首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Shin‐Jen Cheng 《水文研究》2010,24(20):2851-2870
This study explores the hydrograph characteristics of quick and slow runoffs in watershed outlet hydrographs. The quick and slow runoffs were modelled using a conceptual model of three linear cascade reservoirs that have exponential decay response expressions. Mean rainfall for model inputs was estimated using the block Kriging method. The 107 storms during the 1966–2008 events were classified as large, medium and small events according to the observed streamflow. The optimal hydrograph parameters for 61 rainfall‐runoff events were calibrated using the shuffled complex evolution optimal algorithm. The efficacy of the model was verified using the seven averaged parameters of three types of 46 events and was compared with three evaluation criteria resulting from the Nash model. The 61 calibrations were used to analyse and compare the characteristics of quick and slow flows in early and later periods (1966–2002 and 2003–2008). Finally, the following five conclusions were obtained: (1) The base time of a slow runoff hydrograph is the same as that of a total runoff hydrograph. (2) A quick runoff with a long period occurs when soil antecedent moisture is low and with a short period under a high value. (3) The time to peak of hydrograph components is directly proportional to peak time of a hyetograph; the time to peak of quick and slow flows is about 0·97 and 1·12 times the peak time of a hyetograph, respectively. (4) The peak of hydrograph components is relative to a total runoff hydrograph; the percentages for quick runoff are approximately 71% and 13% for slow flow. Finally, (5) the volume of a quick runoff component is 49% of a total runoff volume and 37% for a slow runoff volume. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
The transferability of hydrologic models is of ever increasing importance for making improved hydrologic predictions and testing hypothesized hydrologic drivers. Here, we present an investigation into the variability and transferability of the recently introduced catchment connectivity model (Smith et al., 2013 ). The catchment connectivity model was developed following extensive experimental observations identifying the key drivers of streamflow in the Tenderfoot Creek Experimental Forest (Jencso et al., 2009 ; Jencso et al., 2010 ), with the goal of creating a simple model consistent with internal observations of catchment hydrologic connectivity patterns. The model was applied across seven catchments located within Tenderfoot Creek Experimental Forest to investigate spatial variability and transferability of model performance and parameterization. The results demonstrated that the model resulted in historically good fits (based on previous studies at the sites) to both the hydrograph and internal water table dynamics (corroborated with experimental observations). The impact of a priori parameter limits was also examined. It was observed that enforcing field‐based limits on model parameters resulted in slight reductions to streamflow hydrograph fits, but significant improvements to model process fidelity (as hydrologic connectivity), as well as moderate improvement in the transferability of model parameterizations from one catchment to the next. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
This paper suggests a multi‐criteria protocol for appropriately evaluating the predictions of hydrologic models during calibration and evaluation stages. The protocol includes different statistical, analytical and visual criteria such as analysis of peak and low flows, cumulative volumes, extreme value statistics, performance statistics, etc. Furthermore, the protocol assesses the physical consistency of model predictions by filtering the total observed hydrograph into different flow‐components (baseflow, interflow and overland flow) and using these filtered data in the calibration and evaluation processes. Based on the distributed modelling of a medium size catchment, it is shown that application of the suggested protocol, and in particular the use of the filtered flow‐components in model calibration, enhances the physical consistency of model predictions, adding considerable value to the calibration process. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
