首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Geofísica Internacional》2014,53(3):333-341
Escollos Alijos is a large seamount located in the NE Pacific Ocean about 300 km off the Baja California Peninsula. Geochronology and geochemical analysis of volcanic rocks capping the seamount indicate recent magmatism that resulted from extensive differentiation of a mildly alkalic basalt parent magma.Escollos Alijos is located towards the eastern edge of a long-wavelength geoid undulation minimum, of up to -47 m with respect of the WGS84 ellipsoid, which extends over the northeastern Pacific Ocean. Subtracting from the geoid undulation its long-wavelength component and the undulation due to the seamount topography itself, a negative undulation anomaly persists that indicates a mass deficit at depth. Linear inversion of the undulation anomaly yields a region characterized by a negative density contrast, localized under the seamount at a depth between 9 and 13 km.The age and chemical composition of Escollos Alijos, and the inferred mass deficit suggest magma trapped between the oceanic crust and the uppermost mantle, which explains the magmatic activity in recent times.  相似文献   

2.
In order to better understand the nature and formation of oceanic lithosphere beneath the Early Cretaceous Ontong Java Plateau, Re–Os isotopes have been analysed in a suite of peridotite xenoliths from Malaita, Solomon Islands. Geological, thermobarometric and petrological evidence from previous studies reveal that the xenoliths represent virtually the entire thickness of the southern part of subplateau lithospheric mantle (< 120 km). This study demonstrates that vertical Os isotopic variations correlate with compositional variations in a stratified lithosphere. The shallowest plateau lithosphere (< 85 km) is dominated by fertile lherzolites showing a restricted range of 187Os/188Os (0.1222 to 0.1288), consistent with an origin from ~ 160 Ma Pacific lithosphere. In contrast, the basal section of subplateau lithospheric mantle (~ 95–120 km) is enriched in refractory harzburgites with highly unradiogenic 187Os/188Os ratios ranging from 0.1152 to 0.1196, which yield Proterozoic model ages of 0.9–1.7 Ga. Although the whole range of Os isotope compositions of Malaita peridotites is within the variations seen in modern abyssal peridotites, the contrasting isotopic compositions of shallow and deep plateau lithosphere suggest their derivation from different mantle reservoirs. We propose that the subplateau lithosphere forms a genetically unrelated two-layered structure, comprising shallower, typical oceanic lithosphere underpinned by deeper impinged material, which included a component of recycled Proterozoic lithosphere. The impingement of residual but chemically heterogeneous mantle, mechanically coupled to the recently formed, thin lithosphere, may have a bearing on the anomalous initial uplift and late subsidence history of the seismically anomalous plateau root.  相似文献   

3.
A new conceptual model of mantle convection is constructed for consideration of the origin of hotspot plumes, using recent evidence from seismology, high-pressure experiments, geodynamic modeling, geoid inversion studies, and post-glacial rebound analyses. This conceptual model delivers several key points. Firstly, some of the small-scale mantle upwellings observed as hotspots on the Earth's surface originate at the base of the mantle transition zone (MTZ), in which the Archean granitic continental material crust (TTG; tonalite-trondhjemite-granodiorite) with abundant radiogenic elements is accumulated. Secondly, the TTG crust and the subducted oceanic crust that have accumulated at the base of MTZ could act as thermal or mechanical insulators, leading to the formation of a hot and less viscous layer just beneath the MTZ; which may enhance the instability of plume generation at the base of the MTZ. Thirdly, the origin of some hotspot plumes is isolated from the large low shear-wave velocity provinces (LLSVPs) under Africa and the South Pacific. I consider that the conceptual model explains why almost all the hotspots around Africa are located above the margins of the African LLSVP. Because a planetary-scale trench system surrounding a “Pangean cell” has been spatially stable throughout the Phanerozoic, a large amount of the oceanic crustal layer is likely to be trapped in the MTZ under the Pangean cell. Therefore, under Africa, almost all of the hotspot plumes originate from the base of the MTZ, where a large amount of TTG and/or oceanic crusts has accumulated. This conceptual model may explain the fact that almost all the hotspots around Africa are located on margins above the African LLSVP. It is also considered that some of the hotspot plumes under the South Pacific thread through the TTG/oceanic crusts accumulated around the bottom of the MTZ, and some have their roots in the South Pacific LLSVP while others originate from the MTZ. The numerical simulations of mantle convection also speculate that the Earth's mantle convection is not thermally double-layered at the ringwoodite to perovskite + magnesiowüstite (Rw  Pv + Mw) phase boundary, because of its gentle negative Clapeyron slope. This is in contrast with some traditional images of mantle convection that have independent convection cells between the upper and lower mantle. These numerical studies speculate that the generation of stagnant slab at the base of the MTZ (as seismically observed globally) may not be due to the negative Clapeyron slope, and may instead be related to a viscosity increase (i.e., a viscosity jump) at the Rw  Pv + Mw phase boundary, or to a chemically stratified boundary between the upper and the lower mantle, as suggested by a recent high-pressure experiment.  相似文献   

