首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The steel tube‐reinforced concrete (ST‐RC) composite column is a novel type of composite column, which consists of a steel tube embedded in RC. In this paper, the seismic behavior of ST‐RC columns is examined through a series of experiments in which 10 one‐third scale column specimens were subjected to axial forces and lateral cyclic loading. The test variables include the axial force ratio applied to the columns and the amount of transverse reinforcement. All specimens failed in a flexural mode, showing stable hysteresis loops. Thanks to the steel tube and the high‐strength concrete it is filled with, the ST‐RC column specimens had approximately 30% lower axial force ratios and 22% higher maximum bending moments relative to the comparable RC columns when subjected to identical axial compressive loads. The amount of transverse reinforcement made only a small difference to the lateral load‐carrying capacity but significantly affected the deformation and energy dissipation capacity of the ST‐RC columns. The specimens that satisfied the requirements for transverse reinforcement adopted for medium ductile RC columns as specified by the Chinese Code for Seismic Design of Buildings (GB 50011‐2010) and EuroCode 8 achieved an ultimate drift ratio of around 0.03 and a displacement ductility ratio of approximately 5. The design formulas used to evaluate the strength capacity of the ST‐RC columns were developed on the basis of the superposition method. The predictions from the formulas showed good agreement with the test results, with errors no greater than 10%. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
Reinforced concrete columns with non‐ductile detailing typically exhibit a softening behavior characterized by severe degradation when subjected to cyclic lateral loads. Whether the response is brittle or ductile, shear failure occurs with an inclined through crack along which sliding occurs coupled with loss of horizontal and vertical load‐bearing capacity of the member. The rapid loss of resistance after the peak strength is reached is because of one or more of the following local failure mechanisms: brittle failure of poorly confined concrete; buckling of longitudinal reinforcing bars because of lack of adequate transverse reinforcement or following opening of stirrups after spalling of cover concrete; bond failure. In this study, a modeling strategy to build a detailed 3D finite element model capable of capturing all of the above‐mentioned local failure mechanisms is presented. In particular, a steel–concrete interface model for representing the interaction within the member between concrete core, cover and longitudinal and transverse reinforcement is proposed. Comparison with results of an experimental test of a shear‐sensitive column demonstrates the effectiveness of the simulation up to failure of the element. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
Reinforced concrete (RC) structures in low to moderate seismic regions and many older RC structures in high seismic regions include columns with steel reinforcement details not meeting the requirements of modern seismic design codes. These columns typically fail in shear or in a brittle manner and their behavior must be accurately captured when RC structures are modeled and analyzed. The total lateral displacement of a low ductility or shear critical RC column can be represented as the sum of three displacement components: (1) flexural displacement, (2) displacement due to slippage of the reinforcing bars at column ends, and (3) shear displacement. In this study, these three displacement components are separately modeled and then combined together following a proposed procedure based on the expected overall behavior of the column and its failure mechanism. A simplified slip model is proposed. The main objective of this research is to develop an easy-to-apply method to model and capture the cyclic behavior of RC columns considering the shear failure mechanism. The proposed model is validated using the available data from RC column and frame experiments.  相似文献   

4.
A procedure for displacement‐based seismic design (DBD) of reinforced concrete buildings is described and applied to a 4‐storey test structure. The essential elements of the design procedure are: (a) proportioning of members for gravity loads; (b) estimation of peak inelastic member deformation demands in the so‐designed structure due to the design (‘life‐safety’) earthquake; (c) revision of reinforcement and final detailing of members to meet these inelastic deformation demands; (d) capacity design of members and joints in shear. Additional but non‐essential steps between (a) and (b) are: (i) proportioning of members for the ULS against lateral loads, such as wind or a serviceability (‘immediate occupancy’) earthquake; and (ii) capacity design of columns in flexure at joints. Inelastic deformation demands in step (b) are estimated from an elastic analysis using secant‐to‐yield member stiffnesses. Empirical expressions for the deformation capacity of RC elements are used for the final proportioning of elements to meet the inelastic deformation demands. The procedure is applied to one side of a 4‐storey test structure that includes a coupled wall and a two‐bay frame. The other side is designed and detailed according to Eurocode 8. Major differences result in the reinforcement of the two sides, with significant savings on the DBD‐side. Pre‐test calculations show no major difference in the seismic performance of the two sides of the test structure. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

