首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
We present molybdenum isotope data for four sediment profiles from continental margin settings. Each profile has a distinctive average isotope composition ranging from δ98 / 95Mo − 0.5‰ to 1.3‰ (relative to J and M laboratory standard). This range lies between the modern ocean water value (2.3‰) and the values typical of Mo adsorbed onto Mn oxides (− 0.7‰ ± 0.1‰). An important finding of this study is the apparent co-variation between the Mo isotope composition and the accumulation rate of authigenic Mo under reducing conditions. This relationship suggests that the chemical processes responsible for Mo accumulation under reducing conditions produce an isotope signature in marine sediments. In addition to the relationship between Mo accumulation and the Mo isotope signature there is also a relationship between these parameters and the rate of organic carbon oxidation and burial. These relationships suggest that the Mo isotope signature of reducing sediments may serve as a tracer for the cycling of organic carbon in continental margin sediments; however, additional data will be required to refine any such relationships.  相似文献   

2.
Silica alteration zones and cherts are a conspicuous feature of Archaean greenstone belts worldwide and provide evidence of extensive mobilisation of silica in the marine environment of the early Earth. In order to understand the process(es) of silicification we measured the silicon and oxygen isotope composition of sections of variably silicified basalts and overlying bedded cherts from the Theespruit, Hooggenoeg and Kromberg Formations of the Barberton Greenstone Belt, South Africa.The δ30Si and δ18O values of bulk rock increase with increasing amount of silicification from unsilicified basalts (?0.64‰ < δ30Si < ?0.01‰ and + 8.6‰ < δ18O < + 11.9‰) to silicified basalts (δ30Si and δ18O values as high as + 0.81‰ and + 15.6‰, respectively). Cherts generally have positive isotope ratios (+ 0.21‰ < δ30Si < + 1.05‰ and + 10.9 < δ18O < + 17.1), except two cherts, which have negative δ30Si values, but high δ18O (up to + 19.5‰).The pronounced positive correlations between δ30Si, δ18O and SiO2 imply that the isotope variation is driven by the silicification process which coevally introduced both 18O and 30Si into the basalts. The oxygen isotope variation in the basalts from about 8.6‰ to 15.6‰ is likely to represent temperature-dependent isotope fractionation during alteration. Our proposed model for the observed silicon isotope variation relies on a temperature-controlled basalt dissolution vs. silica deposition process.  相似文献   

3.
We report new high-precision laser fluorination three-isotope oxygen data for lunar materials. Terrestrial silicates with a range of δ18O values (− 0.5 to 22.9‰) were analyzed to independently determine the slope of the terrestrial fractionation line (TFL; λ = 0.5259 ± 0.0008; 95% confidence level). This new TFL determination allows direct comparison of lunar oxygen isotope systematics with those of Earth. Values of Δ17O for Apollo 12, 15, and 17 basalts and Luna 24 soil samples average 0.01‰ and are indistinguishable from the TFL. The δ18O values of high- and low-Ti lunar basalts are distinct. Average whole-rock δ18O values for low-Ti lunar basalts from the Apollo 12 (5.72 ± 0.06‰) and Apollo 15 landing sites (5.65 ± 0.12‰) are identical within error and are markedly higher than Apollo 17 high-Ti basalts (5.46 ± 0.11‰). Evolved low-Ti LaPaz mare-basalt meteorite δ18O values (5.67 ± 0.05‰) are in close agreement with more primitive low-Ti Apollo 12 and 15 mare basalts. Modeling of lunar mare-basalt source composition indicates that the high- and low-Ti mare-basalt mantle reservoirs were in oxygen isotope equilibrium and that variations in δ18O do not result from fractional crystallization. Instead, these differences are consistent with mineralogically heterogeneous mantle sources for mare basalts, and with lunar magma ocean differentiation models that result in a thick feldspathic crust, an olivine–pyroxene-rich mantle, and late-stage ilmenite-rich zones that were convectively mixed into deeper portions of the lunar mantle. Higher average δ18O (WR) values of low-Ti basalts compared to terrestrial mid ocean ridge basalts (Δ=0.18‰) suggest a possible oxygen isotopic difference between the terrestrial and lunar mantles. However, calculations of the δ18O of lunar mantle olivine in this study are only 0.05‰ higher than terrestrial mantle olivine. These observations may have important implications for understanding the formation of the Earth–Moon system.  相似文献   

