首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Rupture directivity effects in ground motion are known since many years to both seismologists and earthquake engineers, i.e. in sites that are in a particular geometrical configuration with respect to the rupture, the velocity fault‐normal signals may show a large pulse which occurs at the beginning of the record and contains the most of energy. The results are waveforms different from ordinary ground motions recorded in the far field or in geometrical conditions not favorable with respect to directivity. Current attenuation laws are not able to capture such effect well, if at all, and current probabilistic seismic hazard analysis is not able to predict the resulting peculiar spectral shape. Moreover, it is believed that structures with dynamic behavior in a range of periods related to the pulse period may be subjected to underestimated seismic demand. In the paper this is investigated and increments in both elastic and inelastic seismic actions are quantified using a large dataset of records, from the next generation attenuation project (NGA), in which a fraction is comprised of velocity pulses identified in other studies. These analyses employ recently developed tools and procedures to assess directivity effects and to quantify the associated threat in terms of seismic action on structures. Subsequently, the same tools are used in one of the first attempts to identify near‐source effects in the data recorded during a normal faulting earthquake, the mainshock of the recent Abruzzo (central Italy) sequence, leading to conclude that pulse‐like effects are likely to have occurred in the event, that is (1) observation of pulse‐like records in some near‐source stations is in fair agreement with existing predictive models, (2) the increment in seismic demand shown by pulse‐like ground motion components complies with the results of the analysis of the NGA data, and (3) seismic demand in non‐impulsive recordings is generally similar to what expected for ordinary records. The results may be useful as a benchmark for inclusion of near‐source effect in design values of seismic action and structural risk analysis. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
This paper demonstrates the effectiveness of utilizing advanced ground motion intensity measures (IMs) to evaluate the seismic performance of a structure subject to near‐source ground motions. Ordinary records are, in addition, utilized to demonstrate the robustness of the advanced IM with respect to record selection and scaling. To perform nonlinear dynamic analyses (NDAs), ground motions need to be selected; as a result, choosing records that are not representative of the site hazard can alter the seismic performance of structures. The median collapse capacity (in terms of IM), for example, can be systematically dictated by including a few aggressive or benign pulse‐like records into the record set used for analyses. In this paper, the elastic‐based IM such as the pseudo‐spectral acceleration (Sa) or a vector of Sa and epsilon has been demonstrated to be deficient to assess the structural responses subject to pulse‐like motions. Using advanced IMs can be, however, more accurate in terms of probabilistic response prediction. Scaling earthquake records using advanced IMs (e.g. inelastic spectral displacement, Sdi, and IM 1I&2E; the latter is for the significant higher‐mode contribution structures) subject to ordinary and/or pulse‐like records is efficient, sufficient, and robust relative to record selection and scaling. As a result, detailed record selection is not necessary, and records with virtually any magnitude, distance, epsilon and pulse period can be selected for NDAs. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
The purpose of this paper is to investigate the ground motion characteristics of the Chi‐Chi earthquake (21 September 1999) as well as the interpretation of structural damage due to this earthquake. Over 300 strong motion records were collected from the strong motion network of Taiwan for this earthquake. A lot of near‐field ground motion data were collected. They provide valuable information on the study of ground motion characteristics of pulse‐like near‐field ground motions as well as fault displacement. This study includes: attenuation of ground motion both in PGA and spectral amplitude, principal direction, elastic and inelastic response analysis of a SDOF system subjected to near‐field ground motion collected from this event. The distribution of spectral acceleration and spectral velocity along the Chelungpu fault is discussed. Based on the mode decomposition method the intrinsic mode function of ground acceleration of this earthquake is examined. A long‐period wave with large amplitude was observed in most of the near‐source ground acceleration. The seismic demand from the recorded near‐field ground motion is also investigated with an evaluation of seismic design criteria of Taiwan Building Code. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

4.
