首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
为了去除矿井水中多种污染物,建立了"采空区+常规处理+深度处理"的井上下联合处理工艺组合。结果表明:受煤矿顶板含水层水岩作用,矿井水中Cl-、SO42-和Fe离子出现了超标现象,有的甚至达到Ⅴ类地下水标准;溶解性有机质含量较低,以大分子和芳香族化合物为主。采空区主要利用其顶板岩石破碎充填物吸附过滤矿井水中悬浮物,对Fe离子和有机质也有一定的处理效果,Fe离子去除率约20%,TOC和UV254的平均去除率分别为67.45%和65.40%。常规处理工艺对F-的去除率为11.90%~35.21%,铁锰离子则完全被去除;由于前端好氧沉淀池,硝酸盐和有机质含量略有升高,其中增加的有机质主要为溶解性微生物代谢产物。深度处理工艺对常规离子、硝酸盐、氟离子、有机质等有较好的去除效果,去除率均在95%以上。总体上,在采空区和常规处理工艺去除悬浮物和部分污染物的基础上,再利用深度处理工艺完成绝大部分污染物的去除,是一套比较有效的矿井水处理工艺组合。   相似文献   

2.
煤矿酸性矿井水是煤矿开采中由于硫铁矿与空气、水接触,在微生物作用下经过一系列地球化学反应产生的一种危害矿井生产、破坏生态环境的有害矿井排水.本文结合酸性矿井水的危害、形成原因,阐述了酸性矿井水的处理方法.  相似文献   

3.
凉水井煤矿利用矿区山地沟谷地形,采用平峒配斜井多井口开采生产。矿井涌水量不大,但受季节降水量控制,水质酸性较高,特别在开采中、下煤组区及小井时,矿坑酸性水浓度更高,pH值在2—4之间。经过数年来开采及排放矿井水,对矿坑酸性水的成因、变化规律有了初步认识,并采取了相应的有效处理及排放措施,保证了矿井的正常生产。   相似文献   

4.
煤矿区矿井水处理及资源化利用是实现煤炭工业高质量发展与矿区生态文明建设双重目标的重要推力。在全球水资源短缺与生态环境保护的约束下,矿井水作为一种非常规水资源,其大规模处理与高效利用是未来发展的必然选择。文中从煤矿区矿井水水质特征出发,全面论述了矿井水水质形成机制与水质评价方法,并将矿井水水质形成划分为含水层水–岩作用和采空区水–岩作用2个阶段。系统分析了国内外含悬浮物矿井水、高矿化度矿井水、酸性矿井水及含特殊组分矿井水处理技术优缺点,重点阐述了含悬浮物矿井水高效旋流净化、高矿化度矿井水双极膜和膜蒸馏处理、酸性矿井水人工湿地处理的新技术。在总结国内外矿井水资源化利用现状的基础上,阐明了矿井水资源化利用的途径主要包括工业生产用水、生态用水、生活用水及热能利用4种。最后,提出了目前我国煤矿区矿井水处理及资源化利用存在的问题及科学思考,建立了矿井水处理及资源化利用概念模型,通过不断推进矿井水处理及资源化利用技术研发,提高矿井水资源综合利用率,解决煤矿区水资源供需矛盾,促进社会经济增长、煤炭资源开发与矿区生态文明建设三者之间的协同发展。  相似文献   

5.
矿坑水净化处理与利用   总被引:4,自引:0,他引:4  
本文论述了矿坑水的净化处理方法与工艺流程,主要处理方法有混凝,沉淀,过滤及消毒,不同水质特点应选用不同的处理方法和工艺流程,最后通过实例说明了矿坑水净化处理与利用,具有明显的社会效益,经济效益和环境效益。  相似文献   

6.
通过对榆神府区矿井水样进行测试、分析,选取总硬度、氟化物、氯化物、硫酸盐、硝酸盐、锌、砷、汞、锰、六价铬、矿化度11项因子作为评价因子,依据《地下水质量标准》(GB/T14848-93),运用模糊综合评判法对研究区水质进行了合理评价。研究结果表明:榆阳区矿井水水质较好,说明煤矿开采对地下水水质影响不大,神府矿区矿井水水质较差,为矿区矿井水的污染治理和综合利用提供了依据。  相似文献   

