首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
通过对辽东湾高分辨率浅地层剖面声学地层与典型钻孔沉积地层的对比分析,揭示了研究区晚第四纪MIS5以来的地层层序。辽东湾高分辨率浅地层剖面自下而上划定的6个声学地层单元(SU5、SU4、SU3、SU2、SU12、SU11)与钻孔岩芯划分的6个沉积地层单元(DU5、DU4、DU3、DU2、DU12、DU11)具有良好的对应关系。分别与MIS4期、MIS2期低海面时期的沉积间断密切相关的两个层序界面R5、R3,将辽东湾识别出的地层单元自下而上划分为3个层序(SQ3、SQ2、SQ1)。其中SQ3仅识别出上部的海侵体系域与高水位体系域,对应MIS5期海平面相对较高时期的滨浅海相沉积(DU5);SQ2自下而上由低水位体系域(MIS4期的河流相与河道充填相沉积(DU4))与海侵体系域(MIS3期早中期滨海相沉积(DU3))组成;SQ1自下而上包括低水位体系域(MIS2期的河流相与河道充填相沉积(DU2))、海侵体系域(全新世早中期滨海相沉积(DU12))高水位体系域(全新世高海面以来的浅海相沉积(DU11))。研究区的海侵体系域厚度较薄且变化较小,分布广泛,而低水位体系域厚度与横向分布均变化较大。  相似文献   

2.
Holocene deposits exhibit distinct, predictable and chronologically constrained facies patterns that are quite useful as appropriate modern analogs for interpreting the ancient record. In this study, we examined the sedimentary response of the Po Plain coastal system to short-term (millennial-scale) relative fluctuations of sea level through high-resolution sequence-stratigraphic analysis of the Holocene succession.Meters-thick parasequences form the building blocks of stratigraphic architecture. Above the Younger Dryas paleosol, a prominent stratigraphic marker that demarcates the transgressive surface, Early Holocene parasequences (#s 1–3) record alternating periods of rapid flooding and gradual shoaling, and are stacked in a retrogradational pattern that mostly reflects stepped, post-glacial eustatic rise. Conversely, Middle to Late Holocene parasequences (#s 4–8) record a complex, pattern of coastal progradation and delta upbuilding that took place following sea-level stabilization at highstand, starting at about 7 cal ky BP. The prominent transgressive surface at the base of parasequence 1 correlates with the period of rapid, global sea-level rise at the onset of the Holocene (MWP-1B), whereas flooding surfaces associated with parasequences 2 and 3 apparently reflect minor Early Holocene eustatic jumps reported in the literature. Changes in shoreline trajectory, parasequence architecture and lithofacies distribution during the following eustatic highstand had, instead, an overwhelming autogenic component, mostly driven by river avulsions, delta lobe switching, local subsidence and sediment compaction. We document a ∼1000-year delayed response of the coastal depositional system to marine incursion, farther inland from the maximum landward position of the shoreline. A dramatic reduction in sediment flux due to fluvial avulsion resulted in marine inundation in back-barrier position, whereas coastal progradation was simultaneously taking place basinwards.We demonstrate that the landward equivalents of marine flooding surfaces (parasequence boundaries) may be defined by brackish and freshwater fossil assemblages, and traced for tens of kilometers into the non-marine realm. This makes millennial-scale parasequences, whether auto- or allogenic in origin, much more powerful than systems tracts for mapping detailed extents and volumes of sediment bodies.The Holocene parasequences of the Po coastal plain, with strong age control and a detailed understanding of sea-level variation, may provide insight into the driving mechanisms and predictability of successions characterized by similar depositional styles, but with poor age constraint, resulting in more robust interpretations of the ancient record.  相似文献   