Nonlinear static procedures, which relate the seismic demand of a structure to that of an equivalent single‐degree‐of‐freedom oscillator, are well‐established tools in the performance‐based earthquake engineering paradigm. Initially, such procedures made recourse to inelastic spectra derived for simple elastic–plastic bilinear oscillators, but the request for demand estimates that delve deeper into the inelastic range, motivated investigating the seismic demand of oscillators with more complex backbone curves. Meanwhile, near‐source (NS) pulse‐like ground motions have been receiving increased attention, because they can induce a distinctive type of inelastic demand. Pulse‐like NS ground motions are usually the result of rupture directivity, where seismic waves generated at different points along the rupture front arrive at a site at the same time, leading to a double‐sided velocity pulse, which delivers most of the seismic energy. Recent research has led to a methodology for incorporating this NS effect in the implementation of nonlinear static procedures. Both of the previously mentioned lines of research motivate the present study on the ductility demands imposed by pulse‐like NS ground motions on oscillators that feature pinching hysteretic behaviour with trilinear backbone curves. Incremental dynamic analysis is used considering 130 pulse‐like‐identified ground motions. Median, 16% and 84% fractile incremental dynamic analysis curves are calculated and fitted by an analytical model. Least‐squares estimates are obtained for the model parameters, which importantly include pulse period Tp. The resulting equations effectively constitute an R ? μ ? T ? Tp relation for pulse‐like NS motions. Potential applications of this result towards estimation of NS seismic demand are also briefly discussed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Earthquakes damage engineering structures near, relatively to the rupture's size, to the source. In this region, the fault's dynamics affect ground motion propagation differently from site to site, resulting in systematic spatial variability known as directivity. Although a number of researches recommend that records with directivity‐related velocity pulses should be explicitly taken into account when defining design seismic action on structures, probabilistic seismic hazard analysis (PSHA), in its standard version, seems inadequate for the scope. In the study, it is critically reviewed why, from the structural engineering point of view, hazard assessment should account for near‐source effects (i.e., pulse‐like ground motions), and how this can be carried out adjusting PSHA analytically via introduction of specific terms and empirically calibrated models. Disaggregation analysis and design scenarios for near‐source PSHA are also formulated. The analytical procedures are then applied to develop examples of hazard estimates for sites close to strike–slip or dip–slip faults and to address differences with respect to the ordinary case, that is, when pulse‐like effects are not explicitly accounted for. Significant increase of hazard for selected spectral ordinates is found in all investigated cases; increments depend on the fault‐site configuration. Moreover, to address design scenarios for seismic actions on structures, disaggregation results are also discussed, along with limitations of current design spectra to highlight the pulse‐like effects of structural interest. Finally, an attempt to overcome these, by means of disaggregation‐based scenarios specific for the pulse occurrence case, is presented. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
The use of nonlinear static procedures for performance‐based seismic design (PBSD) and assessment is a well‐established practice, which has found its way into modern codes for quite some time. On the other hand, near‐source (NS) ground motions are receiving increasing attention, because they can carry seismic demand systematically different and larger than that of the so‐called ordinary records. This is due to phenomena such as rupture forward directivity (FD), which can lead to distinct pulses appearing in the velocity time‐history of the ground motion. The framework necessary for taking FD into account in probabilistic seismic hazard analysis (PSHA) has recently been established. The objective of the present study is to discuss the extension of nonlinear static procedures, specifically the displacement coefficient method (DCM), with respect to the inelastic demand associated with FD. In this context, a methodology is presented for the implementation of the DCM toward estimating NS seismic demand, by making use of the results of NS‐PSHA and a semi‐empirical equation for NS‐FD inelastic displacement ratio. An illustrative application of the DCM, with explicit inclusion of NS‐pulse‐like effects, is given for a set of typical plane R/C frames designed under Eurocode provisions. Different scenarios are considered in the application and nonlinear dynamic analysis results are obtained and discussed with respect to the static procedure estimates. Conclusions drawn from the results may help to assess the importance of incorporating NS effects in PBSD. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