7.
应用离子比例系数法分析了峰峰矿区东部地下水化学成分特征,结合含水层岩性条件,为水文地球化学模拟中“可能矿物相”的确定提供依据;采用PHREEQC软件对含水层中水-岩作用进行水文地球化学模拟,模拟计算出饱和指数,通过质量平衡模拟计算水-岩作用过程中主要矿物相的转化量。结果表明:方解石和白云石处于饱和状态,在适当的条件下会沉淀,而岩盐、石膏处于未饱和的状态,在适当的条件下将继续溶解。沿地下水流路径,从五矿奥灰水-一矿奥灰水-一矿副井水,地下水系统中白云石、岩盐、石膏溶解,方解石沉淀,且发生了阳离子交换作用。研究矿井水中水-岩相互作用,初步探讨废弃矿井水文地球化学演化机制,对分析矿井水文地球化学演化的影响因素有重要作用。   相似文献   

8.
为解决矿井水排放对周边环境和地下水水质的污染,对矿区水文地质资料进行了认真分析,认为梧桐庄矿井位于鼓山东南端的停滞区,属基本封闭的地垒块段,含水层基本处于停滞状态,具备回注储存高矿化度矿井水的地质构造条件。在选定区内建凿大口径回注井组,将经地面水处理厂多级处理后达标的矿井水,通过管网系统分级配送利用、回注储存,用于矿井生产、生活及农田灌溉。该工艺技术解放煤炭资源3 900万t,实现了水资源循环利用,达到了节能减排,保护生态环境的目的。  相似文献   

9.
李婧  刘娜  马臻  晋日亚 《世界地质》2011,30(1):132-137
煤泥水难于自然沉降。通过煤泥水性质分析和混凝效果对比实验,选择PAC--NPAM 联用处理煤泥水。正交试验具体分析凝聚剂投加量、絮凝剂投加量、搅拌速度和搅拌时间对混凝法处理煤泥水的影响,得出最佳工艺条件; 即: 采用PAC--NPAM 混凝法处理煤泥水有较好的效果,COD 和SS 的去除率均> 95%,处理后水质的各项指标均能达到国家相关排放标准,且能满足洗煤工艺的用水要求。  相似文献   

10.
铅锌矿选矿过程中,由于选矿药剂加入,使得选矿废水含有有机物和重金属元素,水质需要采用对有机物削减和重金属脱除的处理工艺,才能达到《铅、锌工业污染物排放标准》(GB25466-2010),取原水pH值为11.00,COD为300mg·L-1,Pb2+为30.0mg·L-1进行试验研究,用混凝沉淀再加吸附两段工艺可使废水达到《铅、锌工业污染物排放标准》(GB25466-2010),单用混凝沉淀可以削减废水中有机物和脱除重金属,但出水不能达到《铅、锌工业污染物排放标准》(GB25466-2010)。  相似文献   

11.
宋凯  李晓  吴方燕 《地下水》2011,(1):106-108
渗滤取水净水机理主要是利用砂砾石层表面的泥膜及砂砾石层本身过滤作用、吸附作用,微生物的降解作用达到去除水中的悬浮物质、降低水的浊度、除菌的效果。以湖北浠水南城水厂渗滤取水工程为例,通过对渗滤工程特点和水质监测数据的研究,分析天然河床渗滤水水质及水源水水质的差异,以及渗滤水水质的可靠度。  相似文献   

12.
Use of horizontal flow roughing filtration in drinking water treatment   总被引:1,自引:0,他引:1  
In order to evaluate the feasibility of implementation of horizontal-flow roughing filtration for drinking water treatment a pilot was designed and run at the bank of Zayandehroud river near the village of Chamkhalifeh. Pilot running was performed in summer 2003 (July, August and September), when the quality of river water was in relatively worst condition. The filter is comprised from three different parts which are separated with perforated baffles. Each compartment is filled with some local sand and gravel considering a special decreasing size regime. The overall function of the filter in removing turbidity and total suspended solids is acceptable. Additionally, iron, manganese and color and coliform removal are also been covered to some extent. Achieved results in this study shows that horizontal-flow roughing filtration may be considered as a packed, low-cost and efficient pretreatment process incase surface water is used as water supply for treatment. Furthermore, when small scale societies are considered and when no major pollutants exist in the water supply as the case in this study_ this system may be posed as a total treatment system, in which treated water exited from the filter may be sent to distribution network after a simple post chlorination.  相似文献   

