首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The San Antonio River Delta (SARD), Texas, has experienced two major avulsions in the past 80 years, and a number of other historical and Holocene channel shifts. The causes and consequences of these avulsions – one of which is ongoing – were examined using a combination of fieldwork, geographic information system (GIS) analysis, and historical information to identify active, semi‐active, and paleochannels and the sequence of shifting flow paths through the delta. The role of deposition patterns and antecedent morphology, large woody debris jams, and tectonic influences were given special attention. Sedimentation in the SARD is exacerbated by tectonic effects. Channel aggradation is ubiquitous, and superelevation of the channel bed above the level of backswamp areas on the floodplain is common. This creates ideal setup conditions for avulsions, and stable, cohesive fine‐grained banks favor avulsions rather than lateral migration. Flood basins between the alluvial ridges associated with the aggraded channels exist, but avulsions occur by re‐occupation of former channels found within or connected to the flood basins. Large woody debris and channel‐blocking log‐jams are common, and sometimes displace flow from the channel, triggering crevasses. However, a large, recurring log‐jam at the site of the ongoing avulsion from the San Antonio River into Elm Bayou is not responsible for the channel shift. Rather, narrow, laterally stable channels resulting from flow splits lead to accumulation of wood. Some aspects of the SARD avulsion regime are typical of other deltas, while others are more novel. These includes avulsions involving tributaries and subchannels within the delta as well as from the dominant channel; tectonic influences on delta backstepping and on channel changes within the delta; avulsions as an indirect trigger for log‐jam formation (as well as vice‐versa); and maintenance of a multi‐channel flow pattern distinct from classic anastamosing or distributary systems. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Since the end of the post‐glacial sea level rise 6800 years ago, progradation of river mouths into estuaries has been a global phenomenon. The responses of upstream alluvial river reaches to this progradation have received little attention. Here, the links between river mouth progradation and Holocene valley aggradation are examined for the Macdonald and Tuross Rivers in south‐eastern Australia. Optical and radiocarbon dating of floodplain sediments indicates that since the mid‐Holocene sea level highstand 6800 years ago vertical floodplain aggradation along the two valleys has generally been consistent with the rate at which each river prograded into its estuary. This link between river mouth progradation and alluvial aggradation drove floodplain aggradation for many tens of kilometres upstream of the estuarine limits. Both rivers have abandoned their main Holocene floodplains over the last 2000 years and their channels have contracted. A regional shift to smaller floods is inferred to be responsible for this change, though a greater relative sea level fall experienced by the Macdonald River since the mid‐Holocene sea level highstand appears to have been an additional influence upon floodplain evolution in this valley. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
Accommodation space in the unconfined distal part of low‐gradient fluvial fans facilitates abundant floodplain deposition. Here, the development of crevasse splays plays a key role in the aggradation of alluvial ridges and subsequent river avulsion. This study presents an analysis of different stages in the evolution of crevasse splays based on observations made in the modern‐day Río Colorado dryland fluvial fan fringing the endorheic Altiplano Basin in Bolivia. A generic life cycle is proposed in which crevasse‐splay channels adjust towards a graded equilibrium profile with their lower‐lying distal termini acting as a local base level. Initial development is dominantly controlled by the outflow of floodwater, promoting erosion near the crevasse apex and deposition towards the splay fringes. When proximal incision advances to below the maximum level of floodplain inundation, return flow occurs during the waning stage of flooding. This floodwater reflux leads to a temporary repositioning of the local base level to the deeper trunk‐channel thalweg at the apex of the crevasse‐splay channels. The resultant decrease in the floodplainward gradient of these channels ultimately leads to backfilling and abandonment of the crevasse splay, leaving a subtle local elevation of the floodplain. Consecutive splays form an alluvial ridge through lateral amalgamation and subsequent vertical stacking, which is mirrored by the aggradation of their parent channel floor. As this alluvial ridge becomes increasingly perched above the surrounding floodplain, splay equilibration may cause incision of the levee crevasse down to or below its trunk channel thalweg, leading to an avulsion. The mechanisms proposed in this study are relevant to fluvial settings promoting progradational avulsions. The relatively rapid accumulation rate and high preservation potential of crevasse splays in this setting makes them an important constituent of the resultant fluvial stratigraphy, amongst which are hydrocarbon‐bearing successions. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

4.
