首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The aim of this study was to assess the level of heavy metals (Al, Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) contamination and enrichment in the surface sediments of the Seyhan River, which is the receiving water body of both treated and untreated municipal and industrial effluents as well as agricultural drainage waters generated within Adana, Turkey. Sediment and water samples were taken from six previously determined stations covering the downstream of the Seyhan dam during both wet and dry seasons and the samples were then analyzed for the heavy metals of concern. When both dry and wet seasons were considered, metal concentrations varied significantly within a broad range with Al, 7210–33 967 mg kg?1 dw; Cr, 46–122 mg kg?1 dw; Cu, 6–57 mg kg?1 dw; Fe, 10 294–26 556 mg kg?1 dw; Mn, 144–638 mg kg?1 dw; Ni, 82–215 mg kg?1 dw; Pb, 11–75 mg kg?1 dw; Zn, 34–146 mg kg?1 dw in the sediments while Cd was at non‐detectable levels for all stations. For both seasons combined, the enrichment factor (EF) and the geo‐accumulation index (Igeo) for the sediments in terms of the specified metals ranged from 0.56 to 10.36 and ?2.92 to 1.56, respectively, throughout the lower Seyhan River. The sediment quality guidelines (SQG) of US‐EPA suggested the sediments of the Seyhan River demonstrated “unpolluted to moderate pollution” of Cu, Pb, and Zn, “moderate to very strong pollution” of Cr and Ni. The water quality data, on the other hand, indicated very low levels of these metals suggesting that the metal content in the surface sediments were most probably originating from fine sediments transported along the river route instead of water/wastewater discharges with high metal content.  相似文献   

2.
Freshwater lakes are one of the most vulnerable ecosystems to environmental contamination. This study was initiated to assess the spatial distribution, fractionation, ecological risk of selected potentially toxic metals (Pb, Zn, Cu, Cr, and Ni) in bottom sediments of the Zarivar lake, the second largest freshwater lake in Iran. The results revealed that Pb, Zn and Cu had the high spatial variability (coefficient of variation >50) across the sampling sites and their maximum concentrations (197.5 for Pb, 198.7 for Zn and 185.6 mg/kg for Cu) were observed in sampling sites from the northern, western and eastern margins of the lake. Cr and Ni with average concentrations of 28.3 and 31.38 mg/kg respectively, exhibited low spatial variability (coefficient of variation <20) and their concentrations did not vary significantly among the sampling sites. Based on the redundancy analysis (RDA), sediment organic matter was strongly correlated with Pb, Zn and Cu while Fe2O3 and Al2O3 showed a positive correlation with Ni and Cr. The calculated average enrichment factor (EF) and geoaccumulation index (Igeo) showed that the contamination level of metals can be arranged in the following order of Pb> Cu > Zn > Cr > Ni. Results from the modified five-step sequential extraction analysis indicated that 40 % of total Pb and Zn were associated with the reducible fraction, 45 % of Cu with the oxidizable fraction and more than 80 % of total Ni and Cr were retrieved from the residual fraction. It was also noticed that Pb, Zn and Cu were more incorporated into the non-residual fractions in the sites with a higher total concentration of these metals, suggesting that both total concentration and fractionation behavior of metals were influenced by their potential sources in the study area. Ecological risk assessment using the potential ecological risk index (PERI) and the modified potential ecological risk index (MPERI) showed that sediments from the eight sampling sites pose a moderate to considerable risk whereas the other sites had low ecological risk level. In comparison to sediment quality guidelines (SQGs), the effects range low (ERL) and probable effect level (PEL) values for Pb, Cu and Zn were exceeded at some sampling sites while Ni and Cr concentrations were found to be below or close to their SQGs values at all the sampling sites. Pb was generally identified as the contaminant of most concern in the study area. Taking into account the results obtained from the fractionation study and the source contribution estimate, it can be inferred that the Pb, Zn and Cu with the average contribution of 79, 54 and 64 % respectively, were mainly derived from anthropogenic sources whereas Ni and Cr with the estimated contribution of 80 and 89 % were predominately from the lithogenic source.  相似文献   