Distributed, continuous hydrologic models promote better understanding of hydrology and enable integrated hydrologic analyses by providing a more detailed picture of water transport processes across the varying landscape. However, such models are not widely used in routine modelling practices, due in part to the extensive data input requirements, computational demands, and complexity of routing algorithms. We developed a two‐dimensional continuous hydrologic model, HYSTAR, using a time‐area method within a grid‐based spatial data model with the goal of providing an alternative way to simulate spatiotemporally varied watershed‐scale hydrologic processes. The model calculates the direct runoff hydrograph by coupling a time‐area routing scheme with a dynamic rainfall excess sub‐model implemented here using a modified curve number method with an hourly time step, explicitly considering downstream ‘reinfiltration’ of routed surface runoff. Soil moisture content is determined at each time interval based on a water balance equation, and overland and channel runoff is routed on time‐area maps, representing spatial variation in hydraulic characteristics for each time interval in a storm event. Simulating runoff hydrographs does not depend on unit hydrograph theory or on solution of the Saint Venant equation, yet retains the simplicity of a unit hydrograph approach and the capability of explicitly simulating two‐dimensional flow routing. The model provided acceptable performance in predicting daily and monthly runoff for a 6‐year period for a watershed in Virginia (USA) using readily available geographic information about the watershed landscape. Spatial and temporal variability in simulated effective runoff depth and time area maps dynamically show the areas of the watershed contributing to the direct runoff hydrograph at the outlet over time, consistent with the variable source area overland flow generation mechanism. The model offers a way to simulate watershed processes and runoff hydrographs using the time‐area method, providing a simple, efficient, and sound framework that explicitly represents mechanisms of spatially and temporally varied hydrologic processes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
hydrologic models are important tools to estimate runoff from a catchment. Identification of broad based parameters of a hydrologic model for development of direct runoff hydrograph is a key issue for the modelers. Optimization and regionalization of hydrologic parameters for application of Nash’s model is investigated in this paper. Six catchments dominated by hill torrent flows were selected for this purpose. Fifty seven rainfall events were used for regionalization of parameters and about 55 events were used for validation of the results. The hydrologic parameters of the Nash Model, number of linear cascades (N) and storage coefficient (k) were determined using optimization based upon Downhill Simplex method. The data was collected by field measurements and from Water and Power Development Authority (WAPDA) Pakistan. The physical parameters of the catchments were derived from the satellite images of the watersheds with the help of ERDAS software. The performance of the model was assessed by the model efficiency. It is concluded that the conceptual Nash model can simulate direct runoff hydrograph using regional hydrologic parameters with model efficiency of 67%.  相似文献   

6.
The hydrologic response of engineered media plays an important role in determining a stormwater control measure's ability to reduce runoff volume, flow rate, timing, and pollutant loads. Five engineered media, typical of living roof and bioretention stormwater control measures, were investigated in laboratory column experiments for their hydrologic responses to steady, large inflow rates. The inflow, medium water content response, and outflow were all measured. The water flow mechanism (uniform flow vs. preferential flow) was investigated by analyzing medium water content response in terms of timing, magnitude, and sequence with depth. Modeling the hydrologic process was conducted in the HYDRUS‐1D software, applying the Richards equation for uniform flow modeling, and a mobile–immobile model for preferential flow modeling. Uniform flow existed in most cases, including all initially dry living roof media with bimodal pore size distributions and one bioretention medium with unimodal pore size distribution. The Richards equation can predict the outflow hydrograph reasonably well for uniform flow conditions when medium hydraulic properties are adequately represented by appropriate functions. Preferential flow was found in two media with bimodal pore size distributions. The occurrence of preferential flow is more likely due to the interaction between the bimodal pore structure and the initial water content rather than the large inflow rate.  相似文献   

7.