Red Creek, in the Red Desert area of the Great Divide Basin, Wyoming, is an arid-region anastomosing stream. The narrow, deep, and sinuous main channel is flanked by anastomosing flood channels, or anabranches. Most anabranches are initiated at meander bends. The primary mechanism of anabranch initiation is avulsion during overbank floods. Anabranch enlargement occurs by headward erosion. Anabranches act as distributary channels during floods, when water and sediment from overbank flows are transported to and deposited on the floodplain via the anabranches. During periods of low discharges, the anabranches act as tributaries to the main channel, transporting runoff from the floodplain and surrounding hillslopes to the main channel of Red Creek. Aggradation is occurring in the main channel and on the floodplain throughout the study reach. Infilling of the main channel occurs primarily by lateral accretion, while the floodplain accretes vertically through deposition of overbank sediment from the main channel and anabranches. Infilling of the main channel may cause avulsion of the main channel into an anabranch. The abandoned main channel segment may then fill completely or act as an anabranch. Because lateral migration of channels is inhibited by the high cohesion of the silt and clay channel sediment, periodic avulsion is the primary form of lateral mobility in the system.  相似文献   

5.
In 1820, the lower Canadian River meandered through a densely forested floodplain. By 1898, most of the floodplain had been cleared for agriculture and changes in channel geometry and specific stream power followed, particularly channel widening and straightening with a lower potential specific stream power. In 1964, a large upstream hydropower dam was constructed, which changed the flow regime in the lower Canadian River and consequently the channel geometry. Without destructive overbank floods, the channel narrowed rapidly and considerably due to encroachment by floodplain vegetation. The lower Canadian River, which was once a highly dynamic floodplain‐river system, has now been transformed into a relatively static river channel. These changes over the past 200 years have not been linear or independent. In this article, we use a variety of data sources to assess these historical changes along the lower Canadian River floodplain and identify feedbacks among floodplain cultivation, dam construction, specific stream power, and channel width, slope, and sinuosity. Finally, we combine the results of our study with others in the region to present a biogeomorphic response model for large Great Plains rivers that characterizes channel width changes in response to climate variability and anthropogenic disturbances. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
Anastomosing rivers have multiple interconnected channels that enclose flood basins. Various theories potentially explain this pattern, including an increased discharge conveyance and sediment transport capacity of multiple channels, deltaic branching, avulsion forced by base‐level rise, or a tendency to avulse due to upstream sediment overloading. The former two imply a stable anabranching channel pattern, whereas the latter two imply disequilibrium and evolution towards a single‐channel pattern in the absence of avulsion. Our objective is to test these hypotheses on morphodynamic scenario modelling and data of a well‐documented case study: the upper Columbia River. Proportions of channel and floodplain sediments along the river valley were derived from surface mapping. Initial and boundary conditions for the modelling were derived from field data. A 1D network model was built based on gradually varied flow equations, sediment transport prediction, mass conservation, transverse slope and spiral meander flow effects at the bifurcations. The number of channels and crevasse splays decreases in a downstream direction. Also, measured sediment transport is higher at the upstream boundary than downstream. These observations concur with bed sediment overloading from upstream, which can have caused channel aggradation above the surrounding floodplain and subsequent avulsion. The modelling also indicates that avulsion was likely caused by upstream overloading. In the model, multi‐channel systems inevitably evolve towards single‐channel systems within centuries. The reasons are that symmetric channel bifurcations are inherently unstable, while confluenced channels have relatively less friction than two parallel channels, so that more discharge is conveyed through the path with more confluences and less friction. Furthermore, the present longitudinal profile curvature of the valley could only be reproduced in the model by temporary overfeeding. We conclude that this anastomosing pattern is the result of time‐varying sediment overloading and is not an equilibrium pattern feature, and suggest this is valid for many anastomosing rivers. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