4.
Paleoelevation constraints from fossil leaf physiognomy and stable isotopes of sedimentary carbonate suggest that significant surface uplift of the northern Andean plateau, on the order of 2.5 ± 1 km, occurred between ~ 10.3 and 6.4 Ma. Independent spatial and temporal constraints on paleoelevation and paleoclimate of both the northern and southern plateau are important for understanding the distribution of rapid surface uplift and its relation to climate evolution across the plateau. This study focuses on teeth from modern and extinct mammal taxa (including notoungulates, pyrotheres, and litopterns) spanning ~ 29 Ma to present, collected from the Altiplano and Eastern Cordillera of Bolivia (16.2°S to 21.4°S), and lowland Brazil. Tooth enamel of large, water-dependent mammals preserves a record of surface water isotopes and the type of plants that animals ingested while their teeth were mineralizing. Previous studies have shown that the δ18O of modern precipitation and surface waters decrease systematically with increasing elevations across the central Andes. Our results from high elevation sites between 3600 and 4100 m show substantially more positive δ18O values for late Oligocene tooth samples compared to < 10 Ma tooth δ18O values. Late Oligocene teeth collected from low elevation sites in southeast Brazil show δ18O values similar (within 2‰) to contemporaneous teeth collected at high elevation in the Eastern Cordillera. This affirms that the Andean plateau was at a very low elevation during the late Oligocene. Late Oligocene teeth from the northern Eastern Cordillera also yield consistent δ13C values of about ? 9‰, indicating that the environment was semi-arid at that time. Latitudinal gradients in δ18O values of late Miocene to Pliocene fossil teeth are similar to modern values for large mammals, suggesting that by ~ 8 Ma in the northern Altiplano and by ~ 3.6 Ma in the southern Altiplano, both regions had reached high elevation and established a latitudinal rainfall gradient similar to modern.  相似文献   

5.
The Chilean Patagonian fjords region (41–56°S) is characterized by highly complex geomorphology and hydrographic conditions, and strong seasonal and latitudinal patterns in precipitation, freshwater discharge, glacier coverage, and light regime; all of these directly affect biological production in the water column. In this study, we compiled published and new information on water column properties (primary production, nutrients) and surface sediment characteristics (biogenic opal, organic carbon, molar C/N, bulk sedimentary δ13Corg) from the Chilean Patagonian fjords between 41°S and 55°S, describing herein the latitudinal pattern of water column productivity and its imprint in the underlying sediments. Based on information collected at 188 water column and 118 sediment sampling sites, we grouped the Chilean fjords into four main zones: Inner Sea of Chiloé (41° to ~44°S), Northern Patagonia (44° to ~47°S), Central Patagonia (48–51°S), and Southern Patagonia (Magellan Strait region between 52° and 55°S). Primary production in the Chilean Patagonian fjords was the highest in spring–summer, reflecting the seasonal pattern of water column productivity. A clear north–south latitudinal pattern in primary production was observed, with the highest average spring and summer estimates in the Inner Sea of Chiloé (2427 and 5860 mg C m?2 d?1) and Northern Patagonia (1667 and 2616 mg C m?2 d?1). This pattern was closely related to the higher availability of nutrients, greater solar radiation, and extended photoperiod during the productive season in these two zones. The lowest spring value was found in Caleta Tortel, Central Patagonia (91 mg C m?2 d?1), a site heavily influenced by glacier meltwater and river discharge loaded with glacial sediments. Biogenic opal, an important constituent of the Chilean fjord surface sediments (SiOPAL ~1–13%), reproduced the general north–south pattern of primary production and was directly related to water column silicic acid concentrations. Surface sediments were also rich in organic carbon content and the highest values corresponded to locations far away from glacier influence, sites within fjords, and/or semi-enclosed and protected basins, reflecting both autochthonous (water column productivity) and allochthonous sources (contribution of terrestrial organic matter from fluvial input to the fjords). A gradient was observed from the more oceanic sites to the fjord heads (west–east) in terms of bulk sedimentary δ13Corg and C/N ratios; the more depleted (δ13Corg ?26‰) and higher C/N (23) values corresponded to areas close to rivers and glaciers. A comparison of the Chilean Patagonian fjords with other fjord systems in the world revealed high variability in primary production for all fjord systems as well as similar surface sediment geochemistry due to the mixing of marine and terrestrial organic carbon.  相似文献   