4.
We analyzed receiver-function data recorded by a temporary broadband array deployed as part of the BOLIVAR project and the permanent seismic network of Venezuela to study the mantle transition zone structure beneath the Caribbean-South American plate boundary and Venezuela. Significant topography on both the 410-km and the 660-km discontinuities was clearly imaged in the CCP (common-conversion-point) stacked images. Beneath the southeastern Caribbean, the 410-km is featured by a narrow (~ 200 km EW) ~ 25-km uplift extending in the NS direction around 63° west, while the 660-km is depressed by ~ 20 km in a narrow region slightly west to the uplift, a scenario that is more consistent with westward descent of the oceanic South American plate rather than a break-off of NNW dipping proto-Caribbean oceanic lithosphere along the El Pilar Fault. We also found a thick transition zone beneath the Falcon region in northwestern Venezuela, possibly associated with the subducted Nazca plate. A flat 410-km was observed beneath the Guayana shield, suggesting that the shield has a stable and moderately deep keel, which has little effect on the underlying transition zone structure.  相似文献   

5.
Two-dimensional crustal velocity models are derived from passive seismic observations for the Archean Karelian bedrock of north-eastern Finland. In addition, an updated Moho depth map is constructed by integrating the results of this study with previous data sets. The structural models image a typical three-layer Archean crust, with thickness varying between 40 and 52 km. P wave velocities within the 12–20 km thick upper crust range from 6.1 to 6.4 km/s. The relatively high velocities are related to layered mafic intrusive and volcanic rocks. The middle crust is a fairly homogeneous layer associated with velocities of 6.5–6.8 km/s. The boundary between middle and lower crust is located at depths between 28 and 38 km. The thickness of the lower crust increases from 5–15 km in the Archean part to 15–22 km in the Archean–Proterozoic transition zone. In the lower crust and uppermost mantle, P wave velocities vary between 6.9–7.3 km/s and 7.9–8.2 km/s. The average Vp/Vs ratio increases from 1.71 in the upper crust to 1.76 in the lower crust.The crust attains its maximum thickness in the south-east, where the Archean crust is both over- and underthrust by the Proterozoic crust. A crustal depression bulging out from that zone to the N–NE towards Kuusamo is linked to a collision between major Archean blocks. Further north, crustal thickening under the Salla and Kittilä greenstone belts is tentatively associated with a NW–SE-oriented collision zone or major shear zone. Elevated Moho beneath the Pudasjärvi block is primarily explained with rift-related extension and crustal thinning at ∼2.4–2.1 Ga.The new crustal velocity models and synthetic waveform modelling are used to outline the thickness of the seismogenic layer beneath the temporary Kuusamo seismic network. Lack of seismic activity within the mafic high-velocity body in the uppermost 8 km of crust and relative abundance of mid-crustal, i.e., 14–30 km deep earthquakes are characteristic features of the Kuusamo seismicity. The upper limit of seismicity is attributed to the excess of strong mafic material in the uppermost crust. Comparison with the rheological profiles of the lithosphere, calculated at nearby locations, indicates that the base of the seismogenic layer correlates best with the onset of brittle to ductile transition at about 30 km depth.We found no evidence on microearthquake activity in the lower crust beneath the Archean Karelian craton. However, a data set of relatively well-constrained events extracted from the regional earthquake catalogue implies a deeper cut-off depth for earthquakes in the Norrbotten tectonic province of northern Sweden.  相似文献   