This study proposes an improved energy‐based approach for quantitative classification of velocity‐pulse‐like ground motions. The pulse amplitude is determined, in its value and in time location, by the amplitude of the half‐cycle pulse having the largest seismic energy. After conducting statistical analyses, a newly‐determined threshold level for selecting pulse‐like ground motions is derived; and then what followed is a comparison analysis of three pulse‐detecting schemes, one using the wavelet analysis, the other two using the energy concept. It is believed that other than providing a useful way of classifying pulse‐like ground motions for structural demand analysis, knowledge of this work could also benefit the development of the ground motion prediction equations accounting for pulse effects, and further to aid the probabilistic seismic hazard analysis in a near‐fault environment. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
This paper investigates the seismic response of multi‐storey cross‐laminated timber (CLT) buildings and its relationship with salient ground‐motion and building characteristics. Attention is given to the effects of earthquake frequency content on the inelastic deformation demands of platform CLT walled structures. The response of a set of 60 CLT buildings of varying number of storeys and panel fragmentation levels representative of a wide range of structural configurations subjected to 1656 real earthquake records is examined. It is shown that, besides salient structural parameters like panel aspect ratio, design behaviour factor, and density of joints, the frequency content of the earthquake action as characterized by its mean period has a paramount importance on the level of nonlinear deformations attained by CLT structures. Moreover, the evolution of drifts as a function of building to ground‐motion periods ratio is different for low‐ and high‐rise buildings. Accordingly, nonlinear regression models are developed for estimating the global and interstorey drifts demands on multi‐storey CLT buildings. Finally, the significance of the results is highlighted with reference to European seismic design procedures and recent assessment proposals.  相似文献   

9.
Ground motions with strong velocity pulses are of particular interest to structural earthquake engineers because they have the potential to impose extreme seismic demands on structures. Accurate classification of records is essential in several earthquake engineering fields where pulse‐like ground motions should be distinguished from nonpulse‐like records, such as probabilistic seismic hazard analysis and seismic risk assessment of structures. This study proposes an effective method to identify pulse‐like ground motions having single, multiple, or irregular pulses. To effectively characterize the intrinsic pulse‐like features, the concept of an energy‐based significant velocity half‐cycle, which is visually identifiable, is first presented. Ground motions are classified into 6 categories according to the number of significant half‐cycles in the velocity time series. The pulse energy ratio is used as an indicator for quantitative identification, and then the energy threshold values for each type of ground motions are determined. Comprehensive comparisons of the proposed approach with 4 benchmark identification methods are conducted, and the results indicate that the methodology presented in this study can more accurately and efficiently distinguish pulse‐like and nonpulse‐like ground motions. Also presented are some insights into the reasons why many pulse‐like ground motions are not detected successfully by each of the benchmark methods.  相似文献   

10.
The use of a seismic intensity measure (IM) is paramount in decoupling seismic hazard and structural response estimation when assessing the performance of structures. For this to be valid, the IM needs to be sufficient;that is, the engineering demand parameter (EDP) response should be independent of other ground motion characteristics when conditioned on the IM. Whenever non‐trivial dependence is found, such as in the case of the IM being the first‐mode spectral acceleration, ground motion selection must be employed to generate sets of ground motion records that are consistent vis‐à‐vis the hazard conditioned on the IM. Conditional spectrum record selection is such a method for choosing records that are consistent with the site‐dependent spectral shape conditioned on the first‐mode spectral acceleration. Based on a single structural period, however the result may be suboptimal, or insufficient, for EDPs influenced by different period values, for example, peak interstory drifts or peak floor accelerations at different floors, potentially requiring different record suites for each. Recently, the log‐average spectral acceleration over a period range, AvgSA, has emerged as an improved scalar IM for building response estimation whose hazard can be evaluated using existing ground motion prediction equations. Herein, we present a recasting of conditional spectrum record selection that is based on AvgSA over a period range as the conditioning IM. This procedure ensures increased efficiency and sufficiency in simultaneously estimating multiple EDPs by means of a single IM. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

11.