The process of channelization on river floodplains plays an essential role in regulating river sinuosity and creating river avulsions. Most channelization occurs within the channel belt (e.g. chute channels), but growing evidence suggests some channels originate outside of the channel‐belt in the floodplain. To understand the occurrence and prevalence of these floodplain channels we mapped 3064 km2 of floodplain in Indiana, USA using 1.5 m resolution digital elevation models (DEMs) derived from airborne light detection and ranging (LiDAR) data. We find the following range of channelization types on floodplains in Indiana: 6.8% of floodplain area has no evidence of channelization, 55.9% of floodplains show evidence (e.g. oxbow lakes) of chute‐channel activity in the channel belt, and 37.3% of floodplains contain floodplain channels that form long, coherent down‐valley pathways with bifurcations and confluences, and they are active only during overbank discharge. Whereas the first two types of floodplains are relatively well studied, only a few studies have recognized the existence of floodplain channels. To understand why floodplain channels occur, we compared the presence of channelization types with measured floodplain width, floodplain slope, river width, river meander rate, sinuosity, flooding frequency, soil composition, and land cover. Results show floodplain channels occur when the fluvial systems are characterized by large floodplain‐to‐river widths, relatively higher meandering rates, and are dominantly used for agriculture. More detailed reach‐scale mapping reveals that up to 75% of channel reaches within floodplain channels are likely paleo‐meander cutoffs. The meander cutoffs are connected by secondary channels to form floodplain channels. We suggest that secondary channels within floodplains form by differential erosion across the floodplain, linking together pre‐existing topographic lows, such as meander cutoffs. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
Instream flow science and management requires identification of characteristic hydrological, ecological, and geomorphological attributes of stream reaches. This study approaches this problem by identifying geomorphic transition zones along the lower Sabine River, Texas and Louisiana. Boundaries were delineated along the lower Sabine River valley based on surficial geology, valley width, valley confinement, network characteristics (divergent versus convergent), sinuousity, slope, paleomeanders, and point bars. The coincidence of multiple boundaries reveals five key transition zones separating six reaches of distinct hydrological and geomorphological characteristics. Geologic controls and gross valley morphology play a major role as geomorphic controls, as does an upstream‐to‐downstream gradient in the importance of pulsed dam releases, and a down‐to‐upstream gradient in coastal backwater effects. Geomorphic history, both in the sense of the legacy of Quaternary sea level changes, and the effects of specific events such as avulsions and captures, are also critical. The transition zones delineate reaches with distinct hydrological characteristics in terms of the relative importance of dam releases and coastal backwater effects, single versus multi‐channel flow patterns, frequency of overbank flow, and channel‐floodplain connectivity. The transitional areas also represent sensitive zones which can be expected to be bellwethers in terms of responses to future environmental changes. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
The dynamics and the surface evolution of a post‐LGM debris‐flow‐dominated alluvial fan (Tartano alluvial fan), which lies on the floor of an alpine valley (Valtellina, Northern Italy), have been investigated by means of an integrated study comprising geomorphological field work, a sedimentological study, photointerpretation, quantitative geomorphology, analysis of ancient to modern cartography and consultation of historical documents and records. The fan catchment meteoclimatic, geological and geomorphological characteristics result in fast rates of geomorphic reorganization of the fan surface (2 km2). The dynamics of the fan are determined by the alternation of low‐return period catastrophic alluvial events dominated by non‐cohesive debris flows triggered by extreme rainstorms which caused aggradation and steepening of the fan and avulsion of its main channel, with periods of low to moderate streamflow discharge punctuated by low‐ to intermediate‐magnitude flood events, causing slower but steady topographic reworking. The most ancient parts of the fan surface date back at least to the first half of the 19th century, but most of the fan surface has been restructured after 1911, mainly during the debris‐flow‐dominated events of 1911 and 1987. Phases of rapid fan toe incision and fan degradation have been recognized; since the 1930s or 1940s, the Tartano fan has been subjected to a state of deep entrenchment and narrowing of the main trunk channel and distributary area. Post‐Little Ice Age climate change and present‐day surface uplift rates have been considered as possible explanations for the observed geomorphic evolution, but tectonic or climatic controls cannot account for the order of magnitude of the erosional pace. Anthropogenic controls plausibly override the natural ones: in particular, the building of a dam in the late 1920s, about 2 km upstream of the fan, seems to have triggered fan dissection, having altered the sediment discharge through sediment retention. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