6.
A temporary seismological network of broadband three-component stations has been deployed N–S to investigate the crust and upper mantle structure across the Ordos Block and the Yinshan Mountains. P wave receiver functions reveal the Moho depth to be about 41 km beneath the central Ordos Block and down to 45 km beneath the northern Ordos Block, a slight uplifting to 42–43 km beneath the Hetao Graben, increasing to 47–48 km beneath the Yinshan Mountains and then decreasing to 44 km beneath the northern Yinshan Mountains along the profile. In the Ordos Block, the crustal Vp/Vs ratio (about 1.80) south to the Hetao Graben differs from that (about 1.75) beneath the center Ordos Block. The crustal Vp/Vs ratio is significantly lower (about 1.65–1.70) beneath the Yinshan Mountains. The P wave receiver function migration imaging suggests relatively flat discontinuities at 410 and 660 km, indicating the lack of a strong thermal anomaly beneath this profile at these depths, and a low S wave velocity anomaly in the upper mantle beneath the Hetao Graben. We suggest that the low S wave velocity anomaly may be attributable to heat and that the thermal softening advances the evolution of the Hetao Graben, while the lower-crustal ductile flows transfer from the Hetao Graben to the northern Ordos Block, resulting in crustal thickening.  相似文献   

7.
The Pannonian depression is an extensional back-arc basin in central Europe and is an integral part of the Alpine–Carpathian orogenic mountain belts. It can be characterized by thinned lower crust, shallow Moho discontinuity, high surface heat flow and Moho temperature, implying recent active tectonic processes. Imaging the velocity structure of the upper mantle may help us to better understand the structure and formation of the Pannonian region.In this paper, Pn traveltimes from regional earthquakes are used to tomographically image the lateral velocity variations in the uppermost mantle beneath the Pannonian basin. The set of linear tomographic equations, built up of the time term equation for each source–receiver pair, is solved by a truncated singular value decomposition algorithm. The explicit computation of the generalized inverse of the tomographic equations makes it possible to deduce both the resolution matrix and the model covariance matrix, allowing us to estimate the resolution and reliability of the solution.The mean compressional wave velocity in the uppermost mantle beneath the Pannonian basin is 7.9 km/s, substantially lower than the average continental Pn velocity of 8.1 km/s. It is mostly due to the high Moho temperature having values on average 400–500 °C more than those in the surrounding areas. The velocity anomalies range from −0.3 to 0.3 km/s relative to the mean velocity of 7.9 km/s. Due to high Moho temperature, below the North Hungarian range low (7.6–7.7 km/s) velocities can be found. High-velocity anomalies of around 8.1 km/s can be detected along the W-SW boundaries of Hungary and at the junction of the Pannonian basin and the Southern Carpathians. The Great Hungarian Plain shows average (7.9 km/s) Pn velocities.  相似文献   

8.
We provide new petrological evidence for the strong influence of water on the formation of the oceanic lithospheric mantle, the subcontinental mantle above, and the continental lithosphere. Our analysis throws new light on the hypothesis that new continental lithosphere was formed by the passage of silicate-rich aqueous fluid through the sub-continental mantle. In order to investigate this hypothesis, we analyzed a representative collection of lherzolite and harzburgite xenoliths from the sample volcano known as “The Thumb”, located in the center of the Colorado Plateau, western United States. The studied sample collection exhibits multi-stage water enrichment processes along point, line and planar defect structures in nominally anhydrous minerals and the subsequent formation of the serpentine polymorph antigorite along grain boundaries and in totally embedded annealed cracks. Planar defect structures act like monomineralic and interphase grain boundaries in the oceanic lithosphere and the subcontinental mantle beneath the North American plate, which was hydrated by the ancient oceanic Farallon plate during the Cenozoic and Mesozoic eras. We used microspectroscopical, petrological, and seismological techniques to confirm multi-stage hydration from a depth of ∼150 km to just below the Moho depth. High-resolution mapping of the water distribution over homogeneous areas and fully embedded point, line and planar defects in olivine crystals of lherzolitic and harzburgitic origin by synchrotron infrared microspectroscopy enabled us to resolve local wet spots and thus reconstruct the hydration process occurring at a depth of ∼150 km (T  1225 °C). These lherzolites originated from the middle part of the Farallon mantle slab; they were released during the break up of the Farallon mantle slab, caused by the instability of the dipping slab. The background hydration levels in homogeneous olivines reached ∼138 ppm wt H2O, and the water concentration at the planar defects could reach up to ∼1000 ppm wt H2O. However, the formation of antigorite in grain boundaries was found to be the primary hydration mechanism for harzburgitic samples originating from the subcontinental mantle (for hydration, T  600 °C). Additionally, the formation of antigorite in lherzolites could be found in annealed cracks. From these observations, we conclude that hydration induces multi-stage water enrichment of the mantle wedge by a process that is dominated by the growth and movement of ubiquitous cracks, which acts as planar defects. Cracks in the mantle seem to be the an important feature in both the water cycle of the subduction zone and the formation of the continental lithosphere.  相似文献   