6.
Tektites are terrestrial natural glasses produced during a hypervelocity impact of an extraterrestrial projectile onto the Earth's surface. The similarity between the chemical and isotopic compositions of tektites and terrestrial upper continental crust implies that the tektites formed by fusion of such target rock. Tektites are among the driest rocks on Earth. Although volatilization at high temperature may have caused this extreme dryness, the exact mechanism of the water loss and the behavior of other volatile species during tektite formation are still debated. Volatilization can fractionate isotopes, therefore, comparing the isotope composition of volatile elements in tektites with that of their source rocks may help to understand the physical conditions during tektite formation.For this study, we have measured the Zn isotopic composition of 20 tektites from four different strewn fields. Almost all samples are enriched in heavy isotopes of Zn compared to the upper continental crust. On average, the different groups of tektites are isotopically distinct (listed from the isotopically lightest to the heaviest): Muong-Nong type indochinites (δ66/64Zn = 0.61 ± 0.30‰); North American bediasites (δ66/64Zn = 1.61 ± 0.49‰); Ivory Coast tektites (δ66/64Zn = 1.66 ± 0.18‰); the Australasian tektites (others than the Muong Nong-type indochinites) (δ66/64Zn = 1.84 ± 0.42‰); and Central European moldavites (δ66/64Zn = 2.04 ± 0.19‰). These results are contrasted with a narrow range of δ66/64Zn = 0–0.7‰ for a diverse spectrum of upper continental crust materials.The elemental abundance of Zn is negatively correlated with δ66/64Zn, which may reflect that isotopic fractionation occurred by evaporation during the heating event upon tektite formation. Simple Rayleigh distillation predicts isotopic fractionations much larger than what is actually observed, therefore, such a model cannot account for the observed Zn isotope fractionation in tektites. We have developed a more realistic model of evaporation of Zn from a molten sphere: during its hypervelocity trajectory, the molten surface of the tektite will be entrained by viscous coupling with air that will then induce a velocity field inside the molten sphere. This velocity field induces significant radial chemical mixing within the tektite that accelerates the evaporation process. Our model, albeit parameter dependent, shows that both the isotopic composition and the chemical abundances measured in tektites can be produced by evaporation in a diffusion-limited regime.  相似文献   

7.
High precision Mg isotope measurements by multi-collector ion microprobe show that refractory olivines from the Allende chondrite, either olivines isolated in the matrix (2 samples studied) or olivines in type I chondrules (6 samples studied), have variable δ26Mg* enrichments and deficits (calculated in permil as the 26Mg deviation from the instrumental mass fractionation line) relative to the Earth. Most average δ26Mg* (noted δ26Mg*av) values (between 10 and 20 analyses per chondrule) are negative but the total range is from ?0.029 (± 0.010) ‰ (2 sigma errors) to + 0.011 (± 0.011) ‰ with an exception of one olivine at + 0.043 (± 0.023) ‰. These variations in δ26Mg*av reflect the formation of the olivines from reservoirs enriched in various amounts of 26Mg by the decay of short-lived 26Al (T1/2 = 0.73 Ma). Similarly, 30 analyses of olivines from the Eagle Station pallasite show a δ26Mg*av value of ?0.033 ± 0.008‰, as negative as some olivines from Allende chondrules and the Solar system initial δ26Mg* value of ?0.038 ± 0.004‰ (defined at the time of formation of type B Ca–Al-rich inclusions – CAIs – when 26Al/27Al = 5.23 × 10?5, Jacobsen et al., 2008).Because olivines are Al-poor and because their Mg isotopic compositions are not reset during the chondrule forming events, their δ26Mg*av can be used to calculate model crystallization ages relative to various theoretical Mg isotope growth curves. The two end-member scenarios considered are (i) a “nebular” growth in which the Al/Mg ratio remains chondritic and (ii) a “planetary” growth in which a significant increase of the Al/Mg ratio can be due to, for instance, olivine magmatic fractionation. The low δ26Mg*av value of olivines from the Eagle Station pallasite demonstrate that metal-silicate differentiation occurred as early as ~ 0. 15- 0. 23+ 0. 29 Ma after CAIs in either of the growth scenarios. Similarly the variable δ26Mg*av values of refractory olivines can be understood if they were formed in planetesimals which started to differentiate as early as the Eagle Station parent body. Accretion of these planetesimals must have been coeval to the formation of CAIs and their disruption could explain why their fragments (Mg-rich olivines) were distributed in the chondrule forming regions of the disk.  相似文献   

8.
We investigated the provenance of organic matter in the inner fjord area of northern Patagonia, Chile (~44–47°S), by studying the elemental (organic carbon, total nitrogen), isotopic (δ13C, δ15N), and biomarker (n-alkanoic acids from vascular plant waxes) composition of surface sediments as well as local marine and terrestrial organic matter. Average end-member values of N/C, δ13C, and δ15N from organic matter were 0.127±0.010, ?19.8±0.3‰, and 9.9±0.5‰ for autochthonous (marine) sources and 0.040±0.018, ?29.3±2.1‰, and 0.2±3.0‰ for allochthonous (terrestrial) sources. Using a mixing equation based on these two end-members, we calculated the relative contribution of marine and terrestrial organic carbon from the open ocean to the heads of fjords close to river outlets. The input of marine-derived organic carbon varied widely and accounted for 13–96% (average 61%) of the organic carbon pool of surface sediments. Integrated regional calculations for the inner fjord system of northern Patagonia covered in this study, which encompasses an area of ~4280 km2, suggest that carbon accumulation may account for between 2.3 and 7.8×104 ton C yr?1. This represents a storage capacity of marine-derived carbon between 1.8 and 6.2×104 ton yr?1, which corresponds to an assimilation rate of CO2 by marine photosynthesis between 0.06 and 0.23×106 ton yr?1. This rate suggests that the entire fjord system of Patagonia, which covers an area of ~240,000 km2, may represent a potentially important region for the global burial of marine organic matter and the sequestration of atmospheric CO2.  相似文献   