Mountain ranges are frequently subjected to mass wasting events triggered by storms or earthquakes and supply large volumes of sediment into river networks. Besides altering river dynamics, large sediment deliveries to alluvial fans are known to cause hydro‐sedimentary hazards such as flooding and river avulsion. Here we explore how the sediment supply history affects hydro‐sedimentary river and fan hazards, and how well can it be predicted given the uncertainties on boundary conditions. We use the 2D morphodynamic model Eros with a new 2D hydrodynamic model driven by a sequence of flood, a sediment entrainment/transport/deposition model and a bank erosion law. We first evaluate the model against a natural case: the 1999 Mount Adams rock avalanche and subsequent avulsion on the Poerua river fan (West Coast, New Zealand). By adjusting for the unknown sediment supply history, Eros predicts the evolution of the alluvial riverbed during the first post‐landslide stages within 30 cm. The model is subsequently used to infer how the sediment supply volume and rate control the fan aggradation patterns and associated hazards. Our results show that the total injected volume controls the overall levels of aggradation, but supply rates have a major control on the location of preferential deposition, avulsion and increased flooding risk. Fan re‐incision following exhaustion of the landslide‐derived sediment supply leads to sediment transfer and deposition downstream and poses similar, but delayed, hydro‐sedimentary hazards. Our results demonstrate that 2D morphodynamics models are able to capture the full range of hazards occurring in alluvial fans including river avulsion aggradation and floods. However, only ensemble simulations accounting for uncertainties in boundary conditions (e.g., discharge history, initial topography, grain size) as well as model realization (e.g., non‐linearities in hydro‐sedimentary processes) can be used to produce probabilistic hazards maps relevant for decision making. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

11.
Alluvial rivers are composed of self-formed channels which are sensitive to disturbances in their flow and sediment-supply regimes. Regime changes commonly occur over decadal and longer timescales and can be caused by anthropogenic alterations such as dam construction and removal. Advances in numerical modeling have increased our ability to explore geomorphic adjustments over long timescales; however, many models designed to be run for decades or longer assume that banks are immovable or that channel width is constant. Since river channels often respond to disturbance by adjusting their geometry, this is a significant shortcoming. To investigate the impact of long-term sediment supply alterations on channel geometry and stability, we have adapted MAST-1D, a reach-scale bed evolution model, to incorporate functions for bank erosion, vegetation encroachment, and local avulsions. The model is designed for medium-large, coarse multithreaded rivers and can be run over long (decades–centuries) timescales. Bank erosion is a function of the mobility and transport capacity for structurally-important grains which protect the bank toe. Vegetation growth is proportional to point bar width and occurs during conditions of low shear stress. Local avulsions occur when aggradation causes channel depth to drop below a threshold. We apply the model to the Elwha River in Washington, USA with the goal of investigating if and when the river recovers from dam emplacement and removal. The Elwha was dammed for nearly 100 years, and then two dams were removed, releasing a large pulse of sediment. We have modeled the set of reaches between the two dams. Our simulations suggest that channel response to dam emplacement occurs gradually over several decades but that the channel recovers to near pre-dam conditions within about a decade following the removal. The dams leave a lasting legacy on the floodplain, which does not completely recover, even after two centuries. © 2019 John Wiley & Sons, Ltd.  相似文献   

12.
It is often believed that extreme but infrequent events are most important in the development of landforms. When evaluating the overall effect of large floods on floodplain sedimentation, quantitative measurements of both high- and low-magnitude events should be considered. To analyse the role of flood magnitude on floodplain sedimentation, we measured overbank sedimentation during floods of different magnitude and duration. The measurements were carried out on two embanked floodplain sections along the rivers Rhine and Meuse in The Netherlands, using sediment traps made of artificial grass. The results showed an increase in total sediment accumulation with flood magnitude, mainly caused by enhanced accumulation of sand. At low floodplain sections the increase in sediment deposition was smaller than expected from the strong increase in suspended sediment transport in the river. Spatial variability in sediment accumulation was found to depend both on flood magnitude and duration. Deposition of sand on natural levees mainly takes place during high-magnitude floods, whilst low floods and slowly receding floods are important for the deposition of silt and clay in low-lying areas, at greater distance from the main channel. © 1998 John Wiley & Sons, Ltd.  相似文献   

13.
