首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A greenhouse pot experiment was conducted to investigate the effect of compost addition on the phytoremediation ability of Medicago sativa, Brassica napus, and Lolium perenne in soils contaminated with pyrene. Pyrene concentrations were evaluated after 90 days in contaminated uncultivated amended‐soil, cultivated amended‐soils, and shoots and roots of the three plant species. The addition of compost enhances significantly pyrene dissipation from 16 to 26% in uncultivated soil, whereas in cultivated soils it appears not to have any significant effect on pyrene dissipation, neither pyrene was detectable in shoots and roots of the three species examined. The high partition coefficient of pyrene to compost dissolved organic matter (DOM) and the molar absorptivity values at 280 nm (ε280) indicate a high affinity of pyrene to compost DOM molecules, likely due to their aromatic character. These results suggest that compost improves pyrene removal from soil, possibly by promoting its adsorption onto compost DOM. This property is very important in indicating that compost can be used, besides for its amendment capacity, also as a potential tool for remediation of contaminated soils.  相似文献   

2.
An experimental investigation is conducted to explore the suitability of Lolium perenne L., diatomite, chalcedonite, dolomite, and limestone for the phytostabilization of Ni and Cu in contaminated soil. A controlled greenhouse study is conducted. The soil is enriched with rising dose of Cu and Ni, that is, (0, 150, 250, and 350 mg kg?1) and (0, 150, 300, and 450 mg kg?1), respectively. The phytostabilization potential of perennial ryegrass is evaluated using a bioaccumulation coefficient and translocation factor. Pseudo‐total and available metal content (0.01 M CaCl2) in soils and bioaccumulated content in plants are defined in laboratory experiments using spectrophotometry experimental technique. L. perenne is adequate in phytostabilization aided programs, simultaneously, diatomite, chalcedonite, dolomite, and limestone used as modifiers are effective in reducing the accessibility and mobility of metals in Cu‐ and Ni‐polluted soils. The finding of the present study suggests that the studied element in the roots and above‐ground parts of L. perenne differs significantly upon applying mineral‐based modifications to the soil, synchronously the effect of increasing Cu and Ni levels. Application of dolomite and limestone to the soil cause the highest percentage of the above‐ground biomass. Diatomite along with limestone cause a significant boost of Cu and Ni absorption in the roots. Limestone causes an increase in the contents of K, Na, and Ca, as well as a reduction in P in the above‐ground parts of L. perenne. Limestone and chalcedonite leads to the highest decrease in available Cu and Ni.  相似文献   

3.
The success of seedlings and rejuvenated woody debris growing on river bedforms depends on the resistance to uprooting by flow provided by their simple root architecture. Avena sativa and Medicago sativa seedlings were used in flume experiments as prototypes for juvenile riparian plants. Very little is known about the magnitude of root anchoring forces and the role of secondary roots of such simple root systems. We performed 1550 vertical uprooting experiments on Avena sativa and Medicago sativa seedlings grown in quartz sand. Seedlings were pulled up by direct traction using a wheel driven by a computer‐controlled motor and the force was recorded. Roots were scanned and architectural parameters (root length and number of roots) determined. Uprooting force and work (the integral of the applied force times the distance over which it is applied) were then related to root architecture and soil variables. Resistance to uprooting increased with decreasing sediment size and sediment moisture content. The initial response of the root–soil system to uprooting showed linear elastic behaviour with modulus increasing with plant age. While the maximum uprooting force was found to increase linearly with total root length and be mainly dependent on the length of the main root, uprooting work followed a power law and has to be related to the whole root system. Thus, for the young plants we considered, secondary roots are responsible for the ability to withstand environmental disturbances in terms of duration rather than magnitude. This distinction between primary and secondary roots can be of crucial importance for seedlings of riparian species germinating on river bars and islands where inundation is a main cause of mortality. Beyond clarifying the biomechanical role of soil and root variables, the uprooting statistics obtained are useful in interpreting and designing ecomorphodynamic flume experiments. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
ABSTRACT