9.
The Ca isotope compositions of 37 late Mesozoic skeletal carbonates, belemnites and brachiopods, from the Tethyan realm were analyzed by thermal (TIMS) and plasma (MC-ICP-MS) ionization mass spectrometry. A poor correlation between δ44/40Ca and δ18O values of belemnites suggests only a weak temperature dependency for the Ca isotope composition of belemnites, likely less than 0.02‰/°C. The δ44/40Ca record of belemnites was therefore used to reconstruct the Ca isotope composition of paleo-seawater (δ44/40CaSW), based on an experimentally determined fractionation factor between seawater Ca and belemnite calcite (αCC–SW) of ∼ 0.9986. The inferred δ44/40CaSW record, with an average stratigraphic resolution of 1 Ma, shows systematic temporal variation of ∼ 0.5‰ with the Middle/Late Jurassic (∼ 154 Ma) minimum of ∼ 1.4‰ and a subsequent general increase to the Early Cretaceous (∼ 124 Ma) maximum of ∼ 1.9‰. The global nature of the δ44/40CaSW record is supported by identical Ca isotope compositions of coeval (Kimmeridgian) belemnites collected from two distinct paleogeographic regions, the southern (New Zealand) and northern (Germany) margin of the Tethys Ocean. The observed late Mesozoic δ44/40CaSW record was simulated using a simple Ca isotope mass balance model, and the results indicate that the variation in δ44/40CaSW record can be explained by changes in oceanic input fluxes of Ca that were independent of the carbonate ion fluxes, such as the hydrothermal Ca flux or the release of Ca to the oceans via dolomitization of marine carbonates.  相似文献   

10.
To improve our knowledge about the geochemical and environmental aftermath of Neoproterozoic global glaciations, we analyzed stable isotopes (δ13C, δ18O, δ34S) and elemental concentrations (Ca, Mg, S, Sr, Fe, and Mn) of the ~ 10-m-thick Zhamoketi cap dolostone atop the Tereeken diamictite in the Quruqtagh area, eastern Chinese Tianshan. Available chemostratigraphic data suggest that the Tereeken diamictite is probably equivalent to the Marinoan glaciation. Our new data indicate that organic and carbonate carbon isotopes of the Zhamoketi cap dolostone show little stratigraphic variations, averaging ? 28.2‰ and ? 4.6‰, respectively. In contrast, sulfur isotopes show significant stratigraphic variations. Carbonate associated sulfate (CAS) abundance decreases rapidly in the basal cap dolostone and δ34SCAS composition varies between + 9‰ and + 15‰ in the lower 2.5 m. In the overlying interval, CAS abundance remains low while δ34SCAS rises ~ 5‰ and varies more widely between + 10‰ and + 21‰. The range of δ34Spy of the cap dolostone overlaps with that of δ34SCAS, but direct comparison shows that δ34Spy is typically greater than δ34SCAS measured from the same samples. Hypotheses to explain the observations must account for both the remarkable sulfur isotope enrichment of pyrites and the inverse fractionation. We propose that CAS and pyrite were derived from two isotopically distinct reservoirs in a chemically stratified basin or a basin with a sulfate minimum zone. In this model, CAS was derived from shallow, oxic surface waters with moderate sulfate concentration and depleted in 34S due to the post-glacial influx of sulfur from continental weathering. In contrast, pyrite was derived from anoxic bottom waters (or a sulfate minimum zone) with low sulfate concentration and 34S enrichment due to long-term syn-glacial sulfate reduction. The rapid shift in CAS abundance and sulfur isotope composition within the cap dolostone is interpreted to reflect the mixing of the two reservoirs after initial deglaciation. Comparison with other post-Marinoan cap carbonates shows significant spatial heterogeneity in δ34SCAS, which together with strong temporal variation in δ34SCAS, points to generally low sulfate concentrations in post-Marinoan oceans.  相似文献   