5.
A non‐parametric empirical approach, called the conditional average estimator (CAE) method, has been applied for the prediction of the normalized lateral force–drift envelope of reinforced concrete (RC) rectangular columns, as well as their characteristic drifts (effective yield drift, capping drift and ultimate drift), and drift‐related parameters (the ratio between the effective yield drift and elastic drift, and two ductility measures). A subset of the PEER RC column database was used. Five input parameters were employed: axial load index, index related to confinement, shear span index, concrete compressive strength, and longitudinal reinforcement index. The results suggest that the relations between the input and output parameters are complex, and that it is difficult to isolate the influence of a single parameter. Nevertheless, some trends were observed. The axial load index is the most influential input parameter. All the results decrease with an increasing axial load index, whereas they increase with an increasing longitudinal reinforcement index. An increase in the index related to confinement results in increases in the ultimate drift and in ductility. The influence of the shear span index is the most complex. The influence of the concrete strength is small with the exception of two output parameters related to elastic drift, which substantially decrease with increasing strength. The dispersion of the results is relatively large. The results of the predictions can be used for mathematical modelling of moment–rotation backbone curves for plastic hinges, and for the estimation of the deformation capacity of columns in seismic performance assessments. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
Beam–column sub‐assemblages are the one of the most vulnerable structural elements to the seismic loading and may lead to devastating consequences. In order to improve the performance of the poorly/under‐designed building structures to the critical loading scenarios, introduction of steel bracing at the RC beam–column joint is found to be one of the modern and implementable techniques. In the present work, a diagonal metallic single haunch/bracing system is introduced at the beam–column joints to provide an alternate load path and to protect the joint zone from extensive damage because of brittle shear failure. In this paper, an investigation is reported on the evaluation of tae influence of different parameters, such as angle of inclination, location of bracing and axial stiffness of the single steel bracing on improving the performance through altering the force transfer mechanism. Numerical investigations on the performance of the beam–column sub‐assemblages have been carried out under cyclic loading using non‐linear finite element analysis. Experimentally validated numerical models (both GLD and upgraded specimen) have been further used for evaluating the performance of various upgrade schemes. Cyclic behaviour of reinforcement, concrete modelling based on fracture energy, bond‐slip relations between concrete and steel reinforcement have been incorporated. The study also includes the numerical investigation of crack and failure patterns, ultimate load carrying capacity, load displacement hysteresis, energy dissipation and ductility. The findings of the present study would be helpful to the engineers to develop suitable, feasible and efficient upgrade schemes for poorly designed structures under seismic loading. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Numerous non‐ductile reinforced concrete (RC) buildings with little or no shear reinforcement in beam‐column joints can be found in regions of moderate seismicity. To strengthen such substandard beam‐column joints, this study proposes a method in which RC wing walls are installed beside existing columns, which overcomes the lack of realistic strengthening methods for congested connections in RC buildings. The proposed strengthening mechanism improves the joint moment capacity by utilizing tension and compression acting on the beam–wing wall boundaries; thus, brittle joint hinging failure is prevented. Three 3/4‐scale RC exterior beam‐column joint specimens without shear reinforcement, two of which were strengthened by installing wing walls with different strengthening elements, were fabricated and tested. The test results verified the effectiveness of the proposed strengthening method and the applicability of this method to seismically substandard beam‐column joints. © 2017 The Authors. Earthquake Engineering & Structural Dynamics Published by John Wiley & Sons Ltd.  相似文献   

8.
The objective of the study presented in this paper is to investigate the effects of masonry infills on the shear demand and failure of columns for the case when reinforced concrete frames with such infills are modeled by means of simplified nonlinear models that are not capable of the direct simulation of these effects. It is shown that an approximate simulation of the shear failure of columns can be achieved through an iterative procedure that involves pushover analysis, post‐processing of the analysis results using limit‐state checks of the components, and model adaptation if shear failure of columns is detected. The fragility parameters and the mean annual frequency of limit‐state exceedance are computed on the basis of nonlinear dynamic analysis by using an equivalent SDOF model. The proposed methodology is demonstrated by means of two examples. It was shown that the strength of the four‐story and seven‐story buildings and their deformation capacity are significantly overestimated if column shear failure due to the effects of masonry infills is neglected, whereas the mean annual frequency of limit‐state exceedance for the analyzed limit states is significantly larger than that estimated for the case if the shear failure of columns is neglected. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
通过5个高延性混凝土(HDC)加固震损混凝土短柱偏心受压性能试验,研究了HDC对加固震损混凝土短柱的偏压承载能力和变形能力的影响程度.试验结果表明,采用HDC加固震损偏心混凝土短柱,可有效改善小偏心受压构件的脆性破坏,且受压承载能力有明显提高,峰值荷载提高了49%~63%,与峰值荷载对应地位移增大了34%~39%,极限...  相似文献   