This study examined the effects of herbaceous plant roots on interrill erosion using two herbaceous species: clover (Trifolium repens) and oats (Avena sativa). We developed a simple rainfall simulator with relatively high normalized kinetic energy (KE; 23.2 J m?2 mm?1). Under simulated rainfall, we measured eroded soil for 42 boxes with various amounts of aboveground and belowground biomass. Aboveground vegetation had a significant effect on the soil erosion rate (SER). We found a clear negative relationship between the percent vegetation cover (c) and the SER. In contrast, plant roots showed no effects on the SER. The SER was not significantly different between the boxes with and without plant roots under similar c conditions. Thus, plant roots could have less of an effect on the SER under higher KE conditions.
Editor M.C. Acreman Associate editor N. Verhoest  相似文献   

5.
The classical aim of the application of super absorbent polyacrylate (SAPs) hydrogels is the prolonging of plant survival under water stress. Their effect on plant growth during non‐water stress conditions is not known. This study examined the root and shoot biomass of seedlings of nine tree species; Eucalyptus grandis, Eucalyptus citriodora, Pinus caribaea, Araucaria cunninghamii, Melia volkensii, Grevillea robusta, Azadirachta indica, Maesopsis eminii and Terminalia superba. The seedlings were potted in five soil types; sand, sandy loam, loam, silt loam and clay. These were amended at two hydrogel levels: 0.2 and 0.4% w/w and grown under controlled conditions in a green house. Root and shoot growth responses of the seedlings were determined by measuring the dry weight of the roots, stems, leaves and twigs. The addition of either 0.2 or 0.4% hydrogel to the five soil types resulted in a significant increase of the root dry weight (p < 0.001) in eight tree species compared to the controls after 8 wk of routine watering. Also, the dry weight of stems and leaves and twigs were significantly (p < 0.001) higher in the nine tree species potted in hydrogel amended soil types than in the hydrogel free controls. These results suggested that hydrogel amendment enhances the efficiency of water uptake and utilization of photosynthates of plants grown in soils which have water contents close to field capacity.  相似文献   

6.
A pot experiment was conducted to investigate microbial characteristics and the biodegradation process of bensulfuron‐methyl (BSM) in a rhizosphere soils planted with different riparian plants. The results showed that microbial population decreased with BSM addition in the rhizosphere, especially for bacteria and fungi. The activities of the dehydrogenase (DHase) were stimulated firstly, due to BSM addition, but then were inhibited, and recovered to the initial level, while the activities of the phosphatase and urease showed obviously decreasing trend throughout the whole experiment. Rhizosphere soil substrate‐induced respiration (SIR) was depressed by BSM, especially at the initial 14 days of incubation. Compared to Zizania aquatica and Phragmites australis, Acorus calamus showed a significantly (p < 0.05) higher DHase activity and larger SIR in the rhizosphere soils treated with BSM, which means that A. calamus can effectively alleviate inhibitory effect of the sulfonylurea herbicide addition on microbial activity. There were significant (p < 0.05) differences in microbial degradation dynamics of BSM in the rhizosphere soils among three kinds of riparian plants. A. calamus displayed a significantly (p < 0.05) higher degradation efficiency of BSM in the rhizosphere soils, followed by Z. aquatica and P. australis. The residual BSM concentration in A. calamus rhizosphere soil was 23.1 and 32.2% lower than that in Z. aquatica and P. australis rhizosphere soils, respectively, indicating a greater improvement effect on biodegradation of BSM in A. calamus rhizosphere soils.  相似文献   