9.
Inversion of local earthquake travel times and joint inversion of receiver functions and Rayleigh wave group velocity measurements were used to derive a simple model for the velocity crustal structure beneath the southern edge of the Central Alborz (Iran), including the seismically active area around the megacity of Tehran. The P and S travel times from 115 well-located earthquakes recorded by a dense local seismic network, operated from June to November 2006, were inverted to determine a 1D velocity model of the upper crust. The limited range of earthquake depths (between 2 km and 26 km) prevents us determining any velocity interfaces deeper than 25 km. The velocity of the lower crust and the depth of the Moho were found by joint inversion of receiver functions and Rayleigh wave group velocity data. The resulting P-wave velocity model comprises an upper crust with 3 km and 4 km thick sedimentary layers with P wave velocities (Vp) of ~5.4 and ~5.8 km s?1, respectively, above 9 km and 8 km thick layers of upper crystalline crust (Vp ~6.1 and ~6.25 km s?1 respectively). The lower crystalline crust is ~34 km thick (Vp  6.40 km s?1). The total crustal thickness beneath this part of the Central Alborz is 58 ± 2 km.  相似文献   

10.
Modeling of multimode surface wave group velocity dispersion data sampling the eastern and the western Ganga basins, reveals a three layer crust with an average Vs of 3.7 km s?1, draped by ~2.5 km foreland sediments. The Moho is at a depth of 43 ± 2 km and 41 ± 2 km beneath the eastern and the western Ganga basins respectively. Crustal Vp/Vs shows a felsic upper and middle crust beneath the eastern Ganga basin (1.70) compared to a more mafic western Ganga basin crust (1.77). Due to higher radiogenic heat production in felsic than mafic rocks, a lateral thermal heterogeneity will be present in the foreland basin crust. This heterogeneity had been previously observed in the north Indian Shield immediately south of the foreland basin and must also continue northward below the Himalaya. The high heat producing felsic crust, underthrust below the Himalayas could be an important cause for melting of midcrustal rocks and emplacement of leucogranites. This is a plausible explanation for abundance of leucogranites in the east-central Himalaya compared to the west. The uppermost mantle Vs is also significantly lower beneath the eastern Ganga basin (4.30 km s?1) compared to the west (4.44 km s?1).  相似文献   

11.
We present fundamental-mode Rayleigh-wave azimuthally anisotropic phase velocity maps obtained for the Great Basin region at periods between 16 s and 102 s. These maps offer the first depth constraints on the origin of the semi-circular shear-wave splitting pattern observed in central Nevada, around a weak azimuthal anisotropy zone. A variety of explanations have been proposed to explain this signal, including an upwelling, toroidal mantle flow around a slab, lithospheric drip, and a megadetachment, but no consensus has been reached. Our phase velocity study helps constrain the three-dimensional anisotropic structure of the upper mantle in this region and contributes to a better understanding of the deformation mechanisms taking place beneath the western United States. The dispersion measurements were made using data from the USArray Transportable Array. At periods of 16 s and 18 s, which mostly sample the crust, we find a region of low anisotropy in central Nevada coinciding with locally reduced phase velocities, and surrounded by a semi-circular pattern of fast seismic directions. Away from central Nevada the fast directions are ~ N–S in the eastern Great Basin, NW–SE in the Walker Lane region, and they transition from E–W to N–S in the northwestern Great Basin. Our short-period phase velocity maps, combined with recent crustal receiver function results, are consistent with the presence of a semi-circular anisotropy signal in the lithosphere in the vicinity of a locally thick crust. At longer periods (28–102 s), which sample the uppermost mantle, isotropic phase velocities are significantly reduced across the study region, and fast directions are more uniform with an ~ E–W fast axis. The transition in phase velocities and anisotropy can be attributed to the lithosphere–asthenosphere boundary at depths of ~ 60 km. We interpret the fast seismic directions observed at longer periods in terms of present-day asthenospheric flow-driven deformation, possibly related to a combination of Juan de Fuca slab rollback and eastward-driven mantle flow from the Pacific asthenosphere. Our results also provide context to regional SKS splitting observations. We find that our short-period phase velocity anisotropy can only explain ~ 30% of the SKS splitting times, despite similar patterns in fast directions. This implies that the origin of the regional shear-wave splitting signal is complex and must also have a significant sublithospheric component.  相似文献   