11.
Li isotopic compositions of magmatic rocks have gained considerable attention recently as probes of mantle-scale processes. However, the concentrations and isotopic composition of Li in mantle minerals from mid-ocean ridges remain relatively unconstrained. This is largely because of the general presence of seawater alteration in abyssal peridotites. Lithium elemental and isotopic compositions for mineral separates of coexisting olivine, clinopyroxene, orthopyroxene and bulk rocks of serpentine-free Gakkel Ridge peridotites were investigated. Bulk rocks have Li contents of 1.6 to 2.7 ppm and δ7Li values of 3 to 5‰, which fall within the range of reported normal pristine “MORB mantle” values. Lithium concentrations vary in the order cpx (2.1–4.7 ppm) > opx (0.9–1.7 ppm)  olivine (0.4–0.9 ppm), the opposite found in “equilibrated” mantle peridotite xenoliths (Seitz and Woodland, 2000). The Li isotopic compositions indicate a systematic mineral variation with δ7Liolivine (7.14‰–15.09‰) > δ7Liopx (1.81‰–3.66‰) > δ7Licpx (?2.43‰ ? ?0.39‰). The δ7Li values of cpx are negatively correlated with their Li concentrations with the lightest value for the most enriched cpx grains. There is a first order negative linear correlation between Δolivine–cpx7Liolivine ? δ7Licpx) and ol/cpxD (Liolivine/Licpx).Numerical simulations indicate that the observed systematic inter-mineral variations of Li concentrations and isotopic compositions could be explained by a cooling driven diffusive redistribution between minerals in a closed system if there is a temperature dependent partitioning of Li between olivine and clinopyroxene. The studied Gakkel Ridge abyssal peridotites may alternatively have cooled under a variable cooling rate with a rapid cooling before the Li system was closed, which is less likely given the tectonic setting. Our calculations confirm that Li systematics in minerals, especially in coexisting mineral phases could potentially be used as a mantle geospeedometer, even for slowly cooled mantle rocks.  相似文献   

12.
《Continental Shelf Research》2008,28(18):2535-2549
Extensive physical and biological measurements were made of the surface sediments within the shallow, semi-urbanised Coombabah Lake in southern Moreton Bay, Australia. Sediment bulk parameters (C/N ratios, δ13C and δ15N) and fatty acid biomarkers were used to determine distributions and sources of organic matter in the intertidal sediments. The determination of organic matter sources within coastal and estuarine settings is important in understanding the roles of organic matter as energy and nutrient sources. Spatial variability of biomarker values within the sediments were interpreted by thematic maps employing the Krigging algorithm. Grain size analysis indicated the lake was dominated by mud (<63 μm) in the southern (landward) and sand (>63 μm) in the northern (seaward) lake regions, respectively. Surface sediment organic C and N values ranged from 0.12% to 1.76% and 0.01% to 0.12% dry weight, respectively, and C/N ratios averaged 16.3±3.19%. Sedimentary δ13C values ranged from −26.1‰ to −20.9‰, with an average value of −23.9±1.0‰. Sedimentary δ15N values ranged from +1.7‰ to +4.8‰, with an average value of +2.8±0.8‰. Bulk sediment parameters suggested that sedimentary organic matter is provided predominantly by allochthonous sources in the form of fringing mangroves. Thirty-nine individual fatty acids were identified using gas chromatography–mass spectrometry. The mean contributions of long chain fatty acids (LCFAs), polyunsaturated fatty acids (PUFAs), saturated fatty acids (SAFAs) and bacterial fatty acids (BAFAs) were, respectively, 13.9±11.4%, 7.6±4.1%, 53.6±8.6% and 18.2±4.6% of the identified fatty acid methyl esters (FAMEs), with BAFAs occurring in all sampled sediments. Fatty acid compositions varied throughout lake sediments, which indicated spatial differences in autochthonous and allochthonous organic matter sources, including terrestrial and planktonic (i.e. zooplankton, diatoms and other algal species) sources. The contribution of organic matter from shoreline mangroves was confirmed by the presence of LCFAs and 18:2ω6 and 18:3ω3, which are markers for mangroves in this ecosystem. BAFAs were identified in increased proportions in sediments adjacent to urban developments and dominated by mud. Grain size was identified as a dominant factor in the fatty acid compositions and contributing values to FAME pool. Spatial patterns of C/N ratios, δ13C and δ15N values, and fatty acid biomarker contributions illustrated that there is a greater contribution of autochthonous and labile organic matter to the sedimentary organic matter pool in the northern (marine entrance) sediments compared to the more allochthonous sourced organic matter of the southern region of the lake. This study details the distribution and sources of organic matter within Coombabah Lake and illustrates the usefulness of a multiple biomarker approach in discriminating organic matter sources within estuarine environments.  相似文献   