7.
The effect of super absorbent polyacrylate (SAP) hydrogel amendment to different soil types on plant available water (PAW), evapotranspiration and survival of Eucalyptus grandis, Eucalyptus citriodora, Pinus caribaea, Araucaria cunninghamii, Melia volkensii, Grevillea robusta, Azadirachta indica, Maesopsis eminii and Terminalia superba was investigated. The seedlings were potted in 3 kg size polythene bags filled with sand, loam, silt loam, sandy loam and clay soils, amended at 0 (control), 0.2 and 0.4% w/w hydrogel. The tree seedlings were allowed to grow normally with routine uniform watering in a glass house set up for a period of eight weeks, after which they were subjected to drought conditions by not watering any further. The 0.4% hydrogel amendment significantly (p < 0.05) increased the PAW by a factor of about three in sand, two fold in silt loam and one fold in sandy loam, loam and clay soils compared to the control. Similarly, the addition of either 0.2 or 0.4% hydrogel to the five soil types resulted in prolonged tree survival compared to the controls. Araucaria cunninghammi survived longest at 153 days, while Maesopsis eminii survived least (95 days) in sand amended at 0.4% after subjection to desiccation. Evapotranspiration was reduced in eight of the nine tree species grown in sandy loam, loam, silt loam and clay soils amended at 0.4% hydrogel. It is probable that soil amendment with SAP decreased the hydraulic soil conductivity that might reduce plant transpiration and soil evaporation.  相似文献   

8.
Although numerous studies have acknowledged that vegetation can reduce erosion, few process-based studies have examined how vegetation cover affect runoff hydraulics and erosion processes. We present field observations of overland flow hydraulics using rainfall simulations in a typical semiarid area in China. Field plots (5 × 2 m2) were constructed on a loess hillslope (25°), including bare soil plot as control and three plots with planted forage species as treatments—Astragalus adsurgens, Medicago sativa and Cosmos bipinnatus. Both simulated rainfall and simulated rainfall + inflow were applied. Forages reduced soil loss by 55–85% and decreased overland flow rate by 12–37%. Forages significantly increased flow hydraulic resistance expressed by Darcy–Weisbach friction factor by 188–202% and expressed by Manning's friction factor by 66–75%; and decreased overland flow velocity by 28–30%. The upslope inflow significantly increased overland flow velocity by 67% and stream power by 449%, resulting in increased sediment yield rate by 108%. Erosion rate exhibited a significant linear relationship with stream power. M. sativa exhibited the best in reducing soil loss which probably resulted from its role in reducing stream power. Forages on the downslope performed better at reducing sediment yield than upslope due to decreased rill formation and stream power. The findings contribute to an improved understanding of using vegetation to control water and soil loss and land degradation in semiarid environments.  相似文献   

9.
The kinetics of oxidation of carcinogenic benzo(a)pyrene (0.1 nM solution in phosphate buffer) catalyzed by enzyme protein of soil and water plants (potato tubers and alga Nitella sp.) has been studied. The benzo(a)pyrene oxidation rate is determined by the phenoloxidase activity of the enzyme protein from both sources to an equal degree and expressed by the Michaelis-Menten equation. The values for kcat and apparent Km were (0.97 ± 0.14) Ms?1 and 33 ± 6 μM, respectively. The presence of other compounds (including protein substances) in acetone preparations of potato tubers considerably suppresses its catalytic activity in relation to benzo(a)pyrene. Consequently, in the polluted biosphere some water plants, such as alga Nitella sp., and potato tuber can transform carcinogenic benzo(a)pyrene (BP). As oxidation products, all three BP-quinones, i.e. 1,6-, 3,6-and 6,12-diones, were identified.  相似文献   

10.
Invasive noxious plants have important impacts on community dynamics and ecosystem functions in grasslands. Since the 1960s, the noxious plant Melica przewalskyi has spread rapidly and formed different size of patches in subalpine meadows of the Qilian Mountains, Northwest China. In this study, the species richness, vegetation structure, and soil water content are investigated from the patch edge to the center in four sizes of M. przewalskyi patches (i.e., small patch, <100 cm in canopy diameter; middle patch, 100–200 cm; large patch, 200–300 cm; and the largest patch, >300 cm). The results show that while the patches grow continuously, the dominant species changes from Stipa krylovii to M. przewalskyi with an increasing trend in plant productivity and decreasing trend in species richness and soil water content. Plant height, density, coverage, and above‐ground biomass of M. przewalskyi population increases from the patch edge to the center in small, middle, and large patches, whereas it is precisely the opposite in the largest patch. Interestingly, soil water content exhibits a decreasing trend from the patch edge to the center in all patches. The results indicate that the rapid spread of M. przewalskyi may well alter vegetation pattern and cause a severe soil moisture deficit, which would further drive the degradation of ecosystem functioning in subalpine meadows.  相似文献   