12.
《Journal of Geodynamics》2008,45(3-5):149-159
Locations of the Eger Rift, Cheb Basin, Quaternary volcanoes, crustal earthquake swarms and exhalation centers of CO2 and 3He of mantle origin correlate with the tectonic fabric of the mantle lithosphere modelled from seismic anisotropy. We suggest that positions of the seismic and volcanic phenomena, as well as of the Cenozoic sedimentary basins, correlate with a “triple junction” of three mantle lithospheres distinguished by different orientations of their tectonic fabric consistent within each unit. The three mantle domains most probably belong to the originally separated microcontinents – the Saxothuringian, Teplá-Barrandian and Moldanubian – assembled during the Variscan orogeny. Cenozoic extension reactivated the junction and locally thinned the crust and mantle lithosphere. The rigid part of the crust, characterized by the presence of earthquake foci, decoupled near the junction from the mantle probably during the Variscan. The boundaries (transitions) of three mantle domains provided open pathways for Quaternary volcanism and the ascent of 3He- and CO2-rich fluids released from the asthenosphere. The deepest earthquakes, interpreted as an upper limit of the brittle–ductile transition in the crust, are shallower above the junction of the mantle blocks (at about 12 km) than above the more stable Saxothuringian mantle lithosphere (at about 20 km), probably due to a higher heat flow and presence of fluids.  相似文献   

13.
We have studied the dependency between incoming plate structure, bending-related faulting, lithospheric hydration, and outer rise seismic activity offshore Maule, Chile. We derived a 2D Poisson's ratio distribution from P- and S-wave seismic wide angle data collected in the trench-outer rise. High values of Poisson's ratio in the uppermost mantle suggest that the oceanic lithosphere is highly hydrated due to the water infiltration through bending-related normal faults outcropping at the seafloor. This process is presumably facilitated by the presence of a seamount in the area. We conclude that water infiltrates deep into the lithosphere, when it approaches the Chile trench, producing a reduction of crustal and upper mantle velocities, supporting serpentinization of the upper mantle. Further, we observed a mantle Vp anisotropy of 8%, with the fast velocity axis running normal to the abyssal hill fabric and hence in spreading direction, indicating that outer rise processes have yet not affected anisotropy.The first weeks following the megatrust Mw = 8.8 Maule earthquake in 2010 were characterized by a sudden increase of the outer rise seismic activity, located between 34° S and 35°30′ S. We concluded that this phenomenon is a result of an intensification of the water infiltration process in the outer rise, presumably triggered by the main shock, whose epicenter was located some 100 km to the south east of the cluster.  相似文献   

14.
Miocene to Quaternary large basaltic plateaus occur in the back-arc domain of the Andean chain in Patagonia. They are thought to result from the ascent of subslab asthenospheric magmas through slab windows generated from subducted segments of the South Chile Ridge (SCR). We have investigated three volcanic centres from the Lago General Carrera–Buenos Aires area (46–47°S) located above the inferred position of the slab window corresponding to a segment subducted 6 Ma ago. (1) The Quaternary Río Murta transitional basalts display major, trace elements, and Sr and Nd isotopic features similar to those of oceanic basalts from the SCR and from the Chile Triple Junction near Taitao Peninsula (e.g., (87Sr/86Sr)o = 0.70396–0.70346 and εNd = + 5.5  + 3.0). We consider them as derived from the melting of a Chile Ridge asthenospheric mantle source containing a weak subduction component. (2) The Plio-Quaternary (< 3.3 Ma) post-plateau basanites from Meseta del Lago Buenos Aires (MLBA), Argentina, likely derive from small degrees of melting of OIB-type mantle sources involving the subslab asthenosphere and the enriched subcontinental lithospheric mantle. (3) The main plateau basaltic volcanism in this region is represented by the 12.4–3.3-Ma-old MLBA basalts and the 8.2–4.4-Ma-old basalts from Meseta Chile Chico (MCC), Chile. Two groups can be distinguished among these main plateau basalts. The first group includes alkali basalts and trachybasalts displaying typical OIB signatures and thought to derive from predominantly asthenospheric mantle sources similar to those of the post-plateau MLBA basalts, but through slightly larger degrees of melting. The second one, although still dominantly alkalic, displays incompatible element signatures intermediate between those of OIB and arc magmas (e.g., La/Nb > 1 and TiO2 < 2 wt.%). These intermediate basalts differ from their strictly alkalic equivalents by having lower High Field Strength Element (HFSE) and higher εNd (up to + 5.4). These features are consistent with their derivation from an enriched mantle source contaminated by ca. 10% rutile-bearing restite of altered oceanic crust. The petrogenesis of the studied Mio-Pliocene basalts from MLBA and MCC is consistent with contributions of the subslab asthenosphere, the South American subcontinental lithospheric mantle and the subducted Pacific oceanic crust to their sources. However, their chronology of emplacement is not consistent with an ascent through an asthenospheric window opened as a consequence of the subduction of segment SCR-1, which entered the trench at 6 Ma. Indeed, magmatic activity was already important between 12 and 8 Ma in MLBA and MCC as well as in southernmost plateaus, i.e., 6 Ma before the subduction of the SCR-1 segment. We propose a geodynamic model in which OIB and intermediate magmas derived from deep subslab asthenospheric mantle did uprise through a tear-in-the-slab, which formed when the southernmost segments of the SCR collided with the Chile Trench around 15 Ma. During their ascent, they interacted with the Patagonian supraslab mantle and, locally, with slivers of subducted Pacific oceanic crust that contributed to the geochemical signature of the intermediate basalts.  相似文献   