13.
The South Sandwich volcanic arc is sited on a young oceanic crust, erupts low-K tholeiitic rocks, is characterized by unexotic pelagic and volcanogenic sediments on the down-going slab, and simple tectonic setting, and is ideal for assessing element transport through subduction zones. As a means of quantifying processes attending transfer of subduction-related fluids from the slab to the mantle wedge, boron concentrations and isotopic compositions were determined for representative lavas from along the arc. The samples show variable fluid-mobile/fluid-immobile element ratios and high enrichments of B/Nb (2.7 to 55) and B/Zr (0.12 to 0.57), similar to those observed in western Pacific arcs. δ11B values are among the highest so far reported for mantle-derived lavas; these are highest in the central part of the arc (+ 15 to + 18‰) and decrease toward the southern and northern ends (+ 12 to + 14‰). δ11B is roughly positively correlated with B concentrations and with 87Sr/86Sr ratios, but poorly coupled with other fluid-mobile elements such as Rb, Ba, Sr and U. Peridotites dredged from the forearc trench also have high δ11B (ca. + 10‰) and elevated B contents (38–140 ppm). Incoming pelagic sediments sampled at ODP Site 701 display a wide range in δ11B (+ 5 to ? 13‰; average = ? 4.1‰), with negative values most common. The unusually high δ11B values inferred for the South Sandwich mantle wedge cannot easily be attributed to direct incorporation of subducting slab materials or fluids derived directly therefrom. Rather, the heavy B isotopic signature of the magma sources is more plausibly explained by ingress of fluids derived from subduction erosion of altered frontal arc mantle wedge materials similar to those in the Marianas forearc. We propose that multi-stage recycling of high-δ11B and high-B serpentinite (possibly embellished by arc crust and volcaniclastic sediments) can produce extremely 11B-rich fluids at slab depths beneath the volcanic arc. Infiltration of such fluids into the mantle wedge likely accounts for the unusual magma sources inferred for this arc.  相似文献   

14.
《Marine pollution bulletin》2012,64(5-12):528-534
The Salt-water River watershed is one of the major river watersheds in the Kaohsiung City, Taiwan. Water quality and sediment investigation results show that the river water contained high concentrations of organics and ammonia–nitrogen, and sediments contained high concentrations of heavy metals and organic contaminants. The main pollution sources were municipal and industrial wastewaters. Results from the enrichment factor (EF) and geo-accumulation index (Igeo) analyses imply that the sediments can be characterized as heavily polluted in regard to Cd, Cr, Pb, Zn, and Cu. The water quality analysis simulation program (WASP) model was applied for water quality evaluation and carrying capacity calculation. Modeling results show that the daily pollutant inputs were much higher than the calculated carrying capacity (1050 kg day−1 for biochemical oxygen demand and 420 kg day−1 for ammonia–nitrogen). The proposed watershed management strategies included river water dilution, intercepting sewer system construction and sediment dredging.  相似文献   

15.
Na–HCO3–CO2-rich thermomineral waters issue in the N of Portugal, within the Galicia-Trás-os-Montes region, linked to a major NNE-trending fault, the so-called Penacova-Régua-Verin megalineament. Along this tectonic structure different occurrences of CO2-rich thermomineral waters are found: Chaves hot waters (67 °C) and also several cold (16.1 °C) CO2-rich waters. The δ2H and δ18O values of the thermomineral waters are similar to those of the local meteoric waters. The chemical composition of both hot and cold mineral waters suggests that water–rock reactions are mainly controlled by the amount of dissolved CO2 (g) rather than by the water temperature. Stable carbon isotope data indicate an external CO2 inorganic origin for the gas. δ13CCO2 values ranging between ? 7.2‰ and ? 5.1‰ are consistent with a two-component mixture between crustal and mantle-derived CO2. Such an assumption is supported by the 3He/4He ratios measured in the gas phase, are between 0.89 and 2.68 times the atmospheric ratio (Ra). These ratios which are higher than that those expected for a pure crustal origin (≈ 0.02 Ra), indicating that 10 to 30% of the He has originated from the upper mantle. Release of deep-seated fluids having a mantle-derived component in a region without recent volcanic activity indicates that extensive neo-tectonic structures originating during the Alpine Orogeny are still active (i.e., the Chaves Depression).  相似文献   