11.
Spatio‐temporal heterogeneity in soil water content is recognized as a common phenomenon, but heterogeneity in the hydrogen and oxygen isotope composition of soil water, which can reveal processes of water cycling within soils, has not been well studied. New advances are being driven by measurement approaches allowing sampling with high density in both space and time. Using in situ soil water vapour probe techniques, combined with conventional soil and plant water vacuum distillation extraction, we monitored the hydrogen and oxygen stable isotopic composition of soil and plant waters at paired sites dominated by grasses and Gambel's oak (Quercus gambelii) within a semiarid montane ecosystem over the course of a growing season. We found that sites spaced only 20 m apart had profoundly different soil water isotopic and volumetric conditions. We document patterns of depth‐ and time‐explicit variation in soil water isotopic conditions at these sites and consider mechanisms for the observed heterogeneity. We found that soil water content and isotopic variability were damped under Q. gambelii, perhaps due in part to hydraulic redistribution of deep soil water or groundwater by Q. gambelii in these soils relative to the grass‐dominated site. We also found some support for H isotope discrimination effects during water uptake by Q. gambelii. In this ecosystem, the soil water content was higher than that at the neighbouring Grass site, and thus, 25% more water was available for transpiration by Q. gambelii compared with the Grass site. This work highlights the role of plants in governing soil water variation and demonstrates that they can also strongly influence the isotope ratios of soil water. The resulting fine‐scale heterogeneity has implications for the use of isotope tracers to study soil hydrology and evaporation and transpiration fluxes to improve understanding of water cycling through the soil–plant–atmosphere continuum.  相似文献   

12.
Effects of insufficient soil aeration on the functioning of plants form an important field of research. A well-known and frequently used utility to express oxygen stress experienced by plants is the Feddes-function. This function reduces root water uptake linearly between two constant pressure heads, representing threshold values for minimum and maximum oxygen deficiency. However, the correctness of this expression has never been evaluated and constant critical values for oxygen stress are likely to be inappropriate. On theoretical grounds it is expected that oxygen stress depends on various abiotic and biotic factors. In this paper, we propose a fundamentally different approach to assess oxygen stress: we built a plant physiological and soil physical process-based model to calculate the minimum gas filled porosity of the soil (gas_min) at which oxygen stress occurs.First, we calculated the minimum oxygen concentration in the gas phase of the soil needed to sustain the roots through (micro-scale) diffusion with just enough oxygen to respire. Subsequently, gas_min that corresponds to this minimum oxygen concentration was calculated from diffusion from the atmosphere through the soil (macro-scale).We analyzed the validity of constant critical values to represent oxygen stress in terms of gas_min, based on model simulations in which we distinguished different soil types and in which we varied temperature, organic matter content, soil depth and plant characteristics. Furthermore, in order to compare our model results with the Feddes-function, we linked root oxygen stress to root water uptake (through the sink term variable F, which is the ratio of actual and potential uptake).The simulations showed that gas_min is especially sensitive to soil temperature, plant characteristics (root dry weight and maintenance respiration coefficient) and soil depth but hardly to soil organic matter content. Moreover, gas_min varied considerably between soil types and was larger in sandy soils than in clayey soils. We demonstrated that F of the Feddes-function indeed decreases approximately linearly, but that actual oxygen stress already starts at drier conditions than according to the Feddes-function. How much drier is depended on the factors indicated above. Thus, the Feddes-function might cause large errors in the prediction of transpiration reduction and growth reduction through oxygen stress.We made our method easily accessible to others by implementing it in SWAP, a user-friendly soil water model that is coupled to plant growth. Since constant values for gas_min in plant and hydrological modeling appeared to be inappropriate, an integrated approach, including both physiological and physical processes, should be used instead. Therefore, we advocate using our method in all situations where oxygen stress could occur.  相似文献   