3.
台湾海峡晚更新世以来的高分辨率地震地层学研究   总被引:2,自引:1,他引:1  
基于4 530 km高分辨率单道地震数据和钻孔资料,采用高分辨率地震地层学的方法,对台湾海峡晚更新世以来的地层进行了划分,自上而下共识别出R0、R1、R2、R3、R4等5个主要反射界面,分别对应海底、3 ka BP前后高海平面、最大海泛面、海侵面和 Ⅰ 型层序界面,并以此划分出4个地层单元:晚全新世浅海-滨海沉积A,中全新世浅海沉积B,早全新世海侵沉积C,晚更新世陆相河流沉积D。在海平面变化的作用下,海峡地区先后发育低水位沉积D(低位体系域),海侵沉积C (海侵体系域)、高水位沉积B和A(高位体系域)。研究了台湾海峡的典型地震相,提出了关于台中浅滩(云彰隆起)处的楔状沉积体的新观点,认为该楔状体为全新世中期以来形成的三角洲沉积受波浪和潮流作用改造而形成的潮流沙脊,其物质主要来源于台湾。识别出了晚更新世和早全新世古河道沉积,海平面变化和地势高低是其形成时间差异的主要因素。  相似文献   

4.
Pozzuoli Bay is located in the eastern Tyrrhenian Sea and is an area characterized by active tectonics and volcanism. On the basis of high-resolution seismic reflection profiles, it was possible to reconstruct the stratigraphy and three-dimensional stratal architecture of the Holocene succession. Two volcanic units and three sedimentary ones were recognized. The basal unit NC consists of volcanic deposits and dates at 10.0-8.0 ka B.P. It is followed by unit D, deposited between 8.0 and 5.5 ka B.P., which displays a backstepping configuration in the central area and a forestepping configuration in the northern area. Unit D is covered by the progradational unit B which is elongated in a SE-NW direction. Unit C is interbedded between unit B and is interpreted as the volcanic products of the Agnano-Monte Spina eruption which occurred 4.4 B.P. Unit A, the youngest unit, shows a progradational configuration and is elongated in a E-W direction. The sedimentary units record the transgressive and highstand of the eustatic sea level. They show vertical and lateral variations in the depositional architecture. Changes in the stacking pattern record variations in tectonic subsidence and hydrodynamic regimes.  相似文献   

5.
High-frequency sequences composed of mixed siliciclastic-carbonate deposits may exhibit either vertical or horizontal changes between siliciclastics and carbonates. Vertical facies shifts occur between systems tracts and define a ‘reciprocal sedimentation’ pattern, typically consisting of transgressive/highstand carbonates and forced regressive/lowstand siliciclastics, although variations from this rule are common. Mixed systems with lateral facies change, usually typifying transgressive and/or highstand systems tracts, may exhibit proximal siliciclastics and distal carbonates or vice-versa, although variations may also occur along depositional strike. The marked variability of mixed siliciclastic-carbonate sequences makes the definition of a universal sequence stratigraphic model impossible, as the composition and geometries of systems tracts may change considerably, and sequence stratigraphic surfaces and facies contacts may vary in terms of occurrence and physical expression. However, some resemblance exists between siliciclastic sequences and mixed sequences showing lateral facies changes between siliciclastics and carbonates. In particular, these mixed sequences display 1) a stratal architecture of the clastic part of the systems tracts that is comparable to that of siliciclastic deposits, 2) a dominant role of the inherited physiography and of erosional processes, rather than carbonate production, in shaping the shelf profile, and 3) a local lateral juxtaposition of siliciclastic sandstones and carbonate bioconstructions due to hydrodynamic processes. These observations are helpful in predicting the location of porous and potential sealing bodies and baffles to fluid flow at the intra-high-frequency sequence scale, and ultimately they are useful for both petroleum exploration and production.  相似文献   

6.
 The stratal architecture of the Gulf of Cádiz continental margin (SW Spain) has been analyzed by using single-channel, very high-resolution seismic reflection profiles. An evolutionary scheme of asymmetrical depositional sequences is proposed that was governed by the Late Pleistocene–Holocene sea-level fluctuations. Stratigraphic analysis defined 14 seismic units, that are configured into two major type-1 depositional sequences related to 4th-order eustatic sea level changes (100–110 ka). Within these sequences, minor asymmetrical depositional sequences have been recognized related to 5th-order eustatic cycles (22–23 ka) superimposed and modulated by the regressive trends of 4th-order cycles. In 5th-order depositional sequences, the forced regressive and lowstand deposits are volumetrically dominant. They cause the main progradation of the margin in such a way that they form the margin structure almost entirely. Received: 6 April 1995 / Revision received: 8 March 1996  相似文献   