3.
A stable extractor of metal ions was synthesized through azo linking of o‐hydroxybenzamide (HBAM) with Amberlite XAD‐4 (AXAD‐4) and was characterized by elemental analyses, IR spectral, and thermal studies. Its water regain value and hydrogen ion capacity were found to be 12.93 and 7.68 mmol g?1, respectively. The optimum pH range (with the half‐loading time [min], t1/2) for Cu(II), Cr(III), Ni(II), Co(II), Zn(II), and Pb(II) ions were 2.0–4.0 (5.5), 2.0–4.0 (7.0), 2.0–4.0 (8.0), 4.0–6.0 (9.0), 4.0–6.0 (12.0), and 2.0–4.0 (15.0), respectively. Comparison of breakthrough and overall capacities of the metals ascertains the high degree of column utilization (>70%). The overall sorption capacities for Cu(II), Cr(III), Ni(II), Co(II), Zn(II), and Pb(II) ions were found to be 0.29, 0.22, 0.20, 0.16, 0.13, and 0.11 mmol g?1 with the corresponding preconcentration factor of 400, 380, 380, 360, 320, and 320, respectively. The limit of preconcentration was in the range of 5.0–6.3 ng mL?1. The detection limit for Cu(II), Cr(III), Ni(II), Co(II), Zn(II), and Pb(II) were found to be 0.39, 0.49, 0.42, 0.59, 0.71, and 1.10 ng mL?1, respectively. The AXAD‐4‐HBAM has been successfully applied for the analysis of natural water, multivitamin formulation, infant milk substitute, hydrogenated oil, urine, and fish.  相似文献   

4.
In order to investigate the pollution levels, sources and ecological risks of arsenic (As) and heavy metals (Cr, Ni, Cu, Zn, Pb and Cd) in inshore sediments of the Yellow River estuary, the surface sediment in areas of inshore coastal waters were sampled in October 2014 as the flow-sediment regulation project (FSRP) was implemented for 13 years. Results showed that the concentrations of As and heavy metals in inshore sediments of the Yellow River estuary were in the order of Zn?>?Cr?>?Cu?>?Ni?>?Pb?>?As?>?Cd. Higher levels of As, Cr, Ni, Cu, Zn and Pb generally occurred in fine-grained sediments of the Yellow River estuary and the southeast region, which was consistent with the spatial distribution of clay. In contrast, higher concentrations of Cd were generally observed in northwest area of the Yellow River estuary and near the Qingshuigou estuary, which showed similarly spatial distribution with that of sand. The sediment quality guidelines (SQGS) and geoaccumulation indices (Igeo) indicated that the inshore sediments were polluted by Cu, Cd, As, Pb and Zn, and, among them, Cd pollution was more serious. Ecological risk indices (E r i ) demonstrated low risks for Cr, Ni, Cu, Zn, Pb and As, and high potential toxicity by Cd. The integrated ecological risk index implied that 6.8% of stations presented moderate risk, 4.5% of stations exhibited disastrous risk, and 88.7% of stations demonstrated considerable risk. Principal component analysis indicated that Ni, Cu, Zn, Pb and As might originate from common pollution sources, while Cr and Cd might share another similar sources. With the continuous implementation of FSRP, As and heavy metal levels in inshore sediments of the Yellow River estuary could be classified as stage I (2002–2010) and stage II (2010–2014). In the stage I, As, Cr, Ni, Cu, Zn and Pb levels fluctuated but decreased significantly, whereas Cd concentrations showed little variation. In the stage II, As and heavy metal levels significantly increased although some little fluctuations occurred. The continuous accumulation of As and heavy metals (especially for Cd) in inshore sediments of the Yellow River estuary would occur again as the FSRP was implemented for 9 years (since 2010). The ecotoxicological risk of Cd, As, Ni and Cu in inshore sediments might be more serious since the accumulation of the four elements would be continuously occurred in future years. Next step, there will be long-term potential consequences for marine organism if effective measures are not taken to control the loadings of metal pollutants into estuary.  相似文献   

5.
6.
Phytoremediation, a plant‐based and cost‐effective technology for the cleanup of contaminated soil and water, is receiving increasing attention. In this study, the aquatic macrophyte Eleocharis acicularis was examined for its ability to take up multiple heavy metals and its potential application for phytoremediation at an abandoned mining area in Hokkaido, Japan. Elemental concentrations were measured in samples of E. acicularis, water, and soil collected from areas of mine tailing and drainage. The results reveal that Pb, Fe, Cr, Cu, Ni, and Mn accumulation in the plants increased over the course of the experiment, exceeding their initial concentrations by factors of 930, 430, 60, 25, 10, and 6, respectively. The highest concentrations of Fe, Pb, Zn, Mn, Cr, Cu, and Ni within the plants were 59500, 1120, 964, 388, 265, 235, and 47.4 mg/kg dry wt., respectively, for plants growing in mine drainage after 11 months of the experiment. These results indicate that E. acicularis is a hyperaccumulator of Pb. We also found high Si concentrations in E. acicularis (2.08%). It is likely that heavy metals exist in opal‐A within cells of the plant. The bioconcentration factors (BCF: ratio of metal concentration in the plant shoots to that in the soil) obtained for Cr, Cu, Zn, Ni, Mn, and Pb were 3.27, 1.65, 1.29, 1.26, 1.11, and 0.82, respectively. The existence of heavy metals as sulphides is thought to have restricted the metal‐uptake efficiency of E. acicularis at the mine site. The results of this study indicate that E. acicularis shows great potential in the phytoremediation of mine tailing and drainage rich in heavy metals.  相似文献   