Spatially distributed hydrologic models can be effectively utilized for flood event simulation over basins where a complex system of reservoirs affecting the natural flow regime is present. Flood peak attenuation through mountain reservoirs can, in fact, mitigate the impact of major floods in flood‐prone areas of the lower river valley. Assessment of this effect for a complex reservoir system is performed with a spatially distributed hydrologic model where the surface runoff formation and the hydraulic routing through each reservoir and the river system are performed at a fine spatial and time resolution. The Toce River basin is presented as a case study, because of the presence of 14 active hydroelectric dams that affect the natural flow regime. A recent extreme flood event is simulated using a multi‐realization kriging method for modelling the spatial distribution of rainfall. A sensitivity analysis of the key elements of the distributed hydrologic model is also performed. The flood hydrograph attenuation is assessed. Several possible reservoir storage conditions are used to characterize the initial condition of each reservoir. The results demonstrate how a distributed hydrologic model can contribute to defining strategies for reservoir management in flood mitigation. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
A conceptual insytnataneous unit hydrograph (IUH) based on geomorphologival association of linear reservoirs (GR) previously developed by the authors has been compared with other IUH models: a distributed GR variation (GR(v)), the Nash IUH, the Chutha and Dooge IUH, and the Troutman and Karlinger IUH for the analysis of direct runoff hydrographs recorded in three experimental watershed of the north of Spain. The comparison was made through a calibration‐validation process in which a leave‐one‐out cross‐validation method was applied. The results indicate the satisfactory performance of all the models, with the advantage for the GR model of the dependence on only one parameter, which can be identified from the watershed and event characteristics. This property makes its use easier than that of other models. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
For snowmelt-driven flood studies, snow water equivalent (SWE) is frequently estimated using snow depth data. Accurate measurements of snow depth are important in providing data for continuous hydrologic simulations of such watersheds. A new hydrologic fidelity metric is proposed in this study to evaluate the potential contribution of particular snow depth datasets to flow characteristics using observed data and hydrologic modeling using the Variable Infiltration Capacity (VIC) model. Data-based hydrologic fidelity of snow depth measurements is defined as a categorical skill score between the snow depth in the watershed and the hydrograph peak or volume at the watershed outlet. Similarly, model-based hydrologic fidelity is defined as a categorical skill score between the model-simulated snow depth and the model-simulated hydrograph peak or volume. The proposed framework is illustrated using the Pecatonica River watershed in the USA, indicating which sites have a higher hydrologic fidelity, which is preferred in hydrologic studies.  相似文献   

10.
A geomorphological instantaneous unit hydrograph (GIUH) rainfall‐runoff model was applied in a 31 km2 montane catchment in Scotland. Modelling was based on flow path length distributions derived from a digital terrain model (DTM). The model was applied in two ways; a single landscape unit response based on the DTM alone, and a two‐landscape unit response, which incorporated the distribution of saturated areas derived from field‐validated geographic information system (GIS) analysis based on a DTM and soil maps. This was to test the hypothesis that incorporation of process‐information would enhance the model performance. The model was applied with limited multiple event calibration to produce parameter sets which could be applied to a spectrum of events with contrasting characteristics and antecedent conditions. Gran alkalinity was used as a tracer to provide an additional objective measure for assessing model performance. The models captured the hydrological response dynamics of the catchment reasonably well. In general, the single landscape unit approach produced the best individual model performance statistics, though the two‐landscape unit approach provided a range of models, which bracketed the storm hydrograph response more realistically. There was a tendency to over‐predict the rising limb of the hydrograph, underestimate large storm event peaks and anticipate the hydrograph recession too rapidly. Most of these limitations could be explained by the simplistic assumptions embedded within the GIUH approach. The modelling also gave feasible predictions of stream water chemistry, though these could not be used as a basis for model rejection. Nevertheless, the study suggested that the approach has potential for prediction of hydrological response in ungauged montane headwater basins. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