13.
Coordination of plant functional traits with changes in the environment is helpful to understand the mechanisms underlying both invasiveness and adaptation of plants. Thus, to investigate the performance and functional traits in invasive Alternanthera philoxeroides (Mart.), an experiment of water stress is conducted with different nutrient concentrations. Alternanthera philoxeroides plants are grown under natural and nutrient soils and subjected to three levels of nitrogen (N) and phosphorus (P) solution: ambient P and N concentration (P?N?), P addition with an ambient N concentration (P+N?), and P addition with high N concentration (P+N+) in combination with three different irrigation water levels as 1) 100% irrigation, 2) 50% irrigation, and 3) 25% deficit irrigation. Based on results, A. philoxeroides produces significantly higher biomass in both soils under 100% irrigation with P+N? treatment and exhibits higher values of leaf area and root length. However, 25% irrigation with P?N? treatment in both soils exerts a significant negative effect on relative growth rate and root/shoot ratio of A. philoxeroides plants. Under 50% irrigation in soils with both P+N? and P+N+ treatments, high values of leaf nitrogen are recorded. Moreover, nutrient soil is more supportive to A. philoxeroides than natural soil.  相似文献   

14.
为明确消落区土壤养分对植物生长的影响,通过室内栽培试验,研究三峡库区秭归消落区土壤3种氮磷水平下4种草本植物—鬼针草(Bidens pilosa)、苍耳(Xanthium sibiricum)、水蓼(Polygonum hydropiper)、藜(Chenopodium album)长势及氮、磷计量特征.结果表明,消落区土壤中生长的植物氮含量为7.98~19.4 mg/g,磷含量为0.740~3.880 mg/g,氮磷比为3.48~13.70,判别植物生长受氮限制.外源氮磷的添加促进植物氮、磷含量明显升高,但氮磷比没有明显变化;外源氮磷添加解除植物受氮的限制作用.4种植物对消落区土壤低氮环境具有一定的适应能力.比较消落区土壤中4种植物长势,鬼针草生物量、相对生长率、根茎生物量比最高,氮磷养分丰富对鬼针草生长促进作用最明显,表明鬼针草更易于在氮、磷贫乏的三峡库区消落区形成优势群落.  相似文献   

15.
环太湖地区经济发达,人口密集,近年来面临严重的富营养化、生境退化和外来水生物种入侵等环境问题.为明确环太湖地区河道和湖泊沿岸带水生植物多样性现状,于2018年开展本地和外来水生植物多样性调查.结果表明:(1)在环太湖地区共计进行65个群落样方调查分析,记录到38种水生植物,分属22科29属;(2)环太湖地区31个河道样方中入侵沉水植物水盾草重要值最高,其次为另一种入侵漂浮植物凤眼蓝,在34个湖泊沿岸带样方中凤眼蓝重要值最高;(3)环太湖地区河道和湖泊沿岸带样方生物多样性分别随着水盾草和凤眼蓝盖度的增加而降低,表明外来入侵植物影响水生植物生物多样性.环太湖地区湖泊需加强防范凤眼蓝漂浮生长分布范围扩大和水盾草沿河道入侵太湖湖区.这一地区同时面对水生植物覆盖面积减少和外来植物入侵问题,建议进行全太湖流域水生植物分布区域和生物多样性摸底普查,加强对外来入侵植物传播的监控,建立水生植物自然保护区.  相似文献   