16.
To assess the environmental perturbation induced by the impact event that marks the Cretaceous–Tertiary (K–T) boundary, concentrations and isotopic compositions of bulk organic carbon were determined in sedimentary rocks that span the terrestrial K–T boundary at Dogie Creek, Montana, and Brownie Butte, Wyoming in the Western Interior of the United States. The boundary clays at both sites are not bounded by coals. Although coals consist mainly of organic matter derived from plant tissue, siliceous sedimentary rocks, such as shale and clay, may contain organic matter derived from microbiota as well as plants. Coals record δ13C values of plant-derived organic matter, reflecting the δ13C value of atmospheric CO2, whereas siliceous sedimentary rocks record the δ13C values of organic matter derived from plants and microbiota. The microbiota δ13C value reflects not only the δ13C value of atmospheric CO2, but also biological productivity. Therefore, the siliceous rocks from these sites yields information that differs from that obtained previously from coal beds.Across the freshwater K–T boundary at Brownie Butte, the δ13C values decrease by 2.6‰ (from − 26.15‰ below the boundary clay to − 28.78‰ above the boundary clay), similar to the trend in carbonate at marine K–T sites. This means that the organic δ13C values reflect the variation of δ13C of atmospheric CO2, which is in equilibrium with carbon isotopes at the ocean surface. Although a decrease in δ13C values is observed across the K–T boundary at Dogie Creek (from − 25.32‰ below the boundary clay to − 26.11‰ above the boundary clay), the degree of δ13C-decrease at Dogie Creek is smaller than that at Brownie Butte and that for marine carbonate.About 2‰ decrease in δ13C of atmospheric CO2 was expected from the δ13C variation of marine carbonate at the K–T boundary. This δ13C-decrease of atmospheric CO2 should affect the δ13C values of organic matter derived from plant tissue. As such a decrease in δ13C value was not observed at Dogie Creek, a process that compensates the δ13C-decrease of atmospheric CO2 should be involved. For example, the enhanced contribution of 13C-enriched organic matter derived from algae in a high-productivity environment could be responsible. The δ13C values of algal organic matter become higher than, and thus distinguishable from, those of plant organic matter in situations with high productivity, where dissolved HCO3 becomes an important carbon source, as well as dissolved CO2. As the δ13C-decrease of atmospheric CO2 reflected a reduction of marine productivity, the compensation of the δ13C decrease by the enhanced activity of the terrestrial microbiota means that the microbiota at freshwater environment recovered more rapidly than those in the marine environment.A distinct positive δ13C excursion of 2‰ in the K–T boundary clays is superimposed on the overall decreasing trend at Dogie Creek; this coincides with an increase in the content of organic carbon. We conclude that the K–T boundary clays include 13C-enriched organic matter derived from highly productive algae. Such a high biological productivity was induced by phenomena resulting from the K–T impact, such as nitrogen fertilization and/or eutrophication induced by enhanced sulfide formation. The high productivity recorded in the K–T boundary clays means that the freshwater environments (in contrast to marine environments) recovered rapidly enough to almost immediately (within 10 yr) respond to the impact-related environmental perturbations.  相似文献   

17.
The Toarcian Oceanic Anoxic Event (OAE) in the Early Jurassic (∼ 183 Ma ago) was characterized by widespread near-synchronous deposition of organic-rich shales in marine settings, as well as perturbations to several isotopic systems. Characteristically, two positive carbon-isotope excursions in a range of materials are separated by an abrupt negative shift. Carbon-isotope profiles from Toarcian fossil wood collected in England and Denmark have previously been shown to exhibit this large drop (∼ − 7‰) in δ13C values, interpreted as due to an injection of isotopically light CO2 into the ocean–atmosphere system. However, the global nature of this excursion has been challenged on the basis of carbon-isotope data from nektonic marine molluscs (belemnites), which exhibit heavier than expected carbon-isotope values. Here we present new data, principally from fossil wood and bulk carbonate collected at centimetre scale from a hemipelagic section at Peniche, coastal Portugal. This section is low in organic carbon (average TOC =  0.5%), and the samples should not have suffered significant diagenetic contamination by organic carbon of marine origin. The carbon-isotope profile based on wood shows two positive excursions separated by a large and abrupt negative excursion, which parallels exactly the profile based on bulk carbonate samples from the same section, albeit with approximately twice the amplitude (∼ − 8‰ in wood versus ∼ − 3.5‰ in carbonate). These data indicate that the negative carbon-isotope excursion affected the atmosphere and, by implication, the global ocean as well. The difference in amplitude between terrestrial organic and marine carbonate curves can be explained by greater water availability in the terrestrial environment during the negative excursion, for which there is independent evidence from marine osmium-isotope records and, plausibly, changes in atmospheric CO2 content, for which independent evidence is also available. The Peniche succession is also notable for the occurrence of re-deposited sediments: their lowest occurrence coincides with the base of the negative excursion and their highest occurrence coincides with its top. Thus, slope instability and sediment supply could have been strongly linked to the global environmental perturbation, an association that may misleadingly simulate the effects of sea-level fall.  相似文献   