The need for accurate hydrologic analysis and rainfall–runoff modelling tools has been rapidly increasing because of the growing complexity of operational hydrologic and hydraulic problems associated with population growth, rapid urbanization and expansion of agricultural activities. Given the recent advances in remote sensing of physiographic features and the availability of near real‐time precipitation products, rainfall–runoff models are expected to predict runoff more accurately. In this study, we compare the performance and implementation requirements of two rainfall–runoff models for a semi‐urbanized watershed. One is a semi‐distributed conceptual model, the Hydrologic Engineering Center‐Hydrologic Modelling System (HEC‐HMS). The other is a physically based, distributed‐parameter hydrologic model, the Gridded Surface Subsurface Hydrologic Analysis (GSSHA). Four flood events that took place on the Leon Creek watershed, a sub‐watershed of the San Antonio River basin in Texas, were used in this study. The two models were driven by the Multisensor Precipitation Estimator radar products. One event (in 2007) was used for HEC‐HMS and GSSHA calibrations. Two events (in 2004 and 2007) were used for further calibration of HEC‐HMS. Three events (in 2002, 2004 and 2010) were used for model validation. In general, the physically based, distributed‐parameter model performed better than the conceptual model and required less calibration. The two models were prepared with the same minimum required input data, and the effort required to build the two models did not differ substantially. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
The synthesis of experimental understanding of catchment behaviour and its translation into qualitative perceptual models is an important objective of hydrological sciences. We explore this challenge by examining the cumulative understanding of the hydrology of three experimental catchments and how it evolves through the application of different investigation techniques. The case study considers the Huewelerbach, Weierbach and Wollefsbach headwater catchments of the Attert basin in Luxembourg. Subsurface investigations including bore holes and pits, analysis of soil samples and Electrical Resistivity Tomography measurements are presented and discussed. Streamflow and tracer data are used to gain further insights into the streamflow dynamics of the catchments, using end‐member mixing analysis and hydrograph separation based on dissolved silica and electrical conductivity. We show that the streamflow generating processes in all three catchments are controlled primarily by the subsolum and underlying bedrock. In the Huewelerbach, the permeable sandstone formation supports a stable groundwater component with little seasonality, which reaches the stream through a series of sources at the contact zone with the impermeable marls formation. In the Weierbach, the schist formation is relatively impermeable and supports a ‘fill and spill’‐type of flow mechanism; during wet conditions, it produces a delayed response dominated by pre‐event water. In the Wollefsbach, the impermeable marls formation is responsible for a saturation‐excess runoff generating process, producing a fast and highly seasonal response dominated by event water. The distinct streamflow generating processes of the three catchments are represented qualitatively using perceptual models. The perceptual models are in turn translated into quantitative conceptual models, which simulate the hydrological processes using networks of connected reservoirs and transfer functions. More generally, the paper illustrates the evolution of perceptual models based on experimental fieldwork data, the translation of perceptual models into conceptual models and the value of different types of data for processes understanding and model representation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
A. Veihe  J. Quinton 《水文研究》2000,14(5):915-926
Knowledge about model uncertainty is essential for erosion modelling and provides important information when it comes to parameterizing models. In this paper a sensitivity analysis of the European soil erosion model (EUROSEM) is carried out using Monte Carlo simulation, suitable for complex non‐linear models, using time‐dependent driving variables. The analysis revealed some important characteristics of the model. The variability of the static output parameters was generally high, with the hydrologic parameters being the most important ones, especially saturated hydraulic conductivity and net capillary drive followed by the percentage basal area for the hydrological and vegetation parameters and detachability and cohesion for the soil erosion parameters. Overall, sensitivity to vegetation parameters was insignificant. The coefficient of variation for the sedigraph was higher than for the hydrograph, especially from the beginning of the rainstorm and up to the peak, and may explain difficulties encountered when trying to match simulated hydrographs and sedigraphs with observed ones. The findings from this Monte Carlo simulation calls for improved within‐storm modelling of erosion processes in EUROSEM. Information about model uncertainty will be incorporated in a new EUROSEM user interface. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

14.
