首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
俯冲板片形貌特征和活动大陆边缘演化体制的关系   总被引:7,自引:1,他引:7  
当大洋板块向大陆板块下俯冲时,上覆板块的边缘可以以沟—弧—盆体制发育,也可以不发育弧后拉伸盆地.为什么同属上覆板块边缘但可以这二种完全不同的体制演化是现代地球科学研究的一个热点.本文在查阅大量最新文献的基础上认为造成这二种不同演化体制除了与俯冲作用的年代学特征有关外还可能主要与俯冲板片的形貌不同所导致局部地幔对流方式不一有关.由于俯冲的倾角,俯冲达到的最大深度以及俯冲板片在670km上下地幔过渡带处保存的形态等因素不同,造成仰冲板块边缘之下软流圈对流方式不一.从而,造成弧体近陆一侧是否将发生岩石圈拉伸的动力学过程.  相似文献   

2.
当大洋板块向大陆板块下俯冲时,上覆板块的边缘可以以沟-弧-盆体制发育,也可以不发育弧后拉伸盆地,为什么同属上覆板块边缘但可以这二种完全不同的体制演化是现代地球科学研究的一个热点。本文在查阅大量最新文献的基础上认为造成这二种不同演化体制除了与俯冲作用的年代学特征有关外还可能主要与俯冲板片的形貌不同所导致局部地幔对流方式不一有关。由于俯冲的倾角,俯冲达到的最大深度以及俯冲板片在670km上下地幔过渡带  相似文献   

3.
西南太平洋板块与澳大利亚板块之间的汤加—克马德克俯冲带,是研究地球动力学最重要的区域之一.本文研究根据MIT-P08地震数据,结合板块构造边界、地震活动分布、海岸地形数据等,基于GOCAD软件平台建立三维地震层析成像,对西南太平洋板块的汤加—克马德克俯冲板片进行三维解释.地震层析成像显示汤加—斐济地区地幔至少存在三个"高速"异常体.早期汤加—克马德克俯冲板片穿过地幔转换带,并进入下地幔,最大深度达1600 km.三维构造模型揭示了汤加—克马德克板片在深度600~800 km处存在断折形变,该俯冲板片去褶皱恢复后,测量其俯冲的最大位移达2600 km.汤加—克马德克板片开始快速俯冲的时间至少在30 Ma之前,平均移动速率约为68~104 mm /a.俯冲板片三维构造重建和恢复,可以有效揭示俯冲板片几何学、运动学,为研究深源地震成因、地球深部变化过程和动力学机制提供约束.  相似文献   

4.
大陆克拉通岩石圈的减薄是一种常见现象,但是其破坏并不常见.尽管前人针对这两种过程开展了不少研究,但是对其动力学机制尚缺乏统一认识.文章以大陆克拉通岩石圈,尤其是华北克拉通作为研究对象,基于前人的地质地球物理学观测以及动力学数值模拟研究,对克拉通岩石圈减薄与破坏的过程和机制进行了系统的分析和总结.其中,华北克拉通减薄和破坏的动力学机制限定为与大洋板块俯冲相关的两种主要模式,分别是:(1)"自下而上"过程,即俯冲板片扰动富水的地幔转换带,使其中流体上涌,软流圈物质受到扰动而发生对流,对上覆岩石圈底部进行"烘烤",并可能伴随流体/熔体-岩石反应,改变岩石圈地幔的矿物组成和流变学性质,导致岩石圈底部物质混合进入软流圈而发生减薄乃至破坏.(2)"自上而下"过程,强调大洋板片在克拉通岩石圈底部平俯冲并发生脱水,水化蚀变上覆岩石圈地幔,降低岩石圈地幔岩石流变特性;随后平俯冲转变为陡俯冲,伴随软流圈侧向上涌,被弱化的岩石圈地幔由于热侵蚀作用而进入软流圈,从而发生减薄乃至破坏.这两大类过程都是比较复杂的、多过程耦合的模式,都把大洋板块的俯冲及其流体活动作为上覆克拉通岩石圈减薄/破坏的主要驱动机制;不同之处在于俯冲大洋板片的位置,一种是在地幔转换带的平卧与滞留,另一种是沿着克拉通岩石圈底部的平俯冲.对于华北克拉通而言,东部岩石圈在中生代时期受到古太平洋板片的俯冲,板块俯冲带对华北克拉通之下的地幔和转换带物质的扰动及其伴随的流体活动,很大程度上控制着华北克拉通岩石圈的改造.为了更好的探讨和对比这两种模式,其核心关键点在于大洋俯冲带中水的活动.因此,文章重点对含水矿物相变及俯冲带和地幔转换带中水的迁移过程进行了探讨,分析了大洋俯冲带中可能的流体活动模型、各自存在的问题及其可行性.此外,为了全面认识克拉通岩石圈的减薄与破坏机制,还对其他可能的机制进行了总结,包含以下四组模式:拉张减薄模型、挤压增厚拆沉模型、大尺度地幔对流侵蚀模型以及地幔柱侵蚀模型.相对于前面介绍的两种大洋俯冲相关模型,这四种模型主要是由相对简单的单一过程和机制所致(分别是拉张、挤压、对流和地幔柱),可能是华北克拉通减薄与破坏的二级驱动机制.  相似文献   