16.
Potassium (K) is one of the major nutritions for plants. The evaluation of K quantity and intensity relationships (K Q/I curve) in different farmland soils is important for the appropriate application of K fertilizer. With this information the pollution of K fertilizer in the environment can be prevented. Potassium ions in solution and in exchange complex are available to plants. However, the K availability is affected by the antagonism of Ca and Mg ions. The K quantity–intensity relationships (K Q/I curve) has been suggested to describe the K availability in soil, taking into account the competition between K ions and Ca and Mg ions for exchange sites on the soil exchange complex. In this experiment, we studied the Q/I plot of the soils and found that the parameters can be used to evaluate the supply state of K. The results show that the K Q/I relationships of the five soils differed as the Ca concentration of the initial solution is varied. This phenomenon reflected different degrees of exchange of K by Ca on the exchangeable sites of the clay minerals. The intensity of the potassium supply of Nieuniaokang and Erling soils possessed higher AR0 values, indicating that exchangeable K in these soils are primarily on the plannar surface of the clay particles; while those of the Liuying, Shanghua, and Taikang series are primarily on the crystal edge surfaces and are less available to the plant. The K supply intensity of Chiangjung soil is lower when the Ca concentration is low, but it increased when the Ca concentration is high, and the K supply intensity of Pinchen soil is the opposite. The K supply intensity of Nieuniaokang soil is high, but its potential buffering capacity (PBC) is low. Therefore, it is suggested that the K application should be split into small doses to maintain a high K supply intensity. The K supply intensity of Liuying soil is low, but its PBC is large, so it is expected that a large amount of K fertilizers would be needed to increase the K supply intensity to a more available level. The supply intensity and the buffering capacity of the Chiangjung and Pinchen soils are low, and the K management in these soils will be more difficult.  相似文献   

17.
The processes of species obtaining water resources are crucial to evaluate the adaptability of plantations, which can affect the establishment and survival of restored ecosystems and functions of water-limited ecosystems. However, there are still limitations in understanding water use patterns of different four plantations (Populus sylvestris, Salix cheliophe, Hippophae rhamnoides and Artemisia ordosica) in the Qinghai Lake basin. Stable isotopes of xylem water of four individual species were analysed at different dunes located at the eastern shore of Qinghai Lake in 2018 and 2019. The purpose of this study was to explore potential water sources used by different life form plants, to identify whether the soil moisture content and root distribution determined the plants water use patterns. Results from the Bayesian mixing model MixSIAR showed that all species mainly uses three levels of soil water, but they extracted soil water from different layers in different growing seasons among species. All species primarily depended on water from upper soil layers at the early growing stage, but P. sylvestris and S. cheliophe also absorbed much proportion middle and deep soil layers' water in dry year of 2019. All four species shift to use middle or deep soil layer water rather than shallow water in July with the most rainfall and soil water content (SWC). However, it was only used by P. sylvestris and H. rhamnoides in 2018. In all, seasonal water use pattern of different species was affected by SWC, soil texture and root distribution. Compared with moratorium plantations such as S. cheliophe, mixed afforestation of P. sylvestris and H. rhamnoides maximized of soil water sources absorbed by the plants. The study can shed light on plant–water relationships to facilitate the woody species for afforestation and desertification restoration management in the semi-arid desert ecosystem.  相似文献   