The emergence of artificial neural network (ANN) technology has provided many promising results in the field of hydrology and water resources simulation. However, one of the major criticisms of ANN hydrologic models is that they do not consider/explain the underlying physical processes in a watershed, resulting in them being labelled as black‐box models. This paper discusses a research study conducted in order to examine whether or not the physical processes in a watershed are inherent in a trained ANN rainfall‐runoff model. The investigation is based on analysing definite statistical measures of strength of relationship between the disintegrated hidden neuron responses of an ANN model and its input variables, as well as various deterministic components of a conceptual rainfall‐runoff model. The approach is illustrated by presenting a case study for the Kentucky River watershed. The results suggest that the distributed structure of the ANN is able to capture certain physical behaviour of the rainfall‐runoff process. The results demonstrate that the hidden neurons in the ANN rainfall‐runoff model approximate various components of the hydrologic system, such as infiltration, base flow, and delayed and quick surface flow, etc., and represent the rising limb and different portions of the falling limb of a flow hydrograph. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
The objective of this paper is to investigate the variation of geomorphology and runoff characteristics in saturated areas under different partial contributing area (PCA) conditions. Geomorphologic information and hydrologic records from two mid‐size watersheds in northern Taiwan were selected for analysis. The PCA ratio in the watershed during a storm was assumed equal to the ratio of the surface‐flow volume to the direct runoff volume from measured hydrologic data. The extents of PCA regions were then determined by using a topographic‐index threshold. Consequently, the geomorphologic factors in saturated and unsaturated areas could be calculated using a digital elevation model, and these factors could then be linked to a geomorphology‐based IUH model for runoff simulation, which can consider both the surface‐ and subsurface‐flow processes in saturated and unsaturated areas, respectively. The results show that geomorphologic characteristics in the saturated areas vary significantly with different PCA ratios especially for higher order streams. A large PCA ratio results in a sharp hydrograph because the quick surface flow dominates the runoff process, whereas the hydrologic response in a low PCA case is dominated by the delayed subsurface flow. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
A reliable prediction of hydrologic models, among other things, requires a set of plausible parameters that correspond with physiographic properties of the basin. This study proposes a parameter estimation approach, which is based on extracting, through hydrograph diagnoses, information in the form of indices that carry intrinsic properties of a basin. This concept is demonstrated by introducing two indices that describe the shape of a streamflow hydrograph in an integrated manner. Nineteen mid‐size (223–4790 km2) perennial headwater basins with a long record of streamflow data were selected to evaluate the ability of these indices to capture basin response characteristics. An examination of the utility of the proposed indices in parameter estimation is conducted for a five‐parameter hydrologic model using data from the Leaf River, located in Fort Collins, Mississippi. It is shown that constraining the parameter estimation by selecting only those parameters that result in model output which maintains the indices as found in the historical data can improve the reliability of model predictions. These improvements were manifested in (a) improvement of the prediction of low and high flow, (b) improvement of the overall total biases, and (c) maintenance of the hydrograph's shape for both long‐term and short‐term predictions. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
The main purpose of this paper is to introduce a semi‐distributed parallel surface rainfall‐runoff conceptual model. In this paper, a general solution of the instantaneous unit hydrograph (IUH) has been derived successfully for N linearly connected reservoirs, each having a different storage constant. The solution is a function of geomorphologic parameters, meteorologic factors and roughness coefficients. The model also takes into account the hydrologic response which is influenced by outflow downstream of a reservoir. For calibration, the shuffled complex evolution (SCE) algorithm is used to search for the global optimal parameters of the model. Because of the parallel structure, the mean roughness parameter of the channel becomes a “conceptual” parameter without a real physical meaning. To evaluate the adaptability of the model adopted, three watersheds around the city of Taipei in Taiwan were chosen to test the effectiveness of the model. The study provides an appropriate rainfall‐runoff model for planning flood mitigation in Taiwan. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

18.