7.
The geochemical baselines and distribution of 31 elements (Al, Fe, K, Na, Mg, Ca, Mn, Ba, Cr, Zr, Ni, Sr, Zn, Y, Li, Cu, Mo, Nb, Th, Co, Ga, W, Ta, Be, Ti, Ge, Se, Bi, Te, Sc and Re) and physico-chemical parameters of the tropical surface sediments of the Terengganu River basin, Malaysia, are reported. Sediments are sandy loam to sand in texture consisting of mostly quartz, low organic matter content (average-2.68%), low CEC (average-2.02 cmol(+)/kg) and mildly acidic pH1:5 (average-5.91). Concentrations of Mn, Fe, Ba, Cr, Ni, Cu, Mo and Se were measured to be above the environmental sediment quality criteria at various locations. Lake sediments registered significantly higher Al, Fe, Ti, Mg, Ca, Mn, Te and Sc concentrations as compared to the river sediments. Most of the elements investigated showed an association with silt size fraction (2-63 μm). Among the investigated metals, Mo and Fe concentrations showed an increasing (5-fold) and decreasing (3-fold) trend, respectively, along the river path from the upstream to the downstream depending on the stream pH-redox conditions. The enrichment factor values (EF 5) of Cr, Ni, Mo and Se indicated enrichment from anthropogenic activities. Alkali and alkali earth metals registered a significant depletion (EF values 0.7) as compared to the Earth's crust. Principal component analysis of the two main components (PC1, 87.4% and PC2, 8.7%) revealed a well-defined group of estuary sediments. Lake and river sediment sampling locations did not form defined groups revealing heterogeneity in the origin of geologic material and the in-stream geochemical processes. However, Cr, Ni, Mo and Se formed a separate group with elevated concentrations (e.g. Cr1,000 mg/kg) indicating contamination of sediments. This work presents the geochemical baselines of the tropical sediments as industrial development and urbanization along the north east coast of Peninsular Malaysia are advancing rapidly.  相似文献   

8.
The quality of water and sediments of street runoff in Amman,Jordan   总被引:1,自引:0,他引:1  
Metallic content (Cr, Fe, Mn, Cu, Ni, Pb and Cd) of street sediments and street runoff in addition to major inorganic constituents (Ca, Mg, Na, K, HCO3, Cl, NO3 and SO4) of street runoff were determined under semi‐arid conditions. Two sites in the vicinity of Amman during the pluvial year 1998–1999 were chosen for this investigation. A higher quantity of ionic contents was found at site 2 in comparison to site 1 except for iron, which was significantly higher at site 1. This finding was attributed to higher anthropogenic activity and lower rainfall at site 2, which indicates better water quality of street runoff from residential sites than the city centre. The average concentrations of Pb, Cu and Cd in Amman street runoff compared with the highest levels recorded at humid sites of the world as a result the prevailing semi‐arid conditions in the areas investigated. The highest concentrations of all constituents were detected during the first month of sampling, which might be the result of low rainfall, and a long dry period of atmospheric deposition preceding rainfall events. However, high levels of both lead and copper were recorded (below that of iron) which might be attributed to traffic pollution. In contrast, a significant variation between the average concentrations for Cu, Ni and Cr was found in sediments from the two sites. Moreover, a significant difference was detected only for Cu and Mn at each site overtime. The overall pattern of the results suggests that all heavy metal concentrations for street runoff showed a significant variation over time at site 1 whereas only a significant variation was found for Ni at site 2, which can be explained as the result of higher rainfall at site 1 than at site 2. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