5.
智利三联点(CTJ)位于纳兹卡板块、南极洲板块与南美板块的交界处,由南极洲—纳兹卡板块之间的智利洋脊俯冲到智利海沟而形成.巴塔哥尼亚板片窗的发展是智利洋脊长期扩张俯冲的结果之一.随着纳兹卡板块的不断东向俯冲,纳兹卡板块范围逐渐变小,CTJ同时向北移动.本文采用数值模拟方法,建立了关于洋脊海沟碰撞的简单二维模型,来研究智利三联点南部扩张洋脊俯冲区域岩石层的热结构.模拟结果表明,洋脊的位置、板块相对汇聚速度及上覆大陆板块的存在均对俯冲区域海洋板块的温度结构有着很大影响,并且大陆板块下方海洋板块温度变化最大的位置距洋脊的水平距离与洋脊到板片窗范围的水平距离两者之间具有较好的一致性.同时,当存在两两板块间的相对汇聚时,洋脊右侧大陆板块下表面的温度升高,俯冲带内海洋板块温度接近于地幔温度.纳兹卡板块以7.8 cm·a~(-1)的速度急速俯冲于南美板块之下的过程中,同时伴随着智利洋脊的持续扩张俯冲,在智利三联点南部,南美板块之下纳兹卡板块的温度因而可以更快地达到地幔软流层的约1300℃温度,并最终消亡于地幔之中.  相似文献   

6.
板块构造是指地球外壳岩石圈块体在地球表面的(水平)运动及其相互作用.自50年前板块构造理论建立以来,对板块运动的动力来源这一问题一直存在争议.早期的观点认为是"自下而上"机制,即板块运动受控于板块之下的地幔对流系统,特别是起源于核幔边界的地幔柱作用于板块底部,促使大陆裂解,并驱动板块运动.而现今较为普遍接受的观点则是"自上而下"机制,即认为板块运动的驱动力主要来源于板块自身的负浮力(即重力大于浮力),板块构造和地幔对流均受控于板块的俯冲作用,因此板块构造又被称为俯冲构造.这一观点得到了众多地质和地球物理观测的支持.进一步研究表明,个别板块增速、减速与单一地幔柱活动在百万年时间尺度具有耦合关系;多个板块内稳定克拉通地区地表隆升、沉积速率与地幔柱相关的岩浆活动在亿年时间尺度存在时空相关性;而全球范围的超大陆聚合、裂解与超级地幔柱活动在二十亿年以来的地质历史时期表现为周期性耦合关系.这些不同时空尺度的耦合现象均表明,板块构造与地幔柱构造在地球演化过程中是紧密联系、相互作用的,地幔柱构造对板块运动产生了不可忽视的影响.因此,需要将板块构造和地幔柱构造这两大地球构造体系加以联合,开展综合分析与研究,才能获得对板块构造和整个地球动力系统运行机制的全面认识.  相似文献   