Pulse-like records are well recognized for their potential to impose higher demands on structures when compared with ordinary records. The increased severity of the structural response usually caused by pulse-like records is commonly attributed to the spectral increment around the pulse period. By comparing the building response to sets of spectrally equivalent pulse-like and ordinary records, we show that there are characteristics of pulse-like records beyond the shape of the acceleration response spectrum that affect the results of nonlinear dynamic analysis. Nevertheless, spectral shape together with the ratio of pulse period to the first-mode structural period, Tp/T1, are confirmed as “sufficient” predictors for deformation and acceleration response metrics in a building, conditioned on the seismic intensity. Furthermore, the average spectral acceleration over a period range, AvgSA, is shown to incorporate to a good proxy for spectral shape, and together with Tp/T1, form an efficient and sufficient intensity measure for response prediction to pulse-like ground motions. Following this latter route, we propose a record selection scheme that maintains the consistency of Tp with the hazard of the site but uses AvgSA to account for the response sensitivity to spectral shape.  相似文献   

12.
The scarcity of strong ground motion records presents a challenge for making reliable performance assessments of tall buildings whose seismic design is controlled by large‐magnitude and close‐distance earthquakes. This challenge can be addressed using broadband ground‐motion simulation methods to generate records with site‐specific characteristics of large‐magnitude events. In this paper, simulated site‐specific earthquake seismograms, developed through a related project that was organized through the Southern California Earthquake Center (SCEC) Ground Motion Simulation Validation (GMSV) Technical Activity Group, are used for nonlinear response history analyses of two archetype tall buildings for sites in San Francisco, Los Angeles, and San Bernardino. The SCEC GMSV team created the seismograms using the Broadband Platform (BBP) simulations for five site‐specific earthquake scenarios. The two buildings are evaluated using nonlinear dynamic analyses under comparable record suites selected from the simulated BBP catalog and recorded motions from the NGA‐West database. The collapse risks and structural response demands (maximum story drift ratio, peak floor acceleration, and maximum story shear) under the BBP and NGA suites are compared. In general, this study finds that use of the BBP simulations resolves concerns about estimation biases in structural response analysis which are caused by ground motion scaling, unrealistic spectral shapes, and overconservative spectral variations. While there are remaining concerns that strong coherence in some kinematic fault rupture models may lead to an overestimation of velocity pulse effects in the BBP simulations, the simulations are shown to generally yield realistic pulse‐like features of near‐fault ground motion records.  相似文献   

13.
The seismic performance of conventional wood‐frame structures in south‐western British Columbia is analytically investigated through incremental dynamic analysis by utilizing available UBC‐SAWS models, which were calibrated based on experimental test results. To define an adequate target response spectrum that is consistent with information from national seismic hazard maps, record selection/scaling based on the conditional mean spectrum (CMS) is implemented. Furthermore, to reflect complex seismic hazard contributions from different earthquake sources (i.e. crustal events, interface events, and inslab events), we construct CMS for three earthquake types, and use them to select and scale an adequate set of ground motion records for the seismic performance evaluation. We focus on the impacts of adopting different record selection criteria and of using different shear‐wall types (Houses 1–4; in terms of seismic resistance, House 1>House 2>House 3>House 4) on the nonlinear structural response. The results indicate that the record selection procedures have significant influence on the probabilistic relationship between spectral acceleration at the fundamental vibration period and maximum inter‐story drift ratio, highlighting the importance of taking into account response spectral shapes in selecting and scaling ground motion records. Subjected to ground motions corresponding to the return period of 2500 years, House 1 is expected to experience very limited extent of damage; Houses 2 and 3 may be disturbed by minor damage; whereas House 4 may suffer from major damage occasionally. Finally, we develop statistical models of the maximum inter‐story drift ratio conditioned on a seismic intensity level for wood‐frame houses, which is useful for seismic vulnerability assessment. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