13.
Reusing reclaimed wastewater from lakes has become one of the most effective measures to relieve the urban ecological crisis. However, reclaimed wastewater still contains large amounts of nutrient salts, trace organic pollutants, suspended solid particles and microorganisms, which may significantly affect the aquatic ecosystems. The health of aquatic ecosystems can be directly and effectively monitored by evaluating the biofilms in them, because the structures of biofilms are directly affected by multiple environmental factors. Therefore, it is important to study the structures of biofilms attached on multiple medium surfaces in river-lake systems that contain reclaimed wastewater. In this study, the paper applied scanning electron microscope (SEM) technology and fractal theory to quantitatively describe the structural characteristics of biofilms attached on the medium surfaces of aquatic plants and gravels in the Lianshi Lake of Beijing Yongding River and other two kinds of reclaimed water of the river-lakes, whose sewage treatment processes were the combined process of deposit and sand filtration and UF membrane filtration, plus anaerobic-anoxic-oxic process, respectively. The paper found that these two types of biofilms were typical porous media and their basic skeletons were mainly composed of inorganic particles, microorganisms, and algae. Furthermore, most areas between the particles were filled with extracellular polymers (EPS) secreted by bacteria. At the same time, these biofilms showed obvious fractal and multifractal characteristics, but the fractal dimensions alone failed to effectively describe the complexity of biofilm structures. The multifractal spectra were able to quantitatively characterize the biofilms’ heterogeneity. In addition, the number of microorganism species, the quantity and the heterogeneity of aquatic plants’ surface biofilms were all higher than those of gravel surface biofilms, most likely due to the effects of light. In addition, the heterogeneity of biofilms in reclaimed water treated by the combined process of deposit and sand filtration and UF membrane filtration plus anaerobic-anoxic-oxic process was higher than that of biofilms in reclaimed water treated by traditionally activated sludge process (Lianshi Lake’s water). Besides, the non-uniformity of biofilms in reclaimed water treated by combined process of deposit and sand filtration was higher than that of biofilms in reclaimed water treated by UF membrane filtration plus anaerobic-anoxic-oxic process.  相似文献   

14.
The origin of high dissolved manganese concentrations in slightly acidic mine runoff from a surface mine operated by the Cumberland Coal Company in eastern Tennessee was investigated. Mineralogical and chemical analyses were performed on 31 samples of sandstone, shale, coal, and mudstone from the mine to identify the sources and stratigraphic distribution of high extractable manganese contents in the spoil materials. The samples were analyzed for their bulk mineral content by X-ray diffraction, net acid-base potential, and reaction to 2 or 4 chemical extraction procedures. A limited number of samples were analyzed for petrographic characteristics, clay mineral composition by X-ray diffraction, and mineral compositions by electron microprobe. Analysis of the data and consideration of the geochemical conditions at the mine were used to identify probable sources for the high extractable manganese contents.The results indicate 2 prominent, independent sources of extractable manganese. The first source is exchangeable manganese on clay minerals (mainly illite + muscovite and chlorite) and is concentrated in shale and mudstone rock types. The second and more significant source is manganese in siderite concretions and cement, mainly in shale and mudstone. Comparison to other coal-bearing strata indicates that manganese-rich siderite is common in fresh- to brackish-water subaqueous sediments that overlie coal. This is especially the case for coals formed in wet, tropical environments.Ratios of manganese to calcium and magnesium in mine runoff suggest that manganese from siderite is the major cause of the high dissolved manganese contents. A conceptual model is developed to explain the high manganese contents of the mine runoff. Oxidation of pyrite creates mildly acidic waters that are subsequently partially neutralized by reaction with impure siderite. Solubilized manganese remains dissolved in the slightly acidic runoff water, whereas dissolved iron precipitates as ferric hydroxide or goethite. Consideration of data from other coal mining regions suggests that similar reactions involving impure siderite may be responsible for high manganese concentrations in acidic to slightly acidic mine runoff. Geochemical reaction path modeling of pyrite and impure siderite with rainwater illustrate how resulting water compositions may vary depending on pyrite to siderite ratios in spoil materials. Spoil water compositions from the Cumberland mine are largely consistent with reaction of pyrite and impure siderite in proportions observed in the sediments; however, deviations may be explained by minor mixing with waters that reacted only with impure siderite or clay mineral exchange reactions.  相似文献   