15.
New data on geology and 21 K–Ar dates of the Late Oligocene–Quaternary basalts in Syria, combined with analysis of the new and previous data are used to reconstruct the volcanic history and relations between it and tectonic events. Volcanism began at the end of Oligocene (26–24 Ma) and was concentrated in the Late Oligocene–Early Miocene along a N-trending band, which stretches from the Jebel Arab (Harrat Ash Shaam) up to Kurd Dagh and southern Turkey. Activity waned in the Middle Miocene (17–12 Ma), but was resumed in the same band in the Tortonian and increased in the Messinian and Early Pliocene (6.3–4 Ma), when volcanism spread to the Shin Plateau and its coastal extension. After a brief hiatus ~ 4–3.5 Ma, volcanism became still more intensive and spread from the N-trending band to the east into the northern margin of the Mesopotamian Foredeep and to the west into the Dead Sea Transform zone. Additional eruptions continued into the Holocene.Volcanism lasted > 25 million years in the Jebel Arab Highland and > 15 million years in the Aleppo Plateau. The long duration of volcanism in the same parts of the moving Arabian plate and absence of records of one-way migration of the activity mean that the magmatic sources moved together with the plate, i.e., they were situated within the lithosphere mantle. Coincidence of the tectonic and volcanic stages of the Arabian plate development proves that volcanic activity depended on the geodynamic situation, caused by the plate motion. Situated within the lithosphere, magmatic sources within this transverse band were possibly caused by thermal and deforming influences of the asthenospheric lateral flow, moved laterally from the Ethiopia–Afar deep superplume.  相似文献   

16.
Explosion deep seismic sounding data sections of high quality had been obtained with RV Meteor in the Reykjanes Iceland Seismic Project (RRISP77 [Angenheister, G., Gebrande, H., Miller, H., Goldflam, P., Weigel, W., Jacoby, W.R., Pálmason, G., Björnsson, S., Einarsson, P., Pavlenkova, N.I., Zverev, S., Litvinenko, I.V., Loncarecic, B., Solomon, S., 1980. Reykjanes Ridge Iceland Seismic Experiment (RRISP 77). J. Geophys. 47, 228–238]) which close an information gap near 62°N. Preliminary results were presented by Weigel [Weigel, W., 1980. Aufbau des Reykjanes Rückens nach refraktionsseismischen Messungen. In: Weigel, W. (Ed.), Reykjanes Rücken, Island, Norwegischer Kontinentalrand. Abschlusskolloquium, Hamburg zur Meteor-Expedition, vol. 45. DFG, Bonn, pp. 53–61], and here we report on the data and results of interpretation. Clear refracted phases to 90 km distance permit crustal and uppermost mantle structure to be modelled by ray tracing. The apparent P-wave velocities are around 4.5, 6–6.5, 7–7.6 and 8.2–8.7 km/s, but no wide-angle reflections have been clearly seen. Accompanying sparker reflection data reveal thin sediment ponds in the axial zone and up to 400 m thick sediments at 10 Ma crustal age. Ray tracing reveals the following model below the sediments: (1) a distinct, 1–2 km thick upper crust (layer 2A) with Vp increasing with age (to 10 Ma) from <3.4 to 4.9 km/s and with a vertical gradient of 0.1–0.2 km/s/km, (2) a lower crust or layer 3 beginning at depths of 2 (axis) to 4 km (10 Ma age) below sea level with 6.1–6.8 km/s and similar vertical gradients as above, (3) the lower crust bottoms at 5.2–9.5 km depth below sea level (0–10 Ma) with a marked discontinuity, underneath which (4) Vp rises from about 7.5–7.8 km/s (0–10 Ma) with a positive vertical gradient of, again, 0.1–0.2 km/s/km such that 8 km/s would be reached at 12 km and deeper near the axis. Our preferred interpretation is that the mantle begins at the distinct discontinuity (“Moho”), but a deeper “Moho” of Vp  8 km/s cannot be excluded. From Iceland southward to 60°N several experiments show a decrease of crustal thickness from 14 to 8 km. Velocity trends with age across the ridge reflect cooling and filling of cracks, and thickness trends probably suggest volcanic productivity variations as previously suggested.Gravity inversion concentrates on a profile across the ridge with the above seismic a priori information; with 0.2–0.5 km depth uncertainty it leads to a good fit (±2.5 mGal where seismic data exist). Best fitting densities are (in kg/m3) for sediments, 2180; upper crust, 2450–2570; lower crust, 2850–2940; mantle lithosphere, 3215–3240 with a deficit for an asthenospheric wedge of no more than −100 kg/m3. The morphological ridges and troughs superimposed on the SE ridge flank are partly correlated, partly anti-correlated with the Bouguer anomaly and suggest that variable crustal density variations accompany the morphology variations.  相似文献   