7.
8.
High resolution (HR – sparker) and very high resolution (VHR – boomer) seismic reflection data acquired in shallow water environments of the Roussillon coastal area are integrated to provide an accurate image of the stratigraphic architecture of the Quaternary deposits. The complementary use of the two systems is shown to be of benefit for studies of shallow water environments. The HR sparker data improved the landward part of a general model of Quaternary stratigraphy previously established offshore. They document an incised valley complex interpreted as the record of successive late Quaternary relative sea-level cycles. The complex is capped by a polygenetic erosional surface developed during the last glacial period (>18 ky) and variably reworked by wave ravinement during the subsequent post-glacial transgression. The overlying transgressive systems tract is partly preserved and presents a varying configuration along the Roussillon coastal plain. The VHR boomer data provide information on the architecture of the uppermost deposits, both in the near-shore area and in the lagoon. These deposits overlie a maximum flooding surface at the top of the transgressive systems tract and constitute a highstand systems tract composed of two different architectural elements. In the near-shore area, a sandy coastal wedge is subdivided into a lower unit and an upper unit in equilibrium with present day dynamics. In the Salses-Leucate lagoon area, the sedimentary architecture is highly complex due to the closure of a former embayment and the formation of the present beach barrier.  相似文献   

9.
Sediment vibracores and surface samples were collected from the mixed carbonate/siliciclastic inner shelf of west–central Florida in an effort to determine the three-dimensional facies architecture and Holocene geologic development of the coastal barrier-island and adjacent shallow marine environments. The unconsolidated sediment veneer is thin (generally <3 m), with a patchy distribution. Nine facies are identified representing Miocene platform deposits (limestone gravel and blue–green clay facies), Pleistocene restricted marine deposits (lime mud facies), and Holocene back-barrier (organic muddy sand, olive-gray mud, and muddy sand facies) and open marine (well-sorted quartz sand, shelly sand, and black sand facies) deposits. Holocene back-barrier facies are separated from overlying open marine facies by a ravinement surface formed during the late Holocene rise in sea level. Facies associations are naturally divided into four discrete types. The pattern of distribution and ages of facies suggest that barrier islands developed approximately 8200 yr BP and in excess of 20 km seaward of the present coastline in the north, and more recently and nearer to their present position in the south. No barrier-island development prior to approximately 8200 yr BP is indicated. Initiation of barrier-island development is most likely due to a slowing in the Holocene sea-level rise ca. 8000 yr BP, coupled with the intersection of the coast with quartz sand deposits formed during Pleistocene sea-level highstands. This study is an example of a mixed carbonate/siliciclastic shallow marine depositional system that is tightly constrained in both time and sea-level position. It provides a useful analog for the study of other, similar depositional systems in both the modern and ancient rock record.  相似文献   

10.
The Laingsburg depocentre of the SW Karoo Basin, South Africa preserves a well-exposed 1200 m thick succession of upper Permian strata that record the early filling of a basin during an icehouse climate. Uniformly fine-grained sandstones were derived from far-field granitic sources, possibly in Patagonia, although the coeval staging and delivery systems are not preserved. Early condensed shallow marine deposits are overlain by distal basin plain siltstone-prone turbidites and volcanic ashes. An order of magnitude increase in siliciclastic input to the basin plain is represented by up to 270 m of siltstone with thin sandstone turbidites (Vischkuil Formation). The upper Vischkuil Formation comprises three depositional sequences, each bounded by a regionally developed zone of soft sediment deformation and associated 20-45 m thick debrite that represent the initiation of a major sand delivery system. The overlying 300 m thick sandy basin-floor fan system (Unit A) is divisible into three composite sequences arranged in a progradational-aggradational-retrogradational stacking pattern, followed by up to 40 m of basin-wide hemipelagic claystone. This claystone contains Interfan A/B, a distributive lobe system that lies 10 m beneath Unit B, a sandstone-dominated succession that averages 150 m thickness and is interpreted to represent a toe of slope channelized lobe system. Unit B and the A/B interfan together comprise 4 depositional sequences in a composite sequence with an overall basinward-stepping stacking pattern, overlain by 30 m of hemipelagic claystone. The overlying 400 m thick submarine slope succession (Fort Brown Formation) is characterized by 10-120 m thick sand-prone to heterolithic packages separated by 30-70 m thick claystone units. On the largest scale the slope stratigraphy is defined by two major cycles interpreted as composite sequence sets. The lower cycle comprises lithostratigraphic Units B/C, C and D while the upper cycle includes lithostratigraphic Units D/E, E and F. In each case a sandy basal composite sequence is represented by an intraslope lobe (Units B/C and D/E respectively). The second composite sequence in each cycle (Units C and E respectively) is characterized by slope channel-levee systems with distributive lobes 20-30 km down dip. The uppermost composite sequence in each cycle (Units D and F respectively) are characterised by deeply entrenched slope valley systems. Most composite sequences comprise three sequences separated by thin (<5 m thick) claystones. Architectural style is similar at individual sequence scale for comparable positions within each composite sequence set and each composite sequence. The main control on stratigraphic development is interpreted as late icehouse glacio-eustasy but along-strike changes associated with changing shelf edge delivery systems and variable bathymetry due to differential substrate compaction complicate the resultant stratigraphy.  相似文献   