Avulsions – relatively sudden changes in course, or establishment of new anabranches – are an important process in alluvial rivers. Their key role in floodplain construction and alluvial architecture, and the general conditions favouring avulsions, are well known. However, avulsion processes and evolution, and the factors controlling avulsion regimes, are poorly understood. In the southeast Texas coastal plain, where avulsions are common features of the river valleys, avulsions were studied on the lower Brazos, Navasota, Trinity, Neches and Sabine rivers using a combination of aerial imagery, digital elevation models and field surveys. Avulsions have important influences on the surface morphology and contemporary processes in all five rivers. Features associated with avulsions are active and distinct throughout the study area, and all the rivers have experienced geologically (if not historically) recent avulsions. However, no two of the study rivers have the same contemporary avulsion regime. First‐order differences in avulsion style are controlled by the stage of valley filling, and within the three rivers characterized by an unfilled incised valley, antecedent morphology associated with late Quaternary and Holocene coastal and fluvial‐deltaic processes accounts for the major differences. In the Navasota (27 avulsions in 185 km) and Neches (21 in 340 km) rivers, subchannels associated with avulsions exist in all stages of development from active to infilled, and some have occurred in recent decades. The other rivers have fewer avulsions, but both the Sabine and Trinity have experienced historic channel shifts. Only the Brazos River has experienced no avulsions within the past c. 300 years. Results show that even within a region of similar environmental controls and geological history local variations in inherited morphology can result in different avulsion regimes. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
Crevasse splays are common geomorphological features in alluvial and deltaic floodplains. Although crevasse splays can develop into full avulsions, thereby transforming large areas of floodbasins, little is known about their sedimentary and geomorphological development at the decadal scale and their avulsion potential. We used aerial photography and lithological cross‐sections to reconstruct crevasse‐splay formation in the largely unmanaged floodplain of the Saskatchewan River in the Cumberland Marshes (Saskatchewan, Canada). Based on surface geomorphology and subsurface deposits, various stages of crevasse‐splay development were described which were linked to both external forcing and internal morphodynamics. Initial splay deposition, following a levee breach during a large flood, occurred as a broad but relatively thin sandy sheet in a down‐basin direction in the receiving backswamp area. In a next phase, these primary crevasse‐splay deposits blocked local down‐basin flow, thereby forcing the crevasse‐splay channel in a direction perpendicular to the parent channel and original floodbasin gradient. This created an asymmetrical splay sequence composition, which differs in appearance from more commonly observed dendritic crevasse splays. It is concluded that sedimentation patterns in the splay have been influenced by inherited effects of previously formed deposits. Feedbacks of the original floodbasin gradient and earlier stages of splay formation are suggested as prominent mechanisms in creating the current morphology, orientation, and architecture of its deposits. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Haiyan Yang 《水文研究》2020,34(17):3702-3717
Gravel-bed braided rivers are highly energetic fluvial systems characterized by frequent in-channel avulsions, which govern the morphodynamics of such rivers and are essential for them to maintain a braided planform. However, the avulsion mechanisms within natural braided rivers remain unclear due to their complicated hydraulic and morphodynamic processes. Influenced by neighbouring channels, avulsions in braided rivers may differ from those of bifurcations in single-thread rivers, suggesting that avulsions should be studied within the context of the entire braid network. In this study, braiding evolution processes in gravel-bed rivers were simulated using a physics-based numerical model that considers graded bed-load transport by dividing sediment particles into multiple size fractions and vertical sediment sorting by dividing the riverbed into several vertical layers. The numerical model successfully produced braiding processes and avulsion activities similar to those observed in a laboratory river. Results show that bend evolution of the main channel was the fundamental process controlling the occurrence of avulsions in the numerical model, with a cyclic process of channel meandering by lateral migration that transitioned to a straight channel pattern by avulsion. The radius of bend curvature for triggering avulsions in the numerical model was measured and it was found that the highest probability for a channel bend to generate an avulsion occurs when its radius of curvature is approximately 2.0–3.3 times the average anabranch width. Other types of avulsion were also observed that did not occur specifically at meander bends, but upstream meander evolution indirectly influenced such avulsions by altering channel pattern and discharge to those locations. This study explored the processes and mechanisms of several types of avulsion, and proposed factors controlling their occurrence, namely increasing channel curvature, high shear stress, tributary discharge, riverbed gradient and upstream channel pattern, with high shear stress being a direct indicator. Furthermore, avulsions in a typical gravel-bed braided river, the Waimakariri River in New Zealand, were analysed using sequential Google Earth maps, which confirmed the conclusions derived from the numerical simulation.  相似文献   

16.