This paper focuses on the effects of long‐period pulse of near‐fault ground motions on the structural damage potential. Two sets of near‐fault ground motion records from Chi‐Chi, Taiwan earthquake and Northridge earthquake with and without distinct pulse are selected as the input, and the correlation analysis between 30 non‐structure‐specific intensity measure parameters and maximum inelastic displacements and energy responses (input energy and hysteretic energy) of bilinear single degree of freedom systems are conducted. Based on the frequency characteristic of near‐fault ground motions with remarkable long‐period components, two intensity indices are proposed, namely, the improved effective peak acceleration (IEPA) and improved effective peak velocity (IEPV). In addition a new characteristic period of these ground motions is defined based on IEPA and IEPV. Numerical results illustrate that the intensity measure parameters related to ground acceleration present the best correlation with the seismic responses for rigid systems; the velocity‐related and displacement‐related parameters are better for medium‐frequency systems and flexible systems, respectively. The correlation curves of near‐fault ground motions with velocity pulse differ from those of ground motions without pulse. Moreover, the improved parameters IEPA and IEPV of near‐fault impulsive ground motions enhance the performance of intensity measure of corresponding conventional parameters, i.e. EPA and EPV. The new characteristic period based on IEPA and IEPV can better reflect the frequency content of near‐fault ground motions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Near‐fault ground motions impose large demands on structures compared to ‘ordinary’ ground motions. Recordings suggest that near‐fault ground motions with ‘forward’ directivity are characterized by a large pulse, which is mostly orientated perpendicular to the fault. This study is intended to provide quantitative knowledge on important response characteristics of elastic and inelastic frame structures subjected to near‐fault ground motions. Generic frame models are used to represent MDOF structures. Near‐fault ground motions are represented by equivalent pulses, which have a comparable effect on structural response, but whose characteristics are defined by a small number of parameters. The results demonstrate that structures with a period longer than the pulse period respond very differently from structures with a shorter period. For the former, early yielding occurs in higher stories but the high ductility demands migrate to the bottom stories as the ground motion becomes more severe. For the latter, the maximum demand always occurs in the bottom stories. Preliminary regression equations are proposed that relate the parameters of the equivalent pulse to magnitude and distance. The equivalent pulse concept is used to estimate the base shear strength required to limit story ductility demands to specific target values. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

16.
In order to investigate the response of structures to near‐fault seismic excitations, the ground motion input should be properly characterized and parameterized in terms of simple, yet accurate and reliable, mathematical models whose input parameters have a clear physical interpretation and scale, to the extent possible, with earthquake magnitude. Such a mathematical model for the representation of the coherent (long‐period) ground motion components has been proposed by the authors in a previous study and is being exploited in this article for the investigation of the elastic and inelastic response of the single‐degree‐of‐freedom (SDOF) system to near‐fault seismic excitations. A parametric analysis of the dynamic response of the SDOF system as a function of the input parameters of the mathematical model is performed to gain insight regarding the near‐fault ground motion characteristics that significantly affect the elastic and inelastic structural performance. A parameter of the mathematical representation of near‐fault motions, referred to as ‘pulse duration’ (TP), emerges as a key parameter of the problem under investigation. Specifically, TP is employed to normalize the elastic and inelastic response spectra of actual near‐fault strong ground motion records. Such normalization makes feasible the specification of design spectra and reduction factors appropriate for near‐fault ground motions. The ‘pulse duration’ (TP) is related to an important parameter of the rupture process referred to as ‘rise time’ (τ) which is controlled by the dimension of the sub‐events that compose the mainshock. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
Residual displacements of single‐degree‐of‐freedom systems due to ground motions with velocity pulses or fling step displacements are presented as a function of period T and of its ratio to the pulse period Tp. Four hysteretic behaviors are considered: bilinear elastoplastic, stiffness‐degrading with cycling, stiffness‐cum‐strength degrading, with or without pinching. When expressed in terms of T/Tp, peak inelastic and residual displacements due to motions with a pulse or fling appear similar to those due to far‐fault motions, if the response to far‐field records are expressed in terms of the ratio of T to the record's characteristic period. However, as the latter is usually much shorter than the pulse period of motions with fling, the range of periods of interest for common structures becomes a short‐period range under fling motions and exhibits very large amplification of residual and peak inelastic displacements. Similar, but less acute, are the effects of motions with a velocity pulse. Wavelets of different complexity are studied as approximations to near‐fault records. Simple two‐parameter wavelets for fling motions overestimate peak inelastic displacements; those for pulse‐type motions overestimate residual displacements. A more complex four‐parameter wavelet for motions with a velocity pulse predicts overall well residual and peak displacements due to either pulse‐ or fling‐type motions; a hard‐to‐identify parameter of the wavelet impacts little computed residual displacements; another significantly affects them and should be carefully estimated from the record. Even this most successful of wavelets overpredicts residual displacements for the periods of engineering interest. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