15.
Datangpo-type sedimentary manganese deposits, which are located in northeastern Guizhou province and its adjacent areas, are Mn carbonate-type deposits hosted in black carbonaceous shale that represent a series of medium to large deposits containing a huge tonnage of reserves. PAAS-normalized rare earth element distribution patterns of manganese ores record “hat-shaped” REY (REE + Y) plots characterized by pronounced middle rare earth element enrichment, evident positive Ce anomalies, weak to strong positive Eu anomalies and negligible negative Y anomalies. These REY geochemical characteristics are different from those of country rocks and record the processes and features of sedimentation and diagenesis. Manganese was precipitated as Mn-oxyhydroxide particles in oxidized water columns with the sorption of a certain amount of rare earth elements, subsequently transforming from Mn-oxyhydroxides to rhodochrosite and redistributing REY in reducing alkaline pore-water during early diagenesis. A number of similarities can be observed through a comparison of Datangpo-type manganese ores and modern marine ferromanganese oxyhydroxide precipitates based on their rare earth elements. The precipitation of Datangpo-type manganese ores is similar to that of hydrogenetic crusts and nodules based on their positive Ce anomalies and relatively higher total REY concentrations. However, several differences also exist. Compared to hydrogenetic crusts and nodules, Datangpo-type manganese ores record smaller positive Ce anomalies, lower total REY concentrations, unobvious fractionation between Y and Ho, and weak to strong positive Eu anomalies. These were caused by quicker sedimentary rates in the oxic water columns of the shallower basin, after which pore water became strongly reducing and alkaline due to the degradation of organic matter in the early diagenetic stage. In addition, compared to typical deposits in the world, Datangpo-type manganese ores are similar to hydrogenetic deposits and different than hydrothermal deposits. All of these characteristics of manganese ores indicate that Datangpo-type manganese ores, the principal metallogenic factors of which include oxidation conditions during deposition and reducing conditions during early diagenetic stages, represent hydrogenetic deposits.  相似文献   

16.
矿山采出水的处理与利用   总被引:1,自引:0,他引:1  
广西田东煤矿矿区使用梳理式DDSL过滤技术,对在矿山建设了给水处理工程,既实现了偏僻山区生活给水的集成化、高效化,也实现了就地利用矿山矿井水,减少了水处理基建工程费用,保护了地表环境。达到了节能减排、提高经济效益和水资源合理利用的目的。  相似文献   

17.
《Applied Geochemistry》1995,10(3):285-306
Inflows of metal-rich, acidic water that drain from mine dumps and tailings piles in the Leadville, Colorado, area enter the non-acidic water in the upper Arkansas River. Hydrous iron oxides precipitate as colloids and move downstream in suspension, particularly downstream from California Gulch, which has been the major source of metal loads. The colloids influence the concentrations of metals dissolved in the water and the concentrations in bed sediments. To determine the role of colloids, samples of water, colloids, and fine-grained bed sediment were obtained at stream-gaging sites on the upper Arkansas River and at the mouths of major tributaries over a 250-km reach. Dissolved and colloidal metal concentrations in the water column were operationally defined using tangential-flow filtration through 0.001-pm membranes to separate the water and the colloids. Surface-extractable and total bed sediment metal concentrations were obtained on the <60-μm fraction of the bed sediment. The highest concentrations of metals in water, colloids, and bed sediments occurred just downstream from California Gulch. Iron dominated the colloid composition, but substantial concentrations of As, Cd, Cu, Mn, Pb, and Zn also occurred in the colloidal solids. The colloidal load decreased by one half in the first 50 km downstream from the mining inflows due to sedimentation of aggregated colloids to the streambed. Nevertheless, a substantial load of colloids was transported through the entire study reach to Pueblo Reservoir. Dissolved metals were dominated by Mn and Zn, and their concentrations remained relatively high throughout the 250-km reach. The composition of extractable and total metals in bed sediment for several kilometers downstream from California Gulch is similar to the composition of the colloids that settle to the bed. Substantial concentrations of Mn and Zn were extractable, which is consistent with sediment-water chemical reaction. Concentrations of Cd, Pb, and Zn in bed sediment clearly result from the influence of mining near Leadville. Concentrations of Fe and Cu in bed sediments are nearly equal to concentrations in colloids for about 10 km downstream from California Gulch. Farther downstream, concentrations of Fe and Cu in tributary sediments mask the signal of mining inflows. These results indicate that colloids indeed influence the occurrence and transport of metals in rivers affected by mining.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号