7.
俯冲带是理解地球内部物质循环和能量交换、大陆岩石圈演化、地震和火山活动及矿产资源分布等的重要环节.本文聚焦于西北太平洋俯冲带,通过汇集多种地震观测研究结果,清晰地揭示了由日本海沟至中国东北的俯冲板片整体活动图像,即整个西北太平洋俯冲板片的主压应力轴一致地稳定在俯冲方向上,俯冲板片上深浅部的显著地震活动存在密切的关联性;俯冲板片深处的亚稳态橄榄岩楔形区及其周边是深源地震多发区,深源地震可能是由亚稳态橄榄岩楔形区内的相变断层开始破裂的;在410~660 km深的地幔过渡带内处观测到的俯冲板片上下界面,揭示了俯冲板片的层状组分结构和板块下侧的高含水量.为更好地约束日本海下方的俯冲板片结构和深入探讨西太平洋的俯冲动力作用,有待于在全球罕有的大陆深部不断发生深震的西北太平洋俯冲区,开展海陆联合的地球物理探测及岩石高温高压实验和地球动力学模拟等研究.  相似文献   

8.
俯冲过程是板块构造运动的核心过程,而地幔楔作为俯冲系统中连接俯冲盘和仰冲盘的关键构造单元,在地球层圈之间物质循环和能量交换等方面发挥了重要作用.本研究汇总了全球代表性俯冲带橄榄岩(包括俯冲带型蛇绿岩和地幔楔型造山带橄榄岩)的研究现状,并展望未来需要解决的关键科学问题.俯冲带型蛇绿岩地幔单元和地幔楔型造山带橄榄岩分别代表着大洋和大陆俯冲带侵位的地幔岩石,是研究俯冲带壳幔相互作用的关键对象.该相互作用的本质是俯冲板片和地幔楔之间在物理过程主控下发生复杂的化学交换作用.俯冲带型蛇绿岩能够记录从大洋岩石圈产生到俯冲启动直至成熟到消亡等不同阶段复杂的熔-岩和水-岩相互作用、变形变质过程、金属成矿元素富集以及壳幔物质交换等.地幔楔型造山带橄榄岩则反映洋-陆和陆-陆俯冲/碰撞、折返等阶段强烈的变形变质历史,多种性质的熔/流体交代作用(硅酸盐熔体、碳酸盐熔体、含硅酸盐组分的C-H-O流体/超临界流体),以及复杂的壳幔物质循环过程等.利用俯冲带橄榄岩进一步探索壳幔相互作用,需要采用高空间分辨率、高精度的测试方法从微观尺度上约束复杂的化学交代过程和变质变形历史,并与宏观构造的时、空演化相联系.  相似文献   

9.
中国东北地区处于古亚洲构造域、蒙古—鄂霍茨克构造域和环太平洋构造域叠加作用最为显著的地区,是地学研究的热点区域.为了探析欧亚大陆下西太平洋板片的俯冲形态以及揭示该区域深部地球动力学机制,利用卫星重力数据通过预处理共轭梯度快速密度反演算法获得了包含东北地区、华北部分地区及日本海海域在内的研究区域上地幔三维密度结构,结合天然地震三维层析成像结果共同揭示太平洋板片的俯冲形态和深部动力机制.俯冲的太平洋板片在日本海沟处呈高密度异常,向西横向持续扩张,深度方向上有逐渐增加趋势.不连续的高密度体俯冲至地幔转换带(410~660km)后继续水平西向俯冲,部分滞留板片可能进入下地幔;在大兴安岭断裂带下面转换带中同样发现水平分布的高密度体,推断是大兴安岭断裂带下方地幔岩石圈拆沉的结果,横向不均匀分布的俯冲板片边缘已抵至大兴安岭造山带附近,这对于研究东北地区深部动力学机制具有重要的意义.  相似文献   