18.
The oxygen isotope composition of fossil roots that have been permineralized by hematite are presented from eight different stratigraphic levels spanning the Upper Pennsylvanian and Lower Permian strata of north-central Texas. Hematite δ18O values range from − 0.4% to 3.7%. The most negative δ18O values occur in the upper Pennsylvanian strata, and there is a progressive trend toward more positive δ18O values upward through the lower Permian strata. This stratigraphic pattern is similar in magnitude and style to δ18O values reported for penecontemporaneous authigenic palaeosol phyllosilicates and calcites, suggesting that all three minerals record similar paragenetic histories that are probably attributed to temporal palaeoenvironmental changes across the Late Pennsylvanian and Early Permian landscapes.Palaeotemperature estimates based on paired δ18O values between penecontemporaneous hematite and phyllosilicate samples suggest these minerals co-precipitated at relatively low temperatures that are consistent with a supergene origin in a low-latitude soil-forming environment. Hematite–phyllosilicate δ18O pairs indicate (1) relatively low soil temperatures (∼ 24 ± 3 °C) during deposition of the upper Pennsylvanian strata followed by (2) a considerable rise in soil temperatures (∼ 35–37 ± 3 °C) during deposition of the lowermost Permian strata. Significantly, δD and δ18O values of contemporaneous phyllosilicates provide single mineral palaeotemperature estimates that are analytically indistinguishable from temperature estimates based on hematite–phyllosilicate oxygen isotope pairs. The results between the two temperature-proxy methods suggest that the inferred large temperature change across the Upper Pennsylvanian–Lower Permian boundary might be taken seriously. If real, such a significant climate change would have undoubtedly had far-reaching ecological effects within this region of Pangaea. Notably, there are important lithological and palaeobotanical changes, such as disappearance of coal and coal swamp floras, across the Upper Pennsylvanian–Early Permian boundary of north-central Texas that may be consistent with major climatic change toward warmer conditions.  相似文献   

19.
Hot springs in the Marsyandi Valley, Nepal, vent CO2 sourced from metamorphic fluids that mix with shallow groundwaters before degassing near the Earth's surface. The δ13C of spring waters ranges up to + 13‰, while that of the coexisting free gas phase is close to ? 4‰. Empirical and thermodynamic modelling of this isotopic fractionation suggests > 97 ± 1% CO2 degassing. The calculated minimum total CO2 degassing in the Marsyandi catchment is 5.4 × 109 mol/yr from a Cl-based estimate of the spring water discharge to the Marsyandi River and the fraction of CO2 degassed. Extrapolated to the whole of the Himalayas, this implies a probable minimum metamorphic CO2 flux of 0.9 × 1012 mol/yr, or ~ 13% of solid Earth CO2 degassing. The calculated flux is a factor of three greater than the estimated CO2 drawdown by silicate weathering in the Himalayas. Himalayan metamorphic degassing contributes a significant fraction of the global solid Earth CO2 flux and implies that metamorphism may cause changes in long-term climate that oppose those resulting from the orogenic forcing of chemical weatherability.  相似文献   

20.
The study reports and discusses the differences in δ13C and δ18O values of shells between several species of freshwater snails. Shells were derived from sediment samples collected from depths of 0.5, 1, 2 and 3 m along transects in two shallow eutrophic lakes located in mid-western Poland. Mean δ13C values of the shells ranged between −7.5 and −3.8‰ in Lake Jarosławieckie and between −8.1 and −5.2‰ in Lake Rosnowskie Duże, whereas mean δ18O values ranged between −2.2 and −0.2‰ and between −2.2 and 0.4‰ respectively in the studied lakes. A similar order of species in terms of shell isotope values, from least to most 13C and 18O-depleted was observed in both lakes and seems to indicate constancy of the factors controlling the stable isotope compositions of snail shells. We postulate that the nearly 4‰ difference in the mean carbon stable isotope values between the species was primarily controlled by the amount of metabolic carbon incorporated into the shells and the δ13C values of the snail food. Different growth cessation temperatures and microhabitats of the species studied result in temporally and spatially varied DIC δ13C values, water δ18O values and water temperature of shell precipitation, and may thus differentiate the δ13C and δ18O values of shells. The range of δ13C and δ18O values of individual shells from a sediment sample (mean 2.35 and 2.15‰, respectively) is interpreted as reflecting an intraspecific variability of isotope compositions in shells from a population and changes of the ambient conditions during the accumulation of the sediment layer. The species-specificity and intraspecific variability in C and O isotopic compositions of shells allow concluding that in palaeolimnological studies, stable isotope analyses should be performed on a set of mono-specific shells representing mean isotope compositions of the species for the interval studied rather than single shells or multispecific bulk shell material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号