17.
An ScP phase reflected and converted at the core–mantle boundary (CMB) beneath the region east of the Philippine Islands shows clear pre- and postcursors, recorded on short-period seismic networks in Japan. These waveform variations can be explained by interaction of the ScP wavefield with thin layers at the CMB. The results of forward modeling of double-array stacks reveal two different structural heterogeneities in the lowermost mantle beneath the region east of the Philippine Islands. One of the structures represents a decreased velocity, and increased density across the reflector at the lowermost ~10 km of the mantle, with P- and S-wave velocity reductions of 5–10% and ~30%, respectively, and an increase in density of 5–10%. Another structure consists of a pair of reflectors at ~10 km and ~5 km above the CMB, both of which are characterized by reduced P- and S-wave velocities. The upper reflector is the interface of a low-velocity zone in which P- and S-wave velocities decrease of 10% and 30%, respectively, accompanied by an extremely large increase in density (20–25%). The lower reflector is characterized by a 25% reduction in S-wave velocity relative to the above low-velocity layer, as well as a 5% decrease in P-wave velocity and no change in density. The nature of the low-velocity zone detected locally at the CMB is comparable with that of ultra-low-velocity zones (ULVZs) observed by various seismic probes in the South Pacific and Central America. Extensive observations of the ULVZ beneath the region east of the Philippine Islands indicate massive partial melting at the bottom of the mantle. Low-S-velocity basal layer partly detected within the ULVZ may be resulting from core–mantle chemical interactions, driven by massive partial melting.  相似文献   

18.
The presence of continuous upper crustal blocks between the Iberian Betics and Moroccan Rif in the western and middle Alboran Sea, detected with tomography, can add new information about the lithosphere structure and geodynamic evolution in this region. A large volume of seismic data (P and S wave arrival times) has been collected for the period between 1 December 1988 and 31 December 2008 by 57 stations located in northern Morocco (National Institute of Geophysics, CNRST, Rabat), southern Portugal (Instituto de Meteorologia, Lisbon) and Spain (Instituto Geografico National, Madrid) and used to investigate the lithosphere in the western Alboran Sea region. We use a linearized inversion procedure comprising two steps: (1) finding the minimal 1-D model and simultaneous relocation of hypocenters and (2) determination of local velocity structure using linearized inversion. The model parameterization in this method assumes a continuous velocity field. The resolution tests indicate that the calculated images give near true structure imaged at 5 km depth for the Tanger peninsula, the Alhoceima region and southern Spain. At 15, 30 and 45 km depth we observe a near true structure imaged in northern Morocco, and southern Spain. At 60 and 100 km, southern Spain and the SW region of the Alboran Sea give a near true structure. The resulting tomographic image shows the presence of two upper crustal bodies (velocity 6.5 km/s) at 5–10 km depth between the Betics, Rif, western and central Alboran Sea. Low velocities at the base of these two bodies favor the presence of melt. This new evidence proves that the Tethysian ocean upper crust was not totally collapsed or broken down during the late Oligocene–early Miocene. These two blocks of upper crust were initially one block. The geodynamic process in the eastern of the Mediterranean is driven by slab rollback. The delamination process of the lithospheric mantle terminates with the proposed slab rollback in the western part of the Mediterranean. This can be explained by the removal of the major part of the lithosphere beneath the area, except in the SW part of the Alboran Sea where a small part of the lithospheric mantle is still attached and is extends and dips to SE beneath the Rif, slowly peeled back to the west. A second detached lithospheric mantle is located and extends to eastern part of the Rif and dips to the SE. The removal of lithosphere mantle from the base of the crust was replaced and heated by extrusion of asthenospheric material coming from depth to replace the part of crust detached. A combination of isostatic surface/topographic uplift and erosion induced a rapid exhumation and cooling of deep crustal rocks.  相似文献   