10.
西太平洋板块向我国东北地区深部俯冲的数值模拟   总被引:6,自引:3,他引:3       下载免费PDF全文
本文采用依赖温度的黏度结构以及考虑海洋板块和大陆板块厚度差异等特征,以太平洋板块向欧亚板块会聚速率作为板块速度的主要约束,通过变化海沟后撤速度模型,数值模拟西太平洋板块向中国东北的俯冲过程.结果表明,要产生类似于中国东北之下低角度的板片俯冲,海沟后撤是重要条件;而上下地幔黏度的较大差异是决定俯冲板片不穿透660 km相变面的决定因素;西太平洋板块向欧亚板块的俯冲应早于70 Ma B.P.,海沟后撤速度可能小于一些地质学家估计的45 mm/a, 而且可能是分阶段变化的;速度场表明运动学模型的反过程:大陆岩石圈之下物质的不断水平向东的流动和推挤可能成为海沟后撤的力源之一,地幔物质的这种东向流动可能与印度板块挤压碰撞欧亚板块有关,沿欧亚板块东缘的扩张构造可能是太平洋-欧亚板块运动和印度-欧亚板块运动的综合效应.  相似文献   

11.
The continental plate collision across the South Island of New Zealand is highly oblique (dextral) and bounded by oppositely verging ocean plate subduction zones. As such, the region can be considered as a type of ‘subduction scissor’. Within this tectonic context, we use three-dimensional computational geodynamic models to consider how convergent mantle lithosphere can be modified by scissor and strike–slip effects. Bounding subduction at both ends of the continental collision causes flow of the descending mantle lithosphere in the direction along strike of the model plate boundary, with thinning in the centre and thickening towards the subduction zones that bifurcates the continental mantle lithosphere root. With dipping bounding subduction, the mantle lithosphere root takes on a more complex morphology that folds over from one subduction polarity to the other, but remains as a continuous feature as it folds under the collision zone. In the absence of bounding subduction, the plate convergence causes a linear (along strike) mantle lithosphere root to develop. A rapid strike–slip motion between the converging plates transfers material in the plate boundary-parallel direction and tends to blur out features that develop in this direction—such as descending viscous instabilities. The along-strike variations in the morphology of the mantle lithosphere root that develop in the models—viz., thickening of the root towards the subduction edges, thinning in the centre—are consistent with recent, albeit poorly constrained, geophysical interpretations of the large-scale lithospheric structure of the South Island. We speculate that this reflects the nature of the evolution of the South Island collision as a limited continental segment of the plate boundary that it is dominated and guided by adjacent well-developed/developing ocean plate subduction.  相似文献   

12.
本文通过地震层析成像研究获得了华北克拉通及其东邻地区(30°N-50°N,95°E -145°E)1°×1°的P波速度扰动图像.结果显示,在西太平洋俯冲带地区,上地幔中西倾的板片状高速异常体与其上方的低速异常区构成俯冲带与上覆地幔楔的典型速度结构式样.俯冲板片高速体在约300~400 km深度范围内被低速物质充填,暗示俯冲板片可能发生了断离.在华北克拉通地区的上地幔中发现三个东倾排列的高速异常带.在此基础上,本文构建了华北克拉通及其东邻西太平洋活动大陆边缘地区的上地幔速度结构模式图,并据此探讨克拉通岩石圈减薄与西太平洋活动大陆边缘的深部动力学联系.本文认为,太平洋板片的俯冲(断离),触发热地幔物质上涌并在上覆地幔楔中形成对流,使克拉通岩石圈受到改造(底侵与弱化).随着俯冲板片后撤,地幔楔中的对流场以及对岩石圈改造的影响范围均随之东移,最终导致华北克拉通岩石圈自下而上、从西向东分三个阶段依次拆沉减薄.这一模式能很好地解释现今克拉通岩石圈自西向东呈台阶状减薄的深部现象.  相似文献   

