  相似文献   

13.
《Quaternary Science Reviews》2005,24(10-11):1159-1182
A case is made that seasonality switches dominated by wintertime were instrumental in abrupt climate changes in the North Atlantic region during the last glaciation and into the Holocene. The primary evidence comes from mismatches between mean annual temperatures from Greenland ice cores in comparison with snowline changes in East Greenland, northern Europe, and North America. The most likely explanation is a shutdown (or reduction in strength) of the conveyor. This allows the spread of winter sea ice across the North Atlantic, thus causing the northern region to experience much colder winters. Because they mimic the Greenland temperature rather than the snowline signal, changes in the Atlantic Intertropical Convergence Zone and the Asian monsoon may also share a winter linkage with Greenland. Thus the paleoclimate record is consistent with the notion that a huge continental sector of the Northern Hemisphere, stretching from Greenland to Asia, was close to an extreme winter threshold during much of the last glaciation. Winter climate crossed this threshold repeatedly, with marked changes in seasonality that may well have amplified and propagated a signal of abrupt change throughout the hemisphere and into the tropics.  相似文献   

14.
The composition and thermal state of the lithospheric mantle under the North Atlantic craton was investigated using a suite of peridotite xenoliths from the diamond-bearing Sarfartoq kimberlite dike swarm of southwestern Greenland. Elevated olivine and whole-rock Mg# (>0.9) attest to the refractory nature of the Sarfartoq mantle showing comparable degrees of depletion to other cratonic roots. Modal analyses indicate that the Sarfartoq mantle is not typified by the orthopyroxene enrichment observed in the Kaapvaal root, but shows more affinity with the Canadian Arctic (Somerset Island), Tanzania, and East Greenland (Wiedemann Fjord) peridotites. The Sarfartoq peridotites have equilibrated at temperatures and pressures ranging from 660 to 1,280 °C and from 2.2 to 6.3 GPa, and define a relatively low mantle heat flow of 13.2±1 mW/m2. In addition, the lithospheric mantle underneath the Sarfartoq area is compositionally layered as follows: (1) an internally stratified upper layer (70 to 180 km) consisting of coarse, un-deformed, refractory garnet-bearing and garnet-free peridotites and, (2) a lower layer (180 to 225 km) characterized by fertile, CPX-bearing, porphyroclastic garnet lherzolites. The stratification observed in the upper refractory harzburgite layer (70–180 km) is reflected by an increase in fertility (e.g., decrease in olivine abundance and forsterite content) with depth. The sharp nature of the boundary between the upper and lower layers may indicate multistage growth of the lithospheric mantle.Editorial responsibility: T.L. Grove  相似文献   

15.
Several large abrupt climate fluctuations during the last glacial have been recorded in Greenland ice cores and archives from other regions. Often these Dansgaard–Oeschger events are assumed to have been synchronous over wide areas, and then used as tie‐points to link chronologies between the proxy archives. However, it has not yet been tested independently whether or not these events were indeed synchronous over large areas. Here, we compare Dansgaard–Oeschger‐type events in a well‐dated record from southeastern France with those in Greenland ice cores. Instead of assuming simultaneous climate events between both archives, we keep their age models independent. Even these well‐dated archives possess large chronological uncertainties that prevent us from inferring synchronous climate events at decadal to multi‐centennial time scales. If possible, comparisons between proxy archives should be based on independent, non‐tuned time‐scales. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
High‐resolution swath bathymetry and TOPAS sub‐bottom profiler acoustic data from the inner and middle continental shelf of north‐east Greenland record the presence of streamlined mega‐scale glacial lineations and other subglacial landforms that are formed in the surface of a continuous soft sediment layer. The best‐developed lineations are found in Westwind Trough, a bathymetric trough connecting Nioghalvfjerdsfjorden Gletscher and Zachariae Isstrøm to the continental shelf edge. The geomorphological and stratigraphical data indicate that the Greenland Ice Sheet covered the inner‐middle shelf in north‐east Greenland during the most recent ice advance of the Late Weichselian glaciation. Earlier sedimentological and chronological studies indicated that the last major delivery of glacigenic sediment to the shelf and Fram Strait was prior to the Holocene during Marine Isotope Stage 2, supporting our assertion that the subglacial landforms and ice sheet expansion in north‐east Greenland occurred during the Late Weichselian. Glacimarine sediment gravity flow deposits found on the north‐east Greenland continental slope imply that the ice sheet extended beyond the middle continental shelf, and supplied subglacial sediment direct to the shelf edge with subsequent remobilisation downslope. These marine geophysical data indicate that the flow of the Late Weichselian Greenland Ice Sheet through Westwind Trough was in the form of a fast‐flowing palaeo‐ice stream, and that it provides the first direct geomorphological evidence for the former presence of ice streams on the Greenland continental shelf. The presence of streamlined subglacially derived landforms and till layers on the shallow AWI Bank and Northwind Shoal indicates that ice sheet flow was not only channelled through the cross‐shelf bathymetric troughs but also occurred across the shallow intra‐trough regions of north‐east Greenland. Collectively these data record for the first time that ice streams were an important glacio‐dynamic feature that drained interior basins of the Late Weichselian Greenland Ice Sheet across the adjacent continental margin, and that the ice sheet was far more extensive in north‐east Greenland during the Last Glacial Maximum than the previous terrestrial–glacial reconstructions showed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
Ikaite, found as a constituent of tufa chimneys and mounds in Ikka Fjord, Greenland, is only formed in waters close to freezing point. At higher temperatures it inverts to calcite, forming impressive pseudomorphs which have been found at a large number of locations world‐wide of varying ages, sometimes in association with glacial deposits. The Ikka Fjord deposits, first described by the Danish geologist Hans Pauly, were key to understanding the nature of these widely reported pseudomorphs.  相似文献   