9.
Removal of Al, As, Cd, total Cr (Tot. Cr), Cu, Total Fe (Tot. Fe), Mn, Ni, Pb, Sb, Sn, and Zn from urban effluent by wastewater treatment plants (WWTPs) operated under five‐stage Bardenpho® process were investigated and water soluble metals in the dewatered sludge were quantified. Samples were collected from two WWTPs on a weekly basis over an approximately 2.5‐year time span. Tot. Fe and Al were the most abundant, As, Pb, Ni, Cu, and Cd were the least abundant metals in the influents of both WWTPs. Removal efficiencies above 75% were achieved for Tot. Cr, Tot. Fe, Al, and Cu, whereas, no significant removal was observed for As, Cd, Pb, Sb, and Sn. Removal of Tot. Cr, Cu, Tot. Fe, Zn, Al, Mn, and Ni were influenced by influent suspended solids concentrations, and of Tot. Cr, Zn, and Cd were influenced by their initial content in the influent. Zn removal efficiency of biological nutrient removal (BNR) system in this study was higher and Cd removal efficiency was lower than that of conventional activated sludge reported in the literature. No remarkable difference for metals such as Cu, Mn, Ni, and Pb was observed between the removal efficiencies of conventional system and BNR system.  相似文献   

10.
巢湖沉积物重金属富集特征与人为污染评价   总被引:15,自引:6,他引:9  
本文分析了巢湖主要入湖河流河口区表层沉积物及西部湖心区沉积岩芯中Al、Fe、Ni、Cr、Cu、Zn、Pb、Li、V等金属元素变化特征,采用地球化学方法对金属元素变化的"粒度效应"进行矫正,并以Li、V为参照元素对矫正结果进行检验;参考历史沉积物,对河口区及西部湖心区沉积物重金属人为污染特征进行分析;结合沉积岩芯210Pb年代结果,估算西部湖心区近150a来Ni、Cr、Cu、Zn、Pb等重金属元素的人为污染贡献量.结果表明,河口表层沉积物重金属污染具有显著的空间差异,南淝河河口重金属人为污染最重,其中Ni、Cr、Cu、Zn、Pb的人为污染贡献量分别为12.2、32.2、25.3、479.9和76.0 mg/kg,分别占总含量的35%、37%、64%、92%和77%;其次是柘皋河河口,主要重金属污染元素为Cu、Zn和Pb,人为污染贡献量达57.6、57.0和19.5 mg/kg,分别占总含量的73%、47%和36%;而派河、白石山河、杭埠河等河口表层沉积物中重金属元素人为污染程度较弱.巢湖西部湖心区主要污染元素为Cu、Zn、Pb,人为污染开始于1950s,1980年以来其人为污染贡献量显著增加,平均为16.2、245.6、47.8 mg/(m2.a),分别占各元素沉积通量的23%、61%和37%;Ni人为污染开始于1980s初期,人为污染贡献量平均为12.6 mg/(m2.a),占其沉积通量的13%左右;Cr基本未受人为污染影响.西部湖心区沉积岩芯及南淝河河口表层沉积物中重金属污染程度均表现为Zn>Pb>Cu,而且南淝河河口沉积物重金属污染程度显著高于西部湖心区.结合主要入湖河流径流量与河口沉积物重金属污染特征,认为巢湖西部湖心区重金属污染主要通过南淝河输入,来自合肥等城市的废水是主要的污染源.  相似文献   

11.
This paper describes the geochemistry of sediment samples placed in floodplains and alluvial terraces downstream from gold mines in the Carmo River basin, Quadrilátero Ferrífero, Minas Gerais, Brazil. The geochemistry signature Na2O, K2O, SiO2, CaO, MgO, Al2O3, Fe2O3, TiO2, P2O5, Mn, As, Cu, Zn, Ba, Ni, Cr, S, Co were analyzed in different facies from stratigraphic profiles. As, Cu, Zn, and Mn anomalies are mainly associated with the clayed facies deposited in floodplains and oxbow lakes, and with coarse‐sediment facies deposited in the channel. The facies were accumulated by the gold exploitation activity in the region. The contamination of As, Cu, and Zn was controlled by minerals such as iron oxides and hydroxides (hematite, magnetite, and mainly goethite), manganese oxides, and sulfide‐rich minerals. The As‐bearing sediments of the region characterize one of the most As contaminated area of Brazil. Their main source is associated with gold exploration in the last three centuries.  相似文献   