18.
Many studies attribute the effects of vegetation in reducing soil erosion rates to the effects of the above‐ground biomass. The effects of roots on topsoil resistance against concentrated flow erosion are much less studied. However, in a Mediterranean context, where the above‐ground biomass can temporarily disappear because of fire, drought or overgrazing, and when concentrated flow erosion occurs, roots can play an important role in controlling soil erosion rates. Unfortunately, information on Mediterranean plant characteristics, especially root characteristics, growing on semi‐natural lands, and knowledge of their suitability for gully erosion control is often lacking. A methodological framework to evaluate plant traits for this purpose is absent as well. This paper presents a methodology to assess the suitability of plants for rill and gully erosion control and its application to 25 plant species, representative for a semi‐arid Mediterranean landscape in southeast Spain. In this analysis determination of suitable plants for controlling concentrated flow erosion is based on a multi‐criteria analysis. First, four main criteria were determined, i.e. (1) the potential of plants to prevent incision by concentrated flow erosion, (2) the potential of plants to improve slope stability, (3) the resistance of plants to bending by water flow and (4) the ability of plants to trap sediments and organic debris. Then, an indicator or a combination of two indicators was used to assess the scores for the four criteria. In total, five indicators were selected, i.e. additional root cohesion, plant stiffness, stem density, the erosion‐reducing potential during concentrated flow and the sediment and organic debris obstruction potential. Both above‐ and below‐ground plant traits were taken into account and measured to assess the scores for the five indicators, i.e. stem density, sediment and organic debris obstruction potential, modulus of elasticity of the stems, moment of inertia of the stems, root density, root diameter distribution, root area ratio and root tensile strength. The scores for the indicators were represented on amoeba diagrams, indicating the beneficial and the weak plant traits, regarding to erosion control. The grasses Stipa tenacissima L. and Lygeum spartum L. and the shrub Salsola genistoides Juss. Ex Poir. amongst others, were selected as very suitable plant species for rill and gully erosion control. Stipa tenacissima can be used to re‐vegetate abandoned terraces as this species is adapted to drought and offers a good protection to concentrated flow erosion and shallow mass movements. Lygeum spartum can be used to vegetate concentrated flow zones or to obstruct sediment inflow to channels at gully outlets. Stipa tenacissima and Salsola genistoides can be used to stabilize steep south‐facing slopes. The methodology developed in this study can be applied to other plant species in areas suffering from rill and gully erosion. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Ecosystem in the karst region of southwest China is very fragile due to a very limited amount of water storage for plant uptake in the thin and rocky soils underlain by rock fractures. Plants in these karst regions are thought to take water from the soils and shallow fractured rock zone (subcutaneous zone) as well. However, the role of subcutaneous water in maintaining karst vegetation remains unclear, and proportions of the water sources for plant uptake in different environment conditions are unknown. In this study, five typical species of plants at two sites were selected in a karst plateau of Qingzhen, central Guizhou Province of China. Proportions of the possible water sources contributed for the plant uptake from two soil layers and subcutaneous zone were determined on the basis of δD and δ18O values of plant stem water, soil water and subcutaneous water. The analysis reveals that most plants take water from the soil layers and the subcutaneous zone as well, but proportions of these water contributions for plant uptake vary seasonally and depend on site‐specific conditions and plant species. Plant uptake of the subcutaneous water for all species averages less than 30% of the total monthly amount in June and September, compared with more than 60% in dry December. Plants tend to take a larger proportion of water from the upper soil layer at the bush site than at the forest site in June and September (63 vs 28% in July; 66 vs 54% in September for all species in average). In December, however, 98% of water is taken from the subcutaneous zone at the bush site which is much greater than 68% at the forest site. Compared to deciduous arbor, evergreen shrub takes a greater proportion of subcutaneous water in the December drought. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
Genetic transformation is gaining importance for developing plant types suitable to metal accumulate and/or hyperaccumulate. In this study, the transgenic tobacco plant which transferred the ScMTII gene from Saccharomyces cerevisiae to wild type tobacco cultivar Petite Havana (SR1) was grown on soils with low and high cadmium (Cd) and zinc (Zn) concentrations in a growth chamber for 6 weeks and compared to wild type tobacco for Cd and Zn accumulation. Cadmium and Zn accumulations in the transgenic and wild type tobacco plants were increased with the increasing Cd and Zn concentrations. Unlike Zn, the transgenic plant accumulated significantly higher amount of Cd compared to the wild type control plants. Shoot Cd concentrations of transgenic tobacco in higher Cd dosages reached the above the hyperaccumulation threshold value of 100 mg Cd kg?1 in the dry weight (DW). Transgenic tobacco accumulated 354, 400, 372, and 457 mg Cd kg?1 DW, for 10, 20, 40, and 80 mg Cd kg?1 soil treatments, respectively. These values are 3.5–4.5‐fold higher than that of Cd hyperaccumulation threshold value. With 10 mg kg?1 Cd treatment, the bioconcentration factor (BCF) of transgenic tobacco plants for Cd reached up to 35 in which the threshold value for BCF should be at least 10. Our results showed that the transgenic tobacco may be used as a good Cd hyperaccumulator plant and for phytoextraction of Cd contaminated soils, but not for Zn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号