11.
In siliciclastic marine settings, skeletal concentrations are a characteristic feature of transgressive intervals that provide insights into biological and sequence-stratigraphic processes. To investigate taphonomic signatures of transgressive intervals, we analysed three cores along a depositional profile from the high resolution chrono- and stratigraphic framework of the Holocene Po coastal plain, in northern Italy. Coupled multivariate taphonomic and bathymetric trends delineated spatial and temporal gradients in sediment starvation/bypassing, suggesting that quality and resolution of the fossil record vary predictably along the studied depositional profile. Moreover, integration of taphonomic, bathymetric, and fossil density trends across the study area reveals distinctive signatures useful in characterizing facies associations and determining surfaces and intervals of sequence-stratigraphic significance. Within the southern Po plain succession, taphonomic degradation of macroskeletal remains increases from proximal/nearshore to distal/offshore locations. This trend is discernible for both biologically-driven (bioerosion) and physically-driven (e.g., dissolution, abrasion) shell alterations. Compared to the up-dip (most proximal) core, the down-dip core is distinguished by shell-rich lithosomes affected by ecological condensation (co-occurrence of environmentally non-overlapping taxa) and by higher taphonomic alteration. The onshore-offshore taphonomic trend likely reflects variation in sediment-accumulation along the depositional profile of the Holocene Northern Adriatic shelf, with surface/near-surface residence-time of macroskeletal remains increasing down dip due to lower accumulation rates. These results indicate that, during transgressive phases, changes in sea level (base level) are likely to produce down-dip taphonomic gradients across shelves, where the quality and resolution of the fossil record both deteriorate distally. Radiocarbon-calibrated amino acid racemisation dates on individual bivalve specimens and the chronostratigraphic framework for this profile suggest jointly that the high levels of taphonomic degradation observed distally developed over millennial time scales (∼8ky). Whereas in proximal setting overall low taphonomic degradation and geochronologic constrains point to centennial-scale time-averaging during the late transgression phase. Patterns documented in the Holocene transgressive (and lowermost regressive) deposits of the southern Po Plain may be characteristic of siliciclastic-dominated depositional systems that experience high-frequency, base-level fluctuations.  相似文献   

12.
松辽盆地泉四段扶余油层地层层序新认识   总被引:4,自引:0,他引:4  
松辽盆地泉四段扶余油层发育浅水湖泊三角洲相和浅水湖泊相,沉积构造环境属于闭塞浅水坳陷湖盆,其层序特征类似于稳定克拉通盆地层序,也类似于缓坡被动大陆边缘型盆地层序,气候是控制陆相坳陷盆地层序形成的主要因素,三级层序内总体应表现为水进体系域-高位体系域构成1个完整的层序,而低位体系域不发育。通过岩心、录井、地震等资料研究分析,认为泉四段扶余油层是1个三级层序,发育水进体系域和顶部薄层强制水退边缘体系域;泉四段与泉三段地层分界是其层序的底界;泉四段顶界地震反射层T2也是层序边界,是泉四段三级层序的顶界。精确识别和建立地层层序格架对石油勘探开发具有重要的指导意义。  相似文献   