19.
The elastic thickness of the continental lithosphere is closely related to its total strength and therefore to its susceptibility to tectonic deformation and earthquakes. Recently it has been questioned whether the lithosphere thickness and strength are dependent on crustal and upper mantle temperatures and compositions as predicted by laboratory data. We test this dependence regionally by comparison in northwestern North America of the effective elastic thickness Te, from topography–gravity coherence, with upper mantle temperatures mapped by shear wave tomography velocities Vs and other temperature indicators. The Te values are strongly bimodal as found globally, less than 20 km for the hot Cordillera backarc and over 60 km for the cold stable Craton. These Te correspond to low Vs beneath the Cordillera and high Vs beneath the Craton. Model temperature-depth profiles are used to estimate model Te for comparison with those observed. Only limited areas of intermediate thermal regimes, i.e., thermotectonic ages of ~ 300 Ma, have intermediate Te that suggest a weak lower crust over a stronger upper mantle. There are large uncertainties in model Te associated with composition, water content, strain rate, and decoupling stress threshold. However, with reasonable parameters, model yield stress envelopes correspond to observed Te for thermal regimes with 800–900 °C at the Cordillera Moho and 400–500 °C for the Shield, in agreement with temperatures from Vs and other estimators. Our study supports the conclusion that lithosphere elastic thickness and strength are controlled primarily by temperature, and that laboratory-based rheology generally provides a good estimate of the deformation behaviour of the crust and upper mantle on geological time scales.  相似文献   

20.
The Alisitos arc is an approximately 300 × 30 km oceanic arc terrane that lies in the western wall of the Peninsular Ranges batholith south of the modern Agua Blanca fault zone in Baja California. We have completed detailed mapping and dating of a 50 × 30 km segment of this terrane in the El Rosario to Mission San Fernando areas, as well as reconnaissance mapping and dating in the next 50 × 30 km segment to the north, in the San Quintin area. We recognize two evolutionary phases in this part of the arc terrane: (I) extensional oceanic arc, characterized by intermediate to silicic explosive and effusive volcanism, culminating in caldera-forming silicic ignimbrite eruptions at the onset of arc rifting, and (II) rifted oceanic arc, characterized by mafic effusive and hydroclastic rocks and abundant dike swarms. Two types of units are widespread enough to permit tentative stratigraphic correlation across much of this 100-km-long segment of the arc: a welded dacite ignimbrite (tuff of Aguajito), and a deepwater debris-avalanche deposit. New U–Pb zircon data from the volcanic and plutonic rocks of both phases indicate that the entire 4000-m-thick section accumulated in about 1.5 MY, at 111–110 MY. Southwestern North American sources for two zircon grains with Proterozoic 206Pb / 207Pb ages support the interpretation that the oceanic arc fringed North America rather than representing an exotic terrane.The excellent preservation and exposure of the Alistos arc terrane makes it ideal for three-dimensional study of the structural, stratigraphic and intrusive history of an oceanic arc terrane. The segment mapped and dated in detail has a central major subaerial edifice, flanked by a down-faulted deepwater marine basin to the north, and a volcano-bounded shallow-water marine basin to the south. The rugged down-faulted flank of the edifice produced mass wasting, plumbed large-volume eruptions to the surface, and caused pyroclastic flows to disintegrate into turbulent suspensions that mixed completely with water. In contrast, gentler slopes on the opposite flank allowed pyroclastic flows to enter the sea with integrity, and supported extensive buildups of bioherms. Caldera collapse on the major subaerial edifice ponded the tuff of Aguajito to a thickness of at least 3 km. The outflow ignimbrite forms a marker in nonmarine to shallow marine sections, and in deepwater sections it occurs as blocks up to 150 m long in a debris-avalanche deposit. These welded ignimbrite blocks were deposited hot enough to deform plastically and form peperite with the debris-avalanche matrix. The debris avalanche was likely triggered by injection of feeder dikes along the basin-bounding fault zone during the caldera-forming eruption.Intra-arc extension controlled very high subsidence rates, followed shortly thereafter by accretion through back-arc basin closure by 105 Ma. Accretion of the oceanic arc may have been accomplished by detachment of the upper crust along a still hot, thick middle crustal tonalitic layer, during subduction of mafic–ultramafic substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号