12.
This study determines the pollution, fractionation, and ecological risks of sediment-bound heavy metals from coastal ecosystems off the Equatorial Atlantic Ocean. Contamination Factor(CF), pollution load index(PLI), and geoaccumulation index(Igeo) were used to assess the extent of the heavy metal pollution, while the potential ecological risk was evaluated using the risks assessment code(RAC) and Hkanson potential ecological risk. The analysis revealed concentrations(mg/g, dw) of the cadmium(Cd),chromium(Cr), copper(Cu), nickel(Ni), and lead(Pb) in sediments for wet and dry seasons vary from 4.40-5.08, 14.80-21.09. 35.03-44.8, 2.14-2.28, and 172.24-196.39, respectively. The results also showed that the metal fractionation percentages in the residual, oxidizable, and reducible fractions are the most significant, while the exchangeable and carbonate bound trace metals are relatively low. The RAC values indicate no risk for Cd and Ni and low risk for other metals at all the studied sites during both seasons.Potential ecological risk analysis of the heavy metal concentrations indicates that Cd had high individual potential ecological risk, while the other metals have low risk at all investigated sites. The multi-elemental potential ecological risk indices(R_1) indicate high ecological risk in all the ecosystems.  相似文献   

13.
The concentrations of Cr, Mn, Fe, Ni, Cu, Zn, and Pb metals in soil samples (N = 21) were determined by flame atomic absorption spectrometry. The modified Community Bureau of Reference (BCR) sequential extraction procedure (three‐step) was used in order to evaluate mobility, availability, and persistence of heavy metals in soil samples taken from an agricultural area in Erciyes University Campus. The operationally defined fractions isolated using the BCR procedure were: acid extractable, reducible, and oxidizable. The mobility sequence based on the sum of the BCR sequential extraction stages was: Mn (70.2%) > Pb (62.9%) > Ni (26.7%) > Cr (15.4%) > Zn (14.4%) > Cu (12.9%) > Fe (1.24%). Multivariate statistical analysis was used to define the possible origin of heavy metals in soils. Correlation analysis, principal component analysis (PCA), and cluster analysis (CA) were applied to the data matrix to evaluate the analytical results and to identify the possible pollution sources of heavy metals. PCA results revealed that the sampling area was mainly influenced from three sources, namely natural, airborne emissions from domestic heating and traffic.  相似文献   

14.
Materials of expedition studies in 2013 in the Prielbrus’e National Park were used to analyze the concentrations of a wide range of pollutants (SO42-, Cl?, Na+, K+, F?, Mn, Cu, Zn, Pb, Cr, Ni, NO3-, NH4+) in the water of mountain rivers forming the main artery of the region, the Baksan R. The analyzed data characterize seasonal variations in pollutant concentrations at seven sampling sections and their dynamics along the river down to the 35th km from the source in different seasons.  相似文献   

15.
太湖流域滆湖底泥重金属赋存特征及其生物有效性   总被引:1,自引:0,他引:1  
包先明  晁建颖  尹洪斌 《湖泊科学》2016,28(5):1010-1017
为了探讨太湖流域滆湖底泥重金属(Cd、Cr、Cu、Zn、Ni和Pb)的赋存特征及其生物有效性,对底泥重金属总量、形态以及生物富集量进行了分析.结果表明,6种重金属含量的空间分布表现为北部湖区最高,其次为南部湖区,中部湖区最低,重金属Ni、Cu、Zn和Pb含量显著高于沉积物背景值,分别是背景值的4.77、3.89、2.96和2.76倍,重金属总量与沉积物中的黏土成分含量具有显著相关性.采用三级四部提取法对重金属形态进行分析表明,6种重金属的生物有效态(弱酸结合态、可还原态和可氧化态之和)含量顺序为CdCuZnPbNiCr,其中Cd、Cu、Zn和Pb的生物有效态含量分别占总量的84.15%、78.47%、76.50%和64.29%.Cu和Zn在铜锈环棱螺中富集含量要显著高于其他金属元素.相关性分析表明,6种重金属中仅Cr和Pb的生物富集量与有效态含量具有显著相关性,这表明,重金属在生物体内的富集不仅与有效态含量有关,还与底泥重金属总量有关.因此,评价滆湖重金属的生态风险时需要综合考虑重金属的总量及生物有效态含量.  相似文献   

16.
Distributions and magnitude of metals in water, sediment and soil collected from the watershed and estuarine areas of southern Bohai Sea, were investigated. The largest dissolved concentrations of As, Cu and Zn in water were 347.70, 2755.00, 2076.00 μg/L, respectively, much higher than corresponding drinking water guidelines. The greatest concentrations of Cu, Zn, Cr, Ni, Pb, As and Cd in sediments were 1462.2, 1602.17, 196.43, 67.15, 63.54, 73.86 and 1.41 mg/kg, dw, respectively. The mean concentrations of Cu, Ni, Cd, Zn, Cr, Pb and As in soils were 24.67, 24.73, 0.14, 64.75, 56.52, 25.12 and 9.34 mg/kg, dw, respectively. Land use was confirmed to be an important factor of influence on soil metal concentrations. Metal contents along the watershed of Jie River were significantly greater than in other locations. The detection of metals in relatively high concentrations from different environmental matrices in this region indicates the necessity of further studies.  相似文献   