13.
杨亭  傅容珊  黄川  班磊 《地球物理学报》2014,57(4):1049-1061
在地球表层存在着占地表面积约30%的具有低固有密度、高黏度的大陆岩石圈.由于其特殊的物理化学性质,大陆岩石圈通常不直接参与下方的地幔对流,但其与地幔对流格局有着重要的相互影响.大量研究显示,在中太平洋和非洲的下地幔底部,存在着两块占核幔边界(CMB)面积约20%的高密度热化学异常体(由于其剪切波速度较低,常称作低剪切波速度省(LSVPs)).LSVPs的演化既受地幔对流的影响,同时也影响地幔物质运动的格局和动力学过程.本文系统研究了存在大陆岩石圈,下地幔LSVPs的地幔对流模型.模拟结果显示:(1)当大陆体积较小时,其边缘常伴随着俯冲,大陆区域地幔常处于下涌状态,其上地幔温度较低,大陆岩石圈在水平方向处于压应力状态.随着大陆体积的增大,大陆边缘的俯冲逐渐减弱,大陆区域地幔由下涌转为上涌,其上地幔温度较高,大陆岩石圈水平方向处于拉应力状态.(2) 岩石圈与软流圈边界(LAB)在大陆下方较深,温度较低;在海洋区域较浅,温度较高.随着大陆体积的增大,陆洋之间LAB深度、温度的差异逐渐减小.(3)大陆区域地幔底部LSVPs物质的丰度与大陆的体积呈正相关.当大陆体积较小时,大陆下方的LSVPs丰度比海洋区域少.随着大陆体积的增大,大陆下方LSVPs的丰度逐渐增大.(4)海洋地区地表热流高,且随时间波动大,大陆地区地表热流低,随时间波动较小;LSVPs区域的核幔边界热流低.  相似文献   

14.
Thermo-mechanical physical modelling of continental subduction is performed to investigate the exhumation of deeply subducted continental crust. The model consists of two lithospheric plates made of new temperature sensitive analogue materials. The lithosphere is underlain by liquid asthenosphere. The continental lithosphere contains three layers: the weak sedimentary layer, the crust made of a stronger material, and of a still stronger lithospheric mantle. The whole model is subjected to a constant vertical thermal gradient, causing the strength reduction with depth in each lithospheric layer. Subduction is driven by both push force and pull force. During subduction, the subducting lithosphere is heating and the strength of its layers reduces. The weakening continental crust reaches maximal depth of about 120 km and cannot subduct deeper because its frontal part starts to flow up. The subducted crust undergoes complex deformation, including indicated upward ductile flow of the most deeply subducted portions and localised failure of the subducted upper crust at about 50-km depth. This failure results in the formation of the first crustal slice which rises up between the plates under the buoyancy force. This process is accompanied by the delamination of the crustal and mantle layers of the subducting lithosphere. The delamination front propagates upwards into the interplate zone resulting in the formation of two other crustal slices that also rise up between the plates. Average equivalent exhumation rate of the crustal material during delamination is about 1 cm/year. The crust-asthenosphere boundary near the interplate zone is uplifted. The subducted mantle layer then breaks off, removing the pull force and thereby stopping the delamination and increasing horizontal compression of the lithosphere. The latter produces shortening of the formed orogen and the growth of relief. The modelling reveals an interesting burial/exhumation evolution of the sedimentary cover. During initial stages of continental subduction the sediments of the continental margin are dragged to the overriding plate base and are partially accreted at the deep part of the interplate zone (at 60-70 km-depth). These sediments remain there until the beginning of delamination during which the pressure between the subducted crust and the overriding plate increases. This results in squeezing the underplated sediments out. Part of them is extruded upwards along the interplate zone to about 30-km depth at an equivalent rate of 5-10 cm/year.  相似文献   

15.
P-wave arrival times of both regional and teleseismic earthquakes were inverted to obtain mantle structures of East Asia.No fast(slab) velocity anomalies was not find beneath the 660-km discontinuity through tomography besides a stagnant slab within the transition zone.Slow P-wave velocity anomalies are present at depths of 100-250 km below the active volcanic arc and East Asia.The western end of the flat stagnant slab is about 1 500 km west to active trench and may also be correlated with prominent surface topographic break in eastern China.We suggested that active mantle convection might be operating within this horizontally expanded "mantle wedge" above both the active subducting slabs and the stagnant flat slabs beneath much of the North China plain.Both the widespread Cenozoic volcanism and associated extensional basins in East Asia could be the manifestation of this vigorous upper mantle convection.Cold or thermal anomalies associated with the stagnant slabs above the 660-km discontinuity have not only caused a broad depression of the boundary due to its negative Clapeyron slope but also effectively shielded the asthenosphere and continental lithosphere above from any possible influence of mantle plumes in the lower mantle.  相似文献   