Although river confluences have received geomorphic attention in recent years it is difficult to upscale these studies, so confluence‐dominated reaches are commonly presumed to be either: (1) braided; or (2) meandering and characterized by laterally migrating channels. If the geomorphology of a confluence zone is to be considered over longer timescales, changes in river style need to be taken into account. This paper uses a combination of remote sensing techniques (LiDAR, GPR, ER), borehole survey and chronometric dating to test this differentiation in the confluence‐zone of a medium‐sized, mixed‐load, temperate river system (Trent, UK), which on the basis of planform evidence appears to conform to the meandering model. However, the analysis of ‘confluence sediment body stratigraphy’ demonstrates that the confluence does not correspond with a simple meander migration model and chronostratigraphic data suggests it has undergone two major transformations. Firstly, from a high‐energy braid‐plain confluence in the Lateglacial (25–13 K yrs cal BP), to a lower‐energy braided confluence in the early to middle Holocene (early Holocene‐2.4 kyr BP), which created a compound terrace. Second, incision into this terrace, creating a single‐channel confluence (2.4–0.5 kyr cal BP) with a high sinuosity south bank tributary (the River Soar). The confluence sediment‐body stratigraphy is characterized by a basal suite of Late Pleistocene gravels bisected by younger channel fills, which grade into the intervening levee and overbank sediments. The best explanation for the confluence sediment body stratigraphy encountered is that frequent switching (soft‐avulsions sensu Edmonds et al., 2011) of the tributary are responsible for the downstream movement of the channel confluence (at an average rate of approximately 0.5 m per year) dissecting and reworking older braid‐plain sediments. The late Holocene evolution of the confluence can be seen as a variant of the incisional‐frequent channel reorganization (avulsion) model with sequential downstream migration of the reattachment point. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
The channel boundary conditions along the Lower Yellow River (LYR) have been altered significantly since the 1950s with the continual reinforcement and construction of both main and secondary dykes and river training works. To evaluate how the confined complex channel–floodplain system of the LYR responds to floods, this study presents a detailed investigation of the relationship between the tempo‐spatial distribution of sedimentation/erosion and overbank floods occurred in the LYR. For large overbank floods, we found that when the sediment transport coefficient (ratio of sediment concentration of flow to flow discharge) is less than 0.034, the bankfull channel is subject to significant erosion, whereas the main and secondary floodplains both accumulate sediment. The amount of sediment deposited on the main and secondary floodplains is closely related to the ratio of peak discharge to bankfull discharge, volume of water flowing over the floodplains, and sediment concentration of overbank flow, whereas the degree of erosion in the bankfull channel is related to the amount of sediment deposited on the main and secondary floodplains, water volume, and sediment load in flood season. The significant increase in erosion in the bankfull channel is due to the construction of the main and secondary dykes and river training works, which are largely in a wide and narrow alternated pattern along the LYR such that the water flowing over wider floodplains returns to the channel downstream after it drops sediment. For small overbank floods, the bankfull channel is subject to erosion when the sediment transport coefficient is less than 0.028, whereas the amount of sediment deposited on the secondary floodplain is associated closely with the sediment concentration of flow. Over the entire length of the LYR, the situation of erosion in the bankfull channel and sediment deposition on the main and secondary floodplains occurred mainly in the upper reach of the LYR, in which a channel wandering in planform has been well developed.  相似文献   

18.