17.
Heavy metal (Hg, Pb, Cd, Cu, Cr, Ni, Co, Zn and Fe) concentrations, textural characters and mineralogical compositions have been determined on 246 surface sediment samples from the Northern Adriatic Italian sea area. The relationship between the heavy metals content and the pelite (< 63 μm fraction) percentage has been studied. All the metals resulted accumulated in the fine fraction with the following percentages (Hg, 95%; Zn, 86%; Pb, 82%; Cu, 79%; Cd, 74%; Ni, 70%; Cr, 65%; Co, 65% and Fe, 64%). The specific surface area has been measured on 44 samples and correlated to metal values. A fairly good (50% and more variation explained) linear correlation co-efficient has been found for Ni and Cu in the entire area, less significant correlation for other metals. In order to discriminate between natural and anthropogenic origin the metal concentrations on the whole sediment has been normalized on the basis of the pelite percentage. In the areal distributions drawn with the corrected values, zones contaminated by industrial discharges have been identified mainly in front of the lagoon of Venice.  相似文献   

18.
The Pleistocene volcanic rocks from northern Taiwan include the Tatun volcano group and the Chilung volcano group. Three rock types occur in this area: Tatun volcano group yield high-alumina basalt and andesites, whereas the chilung volcano group mainly consists of dacites. In addition, amphibole-rich nodules have also been found in different cruptive units of the former volcano group. Around seventy sample of various rock types have been conducted for geochemical studies, including analyses of major elements and trace elements such as Co, Cr, Cu, Li, Ni, Zn, Zr, V, Rb and Sr. Results of Al2O3, MnO, TiO2 total alkali content, MgO/ΣFeO and K2O/Na2O ratios and AMF diagram indicate that these Pleistocene volcanic rocks belong to typical calalkaline rock series. Detailed study of the trace elements reveals that these volcanic rocks are closely correlated with rocks of continental margin type with respect to Rb, Cu, Co, Ni, V and Cr contents, and K/Rb and Ni/Co ratios. These rocks are most probably derived from the fractionation of basaltic magma controlled mainly by the crystallization of amphibole and plagioclase with magnetite playing a minor role.  相似文献   

19.
Antifouling paint residues collected from the hard-standings of a marine leisure boat facility have been chemically characterised. Scanning electron microscopy revealed distinct layers, many containing oxidic particles of Cu and Zn. Quantitative analysis indicated concentrations of Cu and Zn averaging about 300 and 100 mg g−1, respectively, and small proportions of these metals (<2%) in organometallic form as pyrithione compounds. Other trace metals present included Ag, Cd, Cr, Ni, Pb and Sn, with maximum concentrations of about 330, 75, 1200, 780, 1800 and 25,000 μg g−1, respectively. Estuarine sediment collected near a boatyard contained concentrations of Cu and Zn an order of magnitude greater than respective concentrations in “background” sediment, and mass balance calculations suggested that the former sample was contaminated by about 1% by weight of paint particles. Clearly, antifouling residues represent a highly significant, heterogeneous source of metallic contamination in the marine environment where boating activities occur.  相似文献   

20.
Temporal trends in metal concentrations, i.e. Ag, Cd, Cu, Cr, Hg, Ni, Pb and Zn, measured in soft tissues of Mytilus galloprovincialis mussels and Crassostrea gigas oysters collected from estuarine waters within the Basque Country (Bay of Biscay), have been investigated to determine if actions undertaken have improved the environmental quality of rivers and estuaries. Data compiled between 1990 and 2010 have been analysed statistically, applying the Mann–Kendall and the Mann–Whitney–Wilcoxon tests. Moreover, in those cases with significant trends, the Kolmogorov–Zurbenko Adaptive (KZA) filter was applied to detect abrupt changes. Results showed significant decreasing trends for some metals, i.e. Ni, Cu, Pb and Zn, and differences between medians. Trend lines showed abrupt changes occurring between 1998 and 2002. Therefore, observed downward trends were related to increased wastewater treatment and diversions of discharges to ocean, implemented mainly during 2000–2002.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号