16.
The average secular cooling rate of the Earth can be deduced from compositional variations of mantle melts through time and from rheological conditions at the onset of sub-solidus convection at the end of the initial magma ocean phase. The constraint that this places on the characteristics of mantle convection in the past are investigated using the global heat balance equation and a simple parameterization for the heat loss of the Earth. All heat loss parameterization schemes depend on a closure equation for the maximum age of oceanic plates. We use a scheme that accounts for the present-day distribution of heat flux at Earth's surface and that does not depend on any assumption about the dynamics of convection with rigid plates, which remain poorly understood. We show that heat supply to the base of continents and transient continental thermal regimes cannot be ignored. We find that the maximum sea floor age has not changed by large amounts over the last 3 Ga. Calculations lead to a maximum temperature at an age of about 3 Ga and cannot be extrapolated further back in time. By construction, these calculations are based on the present-day tectonic regime characterized by the subduction of large oceanic plates and hence indicate that this regime did not prevail until an age of about 3 Ga. According to this interpretation, the onset of rapid continental growth occurred when the current plate regime became stable.  相似文献   

17.
大陆岩石圈流变学是固体地球科学领域的基本问题,也是理解大陆变形的动力学过程和构造演化史的关键.本文对近年来大陆岩石圈流变学的研究进展进行了综述.重点讨论大陆岩石圈流变学的纵向分层和横向分块特性及流变学与地震活动性、壳-幔解耦及下地壳流动变形的地球动力学意义和中国大陆地区岩石圈流变学研究状况.最后,对大陆岩石圈流变学研究存在的问题和未来的研究方向做了一定的探讨和展望.  相似文献   

18.
We report a new model of the upper mantle structure beneath Italy obtained by means of P-wave teleseismic tomography. Besides the recent and remarkable development of the Italian Seismic Network, a high model resolution has been achieved improving the inversion method upon the ACH method used in previous investigations and picking high quality arrival times with the Multi-Channel Cross-Correlation technique. The finer details of our Vp model yield new insights into the heterogeneous structure of the Adria continental lithosphere involved in the collision between the Africa and Europe plates. A wide low Vp anomaly located in the northern Adria mantle, facing the Alpine high Vp slab, supports the idea that the Adria lithosphere has been hydrated and thinned during the Alpine subduction. We argue that this mantle softening may have played a key role in favoring the subsequent delamination of the Adria lithosphere in the northern Apennines. We hypothesize that delamination of continental lithosphere previously thinned in a back-arc setting may be considered a key process to favor subduction polarity reversal and recycling of continental material into the mantle circulation. Conversely, in the central-southern Apennines, the velocity structure is consistent with the existence of a deeper oceanic slab that flattens at the base of the upper mantle, in agreement with the widely accepted geodynamic evolution of the central Mediterranean by slab retreat and back-arc spreading. The oceanic slab is discontinuously detached from the surface plate, suggesting a different structure of the Adria lithosphere, which resists subduction instead of favoring delamination.  相似文献   

19.
An increasing number of seismological studies indicate that slabs of subducted lithosphere penetrate the Earth's lower mantle below some island arcs but are deflected, or, rather, laid down, in the transition zone below others. Recent numerical simulations of mantle flow also advocate a hybrid form of mantle convection, with intermittent layering. We present a multi-disciplinary analysis of slab morphology and mantle dynamics in which we account explicitly for the history of subduction below specific island arcs in an attempt to understand what controls lateral variations in slab morphology and penetration depth. Central in our discussion are the Izu-Bonin and Mariana subduction zones. We argue that the differences in the tectonic evolution of these subduction zones—in particular the amount and rate of trench migration—can explain why the slab of subducted oceanic lithosphere seems to be (at least temporarily) stagnant in the Earth's transition zone below the Izu-Bonin arc but penetrates into the lower mantle below the Mariana arc. We briefly speculate on the applicability of our model of the temporal and spatial evolution of slab morphology to other subduction zones. Although further investigation is necessary, our tentative model shows the potential for interpreting seismic images of slab structure by accounting for the plate-tectonic history of the subduction zones involved. We therefore hope that the ideas outlined here will stimulate and direct new research initiatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号