Slow earth sliding is pervasive along the concave side of Red River meanders that impinge on Lake Agassiz glaciolacustrine deposits. These failures form elongated, low‐angled (c. 6 to 10°) landslide zones along the valleysides. Silty overbank deposits that accumulated during the 1999 spring freshet extend continuously along the landslide zones over hundreds of metres and aggraded the lower slopes over a distance 50 to 80 m from the channel margin. The aggradation is not obviously related to meander curvature or location within a meander. Along seven slope profiles surveyed in 1999 near Letellier, Manitoba, the deposits locally are up to 21 cm thick and generally thin with increasing distance from, and height above, the river. Local deposit thickness relates to distance from the channel, duration of inundation of the landslide surface, mesotopography, and variations in vegetation cover. Immediately adjacent to the river, accumulated overbank deposits are up to 4 m thick. The 1999 overbank deposits also were present along the moderately sloped (c. 23 to 27°) concave banks eroding into the floodplain, but the deposits are thinner (locally up to c. 7 cm thick) and cover a narrower area (10 to 30 m wide) than the deposits within the landslide zones. Concave overbank deposition is part of a sediment reworking process that consists of overbank aggradation on the landslide zones, subsequent gradual downslope displacement from earth sliding, and eventually reworking by the river at the toe of the landslide. The presence of the deposits dampens the outward migration of the meanders and contributes to a low rate of contemporary lateral channel migration. Concave overbank sedimentation occurs along most Red River meanders between at least Emerson and St. Adolphe, Manitoba. © Her Majesty the Queen in right of Canada.  相似文献   

19.
The evolution of meandering river floodplains is predominantly controlled by the interplay between overbank sedimentation and channel migration. The resulting spatial heterogeneity in floodplain deposits leads to variability in bank erodibility, which in turn influences channel migration and planform development. Despite the potential significance of these feedbacks, few studies have quantified their impact upon channel evolution and floodplain construction in dynamic settings (e.g. locations characterized by rapid channel migration and high rates of overbank sedimentation). This study employs a combination of field observations, geographic information system (GIS) analysis of satellite imagery and numerical modelling to investigate these issues along a 375 km reach of the Rio Beni in the Bolivian Amazon. Results demonstrate that the occurrence of clay‐rich floodplain deposits promotes a significant reduction in channel migration rates and distinctive styles of channel evolution, including channel straightening and immobilization of bend apices leading to channel narrowing. Clay bodies act as stable locations limiting the propagation of planform disturbances in both upstream and downstream directions, and operate as ‘hinge’ points, around which the channel migrates. Spatial variations in the erodibility of clay‐rich floodplain material also promote large‐scale (10–50 km) differences in channel sinuosity and migration, although these variables are also likely to be influenced by channel gradient and tectonic effects that are difficult to quantify. Numerical model results suggest that spatial heterogeneity in bank erodibility, driven by variable bank composition, may force a substantial (c. 30%) reduction in average channel sinuosity, compared to situations in which bank strength is spatially homogeneous. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Relative to those at sub‐bankfull flow, hydraulic conditions at overbank flow, whether in the channel or on the floodplain, are poorly understood. Here, velocity conditions are analysed over an unusually wide range of flows in the arid zone river of Cooper Creek with its complex system of anastomosing channels and large fluctuations in floodplain width. At‐a‐station hydraulic geometry relationships reveal sharp discontinuities in velocity at the inbank–overbank transition, the nature of the discontinuity varying with the degree of flow confinement and the level of channel–floodplain interaction. However, despite inter‐sectional differences, velocities remain modest throughout the flow range in this low‐gradient river, and the large increases in at‐a‐station discharge are principally accommodated by changes in cross‐sectional area. Velocity distribution plots suggest that within‐channel conditions during overbank flow are characterized by a central band of high velocity which penetrates far toward the bed, helping to maintain already deep cross‐sections. Floodplain resistance along Cooper Creek is concentrated at channel bank tops where vegetation density is highest, and the subsequent flow retardation is transmitted across the surface of the channels over distances as large as 50–70 m. The rough floodplain surface affects flood wave transmission, producing significant decreases in wave speeds downstream. The character of the wave‐speed–discharge relationship also changes longitudinally, from log–linear in the upper reaches to nonlinear where the floodplain broadens appreciably. The nonlinear form is similar in several respects to relationships proposed for more humid rivers, with flood wave speed reaching an intermediate maximum at about four‐fifths bankfull discharge before decreasing to a minimum at approximately Q2·33. It does not regain the value at the intermediate maximum until the 10 year flood, by which time floodplain depths have become relatively large and broad floodways more active. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号