18.
格陵兰海海冰外缘线变化特征分析   总被引:2,自引:0,他引:2  
格陵兰海作为北冰洋的边缘海之一,容纳了北极输出的海冰,其海冰外缘线的变化既受北极海冰输出量的影响,也受局地海冰融化和冻结过程的影响。利用2003年1月到2011年6月AMSR-E卫星亮温数据反演的海冰密集度产品,对格陵兰海海冰外缘线的变化特征进行了分析。结果表明,格陵兰海海冰外缘线不仅存在一年的变化周期,还存在比较显著的半年变化周期,与海冰在春秋两季向岸收缩有关。格陵兰海冬季的海冰外缘线极大值呈逐年下降的趋势,体现了北极增暖导致的冬季海冰范围减小;而夏季海冰外缘线离岸距离的极小值呈上升趋势,表明夏季来自北冰洋的海冰输出量增大。2003—2004年是格陵兰海夏季海冰融化最严重的2年。2007年北冰洋夏季海冰覆盖范围达到历史最小;而格陵兰海夏季的最小海冰范围最大,表明2007年北冰洋海冰的输出量大于其他年份。此外,夏季格陵兰岛冰雪融化形成的地表径流对海冰外缘线有一定的影响。对海冰外缘线影响最大的不是格陵兰海的局地风场,而是弗拉姆海峡(Fram Strait)区域的经向风,它直接驱动了北冰洋海冰向格陵兰海的输运,进而对格陵兰海海冰外缘线的分布产生滞后的影响。  相似文献   

19.
U–Th–Pb analyses of zircons from six granites and one metasediment collected in the accretionary Central belt of Taimyr, Arctic Siberia, demonstrate that Neoproterozoic (c. 900 Ma) granites intrude late Mesoproterozoic/early Neoproterozoic amphibolite facies metamorphic rocks. This is the first time in the Mamont–Shrenk region that Neoproterozoic ages have been recognized for these lithologies, previously thought to be Archaean/Palaeoproterozoic in age. The Mamont–Shrenk Terrane (MST) represents a Grenvillian age (micro?) continent intercalated with younger Neoproterozoic ophiolites during thrusting and accreted to the northern margin of the Siberian craton sometime before the late Vendian. Basement to the MST may have been derived from the Grenvillian belt of east Greenland. Viable tectonic reconstructions must allow for an active margin along northern Siberia (modern day coordinates) in the middle Neoproterozoic.  相似文献   

20.
Precipitation accumulating on the Greenland and Antarctic ice sheets records several key parameters (temperature, accumulation, composition of atmospheric gases and aerosols) of primary interest for documenting the past global environment over recent climatic cycles and the chemistry of the preindustrial atmosphere. Several deep ice cores from Antarctica and Greenland have been studied over the last fifteen years. In both hemispheres, temperature records (based on stable isotope measurements in water) show the succession of glacial and interglacial periods. However, detailed features of the climatic stages are not identical in Antarctica and in Greenland. A tight link between global climate and greenhouse gas concentrations was discovered, CO2 and CH4 concentrations being lower in glacial conditions by about 80 and 0.3 ppmv, respectively, with respect to their pre-industrial levels of 280 and 0.65 ppmv. Coldest stages are also characterized by higher sea-salt and crustal aerosol concentrations. In Greenland, contrary to Antarctica, ice-age ice is alkaline. Gas-derived aerosol (in particular, sulfate) concentrations are generally higher for glacial periods, but not similar in both the hemispheres. Marine and continental biomass-related species are significant in Antarctica and Greenland ice, respectively. Finally, the growing impact of anthropogenic activities on the atmospheric composition is well recorded in both polar regions for long-lived compounds (in particular greenhouse gases), but mostly in Greenland for short-lived pollutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号