This paper summarizes the results of an extensive study on the inelastic seismic response of X‐braced steel buildings. More than 100 regular multi‐storey tension‐compression X‐braced steel frames are subjected to an ensemble of 30 ordinary (i.e. without near fault effects) ground motions. The records are scaled to different intensities in order to drive the structures to different levels of inelastic deformation. The statistical analysis of the created response databank indicates that the number of stories, period of vibration, brace slenderness ratio and column stiffness strongly influence the amplitude and heightwise distribution of inelastic deformation. Nonlinear regression analysis is employed in order to derive simple formulae which reflect the aforementioned influences and offer a direct estimation of drift and ductility demands. The uncertainty of this estimation due to the record‐to‐record variability is discussed in detail. More specifically, given the strength (or behaviour) reduction factor, the proposed formulae provide reliable estimates of the maximum roof displacement, the maximum interstorey drift ratio and the maximum cyclic ductility of the diagonals along the height of the structure. The strength reduction factor refers to the point of the first buckling of the diagonals in the building and thus, pushover analysis and estimation of the overstrength factor are not required. This design‐oriented feature enables both the rapid seismic assessment of existing structures and the direct deformation‐controlled seismic design of new ones. A comparison of the proposed method with the procedures adopted in current seismic design codes reveals the accuracy and efficiency of the former. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
A procedure for incorporating record‐to‐record variability into the simplified seismic assessment of RC wall buildings is presented. The procedure relies on the use of the conditional spectrum to randomly sample spectral ordinates at relevant periods of vibration. For inelastic response, displacement reduction factors are then used to relate inelastic displacement demand to the spectral displacement at the effective period for single‐degree‐of‐freedom systems. Simple equations are used to convert back and forth between multi‐degree‐of‐freedom RC wall buildings and equivalent single‐degree‐of‐systems so that relevant engineering demand parameters can be obtained. Consideration is also given to higher‐mode effects by adapting existing modal combination rules. The proposed method is applied to several case study buildings, showing promising results in the examination of inter‐storey drift ratio and shear forces. The proposed method captures the variation in the distribution of structural response parameters that occurs with variations in structural configuration, intensity, engineering demand parameter of interest and site characteristics. Discussion is provided on possible ways to improve the accuracy of the procedure and suggestions for additional future work. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Reinforced concrete bridge columns exhibit complex hysteretic behavior owing to combined action of shear, bending moment, and axial force under multi‐directional seismic shakings. The inelastic displacement of columns can be increased by shear–flexure interaction (SFI). This paper develops a simple yet reliable demand model for estimating the inelastic displacement and ductility based on the nonlinear time history analyses of 24 full‐size columns subject to a suite of near‐fault ground motions. A coupled hysteretic model is used to simulate the shear‐flexure interactive (SFI) behavior of columns and the accumulated material damage during loading reversals, including pinching, strength deterioration, and stiffness softening. Guided by rigorous dimensional analysis, the inelastic displacement responses of bridge columns are presented in dimensionless form showing remarkable order. A dimensionless nonlinearity index is derived taking into account of the column strength, ground motion amplitude, and softening or hardening post‐yield behavior. Strong correlation is revealed between the normalized inelastic displacement and the dimensionless structure‐to‐pulse frequency, the dimensionless nonlinearity index as well as the aspect ratio. Two regressive equations for displacement and ductility demands are proposed and validated against the simulation results. The SFI effects are discussed and included explicitly through the aspect ratio in the proposed model. This study offers a new way to realistically predict the inelastic displacement of columns directly from structural and ground motion characteristics. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号