Run‐off from impervious surfaces has pervasive and serious consequences for urban streams, but the detrimental effects of urban stormwater can be lessened by disconnecting impervious surfaces and redirecting run‐off to decentralized green infrastructure. This study used a before–after‐control‐impact design, in which streets served as subcatchments, to quantify hydrologic effectiveness of street‐scale investments in green infrastructure, such as street‐connected bioretention cells, rain gardens and rain barrels. On the two residential treatment streets, voluntary participation resulted in 32.2% and 13.5% of parcels having green infrastructure installed over a 2‐year period. Storm sewer discharge was measured before and after green infrastructure implementation, and peak discharge, total run‐off volume and hydrograph lags were analysed. On the street with smaller lots and lower participation, green infrastructure installation succeeded in reducing peak discharge by up to 33% and total storm run‐off by up to 40%. On the street with larger lots and higher participation, there was no significant reduction in peak or total stormflows, but on this street, contemporaneous street repairs may have offset improvements. On the street with smaller lots, lag times increased following the first phase of green infrastructure construction, in which streetside bioretention cells were built with underdrains. In the second phase, lag times did not change further, because bioretention cells were built without underdrains and water was removed from the system, rather than just delayed. We conclude that voluntary green infrastructure retrofits that include treatment of street run‐off can be effective for substantially reducing stormwater but that small differences in design and construction can be important for determining the level of the benefit. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Sustainable strategies such as green roofs have been implemented as stormwater management tools to mitigate disturbance of the hydrologic cycle resulting from urbanization. Green roofs, also referred to as vegetated roofs, can improve the urban landscape by reducing heat island effects, providing ecosystem services, and facilitating the retention and treatment of stormwater. Green roofs have received particular attention because they do not require acquisition and development of land and represent an application of biomimicry in design and construction. In this paper, we evaluate the effects of precipitation, evapotranspiration (ET), antecedent dry period (ADP), and seasonal variation on the run‐off quantity and distribution of an extensive, sedum covered, green roof on a commercial building in Syracuse, NY, USA. The green roof greatly facilitated retention of precipitation events without significant changes over the 4‐year study. The green roof retained on average 95.9 ± 3.6% (6.5 ± 5.6 mm) per rainfall event, with a range from 75% to 99.6% (33.2 to 3.3 mm). However, as precipitation quantity increased, the retention of water decreased. This high water retention capacity was the result of the combined effects of ET, stormwater storage (plants, growth media, and stormwater retention layer), and limited surface run‐off from the roof deck due to variation in the sloping of the green roof and the tapered insulation to the deck drains. The water retention capacity of the green roof did not change significantly between growing and nongrowing seasons. Slightly greater precipitation during the growing season coincided with increased ET. Average potential ET during the growing season was approximately 3 times greater than during the nongrowing season. The hydrologic performance of the green roof was not significantly impacted by an ADP greater than 2 days.  相似文献   

20.
Distributed hydrologic models based on triangulated irregular networks (TIN) provide a means for computational efficiency in small to large‐scale watershed modelling through an adaptive, multiple resolution representation of complex basin topography. Despite previous research with TIN‐based hydrology models, the effect of triangulated terrain resolution on basin hydrologic response has received surprisingly little attention. Evaluating the impact of adaptive gridding on hydrologic response is important for determining the level of detail required in a terrain model. In this study, we address the spatial sensitivity of the TIN‐based Real‐time Integrated Basin Simulator (tRIBS) in order to assess the variability in the basin‐averaged and distributed hydrologic response (water balance, runoff mechanisms, surface saturation, groundwater dynamics) with respect to changes in topographic resolution. Prior to hydrologic simulations, we describe the generation of TIN models that effectively capture topographic and hydrographic variability from grid digital elevation models. In addition, we discuss the sampling methods and performance metrics utilized in the spatial aggregation of triangulated terrain models. For a 64 km2 catchment in northeastern Oklahoma, we conduct a multiple resolution validation experiment by utilizing the tRIBS model over a wide range of spatial aggregation levels. Hydrologic performance is assessed as a function of the terrain resolution, with the variability in basin response attributed to variations in the coupled surface–subsurface dynamics. In particular, resolving the near‐stream, variable source area is found to be a key determinant of model behaviour as it controls the dynamic saturation pattern and its effect on rainfall partitioning. A relationship between the hydrologic sensitivity to resolution and the spatial aggregation of terrain attributes is presented as an effective means for selecting the model resolution. Finally, the study highlights the important effects of terrain resolution on distributed hydrologic model response and provides insight into the multiple resolution calibration and validation of TIN‐based hydrology models. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号