10.
对钢筋混凝土(RC)柱在地震作用下的变形性能进行量化,本文从太平洋地震研究中心柱数据库中收集到123根RC柱抗震性能试验数据,提出基于参数剪跨比和弯剪比的RC柱破坏形态判别标准;在弯曲破坏、弯剪破坏、剪切破坏三种破坏形态下,研究了轴压比、剪跨比、配箍特征值等参数对位移角的显著性影响,通过回归分析归纳出三种破坏形态下屈服位移角和极限位移角的回归方程,回归系数显著性概率均小于0.05。结果表明:本文提出的RC柱破坏形态判别标准准确度高,适应性强;位移角线性回归方程具有合理性。  相似文献   

11.
通过距平方法,研究2017年8月8日九寨沟7.0级地震前震中所在区域(95.00°—110.00°E,25.00°—45.00°N)长波辐射时空演化特征,研究结果表明:①2017年7月,去除背景之后的长波辐射场在震区附近出现显著增强现象,增强区域基本走向与地质构造走向一致,其主体区域沿着巴颜喀拉块体南缘边界带,重要分支横跨巴颜喀拉块体,直接延伸至九寨沟7.0级地震震中;②紧邻九寨沟7.0级地震震中的4个格点在去除背景变化后的长波辐射时序曲线变化特征基本一致,即在2017年7月出现显著大于其他月份的现象。  相似文献   

12.
在试验研究的基础上,以框架结构延性设计为目的采用桁架+拱模型研究了框架柱塑性铰区域抗剪受力机理,分析了,位移延性系数、加载循环次数等因素对框架柱构件塑性铰区域剪切受力性能的影响,并结合试验结果提出了混凝土框架柱塑性铰区域剪切承载力抗震延性设计实用公式,可有效实现结构的延性破坏机制。主要为配合GBJ10-89的修订,该成果已被《混凝土结构设计规范》(GB50010—2003)吸收。  相似文献   

13.
Reinforced concrete bridge columns exhibit complex hysteretic behavior owing to combined action of shear, bending moment, and axial force under multi‐directional seismic shakings. The inelastic displacement of columns can be increased by shear–flexure interaction (SFI). This paper develops a simple yet reliable demand model for estimating the inelastic displacement and ductility based on the nonlinear time history analyses of 24 full‐size columns subject to a suite of near‐fault ground motions. A coupled hysteretic model is used to simulate the shear‐flexure interactive (SFI) behavior of columns and the accumulated material damage during loading reversals, including pinching, strength deterioration, and stiffness softening. Guided by rigorous dimensional analysis, the inelastic displacement responses of bridge columns are presented in dimensionless form showing remarkable order. A dimensionless nonlinearity index is derived taking into account of the column strength, ground motion amplitude, and softening or hardening post‐yield behavior. Strong correlation is revealed between the normalized inelastic displacement and the dimensionless structure‐to‐pulse frequency, the dimensionless nonlinearity index as well as the aspect ratio. Two regressive equations for displacement and ductility demands are proposed and validated against the simulation results. The SFI effects are discussed and included explicitly through the aspect ratio in the proposed model. This study offers a new way to realistically predict the inelastic displacement of columns directly from structural and ground motion characteristics. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Two ungrouted post‐tensioned, precast concrete‐filled tube (CFT) segmental bridge columns were tested under lateral cyclic loading to evaluate the seismic performance of the column details. The specimens included a load stub, four equal‐height circular CFT segments, and a footing. Strands were placed through the column and post‐tensioned to provide a precompression of the column against the footing. One specimen also contained energy‐dissipating devices at the base to increase the hysteretic energy. The test results showed that (1) both specimens could develop the maximum flexural strength at the design drift and achieve 6% drift with small strength degradation and residual displacement, (2) the proposed energy‐dissipating device could increase energy dissipation in the hysteresis loops, and (3) the CFT segmental columns rotated not only about the base but also about the interface above the bottom segment. This study proposed and verified a method to estimate the experimental flexural displacement using two plastic hinges in the segmental column. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
A three‐dimensional beam–truss model (BTM) for reinforced concrete (RC) walls that explicitly models flexure–shear interaction and accurately captures diagonal shear failures was presented in the first part of this two‐paper series. This paper extends the BTM to simulate RC slabs and coupled RC walls through slabs and beams. The inclination angle of the diagonal elements for coupled RC walls is determined, accounting for the geometry of the walls and the level of coupling. Two case studies validate the model: (1) a two‐bay slab–column specimen experimentally tested using cyclic static loading and (2) a five‐story coupled T‐wall–beam–slab specimen subjected to biaxial shake table excitation. The numerically computed lateral force–lateral displacement and strain contours are compared with the experimentally measured response and observed damage. The five‐story specimen is characterized by diagonal shear failure at the bottom story of the walls, which is captured by the BTM. The BTM of the five‐story specimen is used to study the effects of coupling on shear demand for lightly reinforced RC coupled walls. The effect of mesh refinement and bar fracture of non‐ductile transverse reinforcement is studied. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
Post‐earthquake reconnaissance has reported the vulnerability of older reinforced concrete (RC) columns lacking details for ductile response. Research was undertaken to investigate the full‐range structural hysteretic behavior of older RC columns. A two‐dimensional specimen frame, composed of nonductile and ductile columns to allow for load redistribution, was subjected to a unidirectional base motion on a shaking table until global collapse was observed. The test demonstrates two types of column failure, including flexure‐shear and pure flexural failure. Test data are compared with various simplified assessment models commonly used by practicing engineers and researchers to identify older buildings that are at high risk of structural collapse during severe earthquake events. Comparison suggests that ASCE/SEI 41‐06 produces very conservative estimates on load–deformation relations of flexure‐shear columns, while the recently proposed ASCE/SEI 41‐06 update imposes significant modifications on the predictive curve, so that improved accuracy has been achieved. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
The feasibility and efficiency of a seismic retrofit solution for existing reinforced concrete frame systems, designed before the introduction of modern seismic‐oriented design codes in the mid 1970s, is conceptually presented and experimentally investigated. A diagonal metallic haunch system is introduced at the beam–column connections to protect the joint panel zone from extensive damage and brittle shear mechanisms, while inverting the hierarchy of strength within the beam–column subassemblies and forming a plastic hinge in the beam. A complete step‐by‐step design procedure is suggested for the proposed retrofit strategy to achieve the desired reversal of strength hierarchy. Analytical formulations of the internal force flow at the beam–column‐joint level are derived for the retrofitted joints. The study is particularly focused on exterior beam–column joints, since it is recognized that they are the most vulnerable, due to their lack of a reliable joint shear transfer mechanism. Results from an experimental program carried out to validate the concept and the design procedure are also presented. The program consisted of quasi‐static cyclic tests on four exterior, ? scaled, beam–column joint subassemblies, typical of pre‐1970 construction practice using plain round bars with end‐hooks, with limited joint transverse reinforcement and detailed without capacity design considerations. The first (control specimen) emulated the as‐built connection while the three others incorporated the proposed retrofitted configurations. The experimental results demonstrated the effectiveness of the proposed solution for upgrading non‐seismically designed RC frames and also confirmed the applicability of the proposed design procedure and of the analytical derivations. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
Concrete‐filled steel columns have been widely used in civil and architectural constructions throughout the world in recent years. This study is concerned with the cyclic elastoplastic analysis and capacity prediction of concrete‐filled steel columns having thick‐ and thin‐walled stiffened box‐shaped sections. An analytical procedure for determining the ultimate state of the concrete‐filled steel column is proposed based on the fiber analysis technique. Strength and ductility predictions are made by means of a new failure criterion. This is proposed based on the average failure strain of concrete and steel at critical regions. A recently developed monotonic stress–strain relation for confined concrete is modified so that it can be used in the analysis of thin‐ or thick‐walled section columns with stiffeners. A simple cyclic rule is introduced into this model in order to be used in cyclic analysis. Material non‐linearity of steel is represented by the modified two surface model developed at Nagoya University. The predictions are then compared with the existing experimental results and found to exhibit satisfactory agreement. Both small‐ and large‐scaled columns are considered in the comparisons. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

19.
This paper uses nonlinear truss models for the analysis of shear‐dominated reinforced concrete (RC) columns subjected to cyclic loading. A previously established method, aimed to the analysis of RC walls, is enhanced to allow simulations of column members. The concrete constitutive equations are modified to account for the contribution of the aggregate interlock to the shear resistance. Additionally, an equation is proposed to determine the inclination angle of the diagonal members in the truss models. The modeling approach is validated using the results of quasi‐static and dynamic tests on shear‐dominated RC columns. The combination of predictive capabilities and conceptual simplicity establishes truss‐based models as an attractive approach for the systematic analysis of shear‐dominated RC frame construction. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
An existing two‐dimensional macroelement for reinforced concrete beam–column joints is extended to a three‐dimensional macroelement. The three‐dimensional macroelement for beam–column joints consists of six rigid interface plates and uniaxial springs for concrete, steel, and bond–slip, which model the inside of a beam–column joint. The mechanical models for the materials and the stiffness equation for the springs are also presented. To validate the model, we used test results from three slab–beam–column sub‐assemblages subjected to bi‐lateral cyclic load. It is revealed that the new joint model is capable of capturing the strength of beam–column joints and the bidirectional interaction in joint shear response, including the concentration of damage in the beam–column joint, the pinching nature in hysteretic behavior, the stiffness degradation, and strength deterioration resulting from cyclic and bidirectional loading. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号