13.
The Plio-Pleistocene succession of the Venice area represents part of the infill of a foreland region located between three mountain chains: the Northern Apennines, the Southern Alps and the Dinarides. This structural setting favored the development of a complex stratigraphic architecture of the succession, mostly due to the conveying of sediments from the Southern Alps to the north and the Northern Apennines to the south, in particular since the activation of strong subsidence related to the NE-ward migration of the Apennine foredeep in the early Pleistocene. Accordingly, the studied succession is composed of five third-order sequences mostly controlled by tectonics, the most recent of which display complex patterns due to the interfingering of sedimentary bodies showing contrasting directions of progradation and pinch-out. Despite this, the sequence stratigraphic method still can be applied in the present context, allowing to recognize diagnostic stratal architectures and reconstruct the relative sea-level history of the region. Moreover, the recognized peculiar stratigraphic architecture of the basin fill may serve as an analogue that needs to be taken into account to predict the distribution of porous coarse-grained sedimentary units in similar contexts, aiding for a profitable exploration and production of reservoirs and source/sealing rocks.  相似文献   

14.
The Plio-Pleistocene stratigraphic record of the Peri-Adriatic basin (eastern central Italy) is well exposed along the uplifted western margin of the basin and consists of a series of coarse-grained slope canyon fills encased in a thick succession of hemipelagic mudstones. This study deals with the detailed sedimentology, stratal architecture, and sequence-stratigraphic interpretation of two of these submarine canyon-fills (namely CMC1 and CMC2) exposed at Colle Montarone. These strata contain widespread evidence of gravity-driven sedimentation processes, with high- and low-density turbidity currents, slumps and cohesive debris flows being responsible for most of the sediment transport and deposition. Beds are organised into four recurrent lithofacies, each corresponding to a specific deep-water depositional element: (i) clast-supported conglomerates (channel complexes); (ii) thin-bedded sandstones and mudstones (levee-overbank); (iii) very thinly-bedded mudstones (tributary channels); (iv) pebbly mudstones and chaotically bedded mudstones (mass-transport complexes).  相似文献   

15.
Tectonically-complex settings present accommodation and sediment supply changes with patterns and rates for which the current sequence stratigraphy paradigms are not designed. In the Tertiary Piedmont Basin (TPB) and Peri-Adriatic Basin (PAB), outcrop and seismic examples demonstrate that the observed stratal and stacking patterns cannot be entirely explained using conventional sequence-stratigraphic models. Therefore, it is of paramount importance to use a model-independent more comprehensive approach encompassing advanced sequence-stratigraphic concepts combined with process changes, while being able to consider the morphostructural complexity that characterizes these margins and their changes induced by basin reshaping.Abrupt relative sea level falls generated by uplift or basin inversion may exceed several hundreds of meters, resulting in wedge-margin progressive unconformities characterized by subaerial and subaqueous erosional truncation. A progressive increase in sediment supply occurs, expressed by increasing volume and size of mass-transport complexes overlain by forced-regressive deltas, as the maximum sediment supply is delayed until after the main uplift. Different accommodation/sediment supply ratios may also occur at the same time along different margins of the same basin, generating a diachronism in the T-R or R-T cycles, adding further complexity to the variability produced by autogenesis.On clastic shelf margins characterized by an increasing rate of relative sea level rise, such as in case of increasing rollback velocities and related flexural tilting, or following an orogenic collapse, sediment supply may not keep pace with increasing accommodation so that initially retrogradation and basinward condensation occur, marked by omission surfaces. However, when the rate of subsidence increases, the succession is punctuated by multiple subaqueous erosional unconformities marking phases of basinward tilting leading to the oversteepening of basin margins and abrupt deepening. The downwarping usually produces large-scale subaqueous erosional surfaces passing laterally into paraconformities, so hinged-margin drowning unconformities affecting clastic shelves occur, associated with regional stratigraphic gaps.The re-establishment of the slope equilibrium profile implies high volume of sediments eroded from drowned deltas and shelves, feeding turbidites deposited at the toe of above-grade slopes. These turbidites can be therefore considered as high accommodation-high sediment supply systems. This suggests that turbidites are delivered basinward not only due to bypass at sequence boundaries or during the highstand progradation of supply-driven deltas, but also due to abrupt accommodation creation on hinged-shelf margin wedges.The great variability of tectonically-driven unconformities generated under either decreasing or increasing accommodation suggests that the features described in the TPB and the PAB are probably not uncommon, controlled by linked dynamic turnarounds of accommodation, sediment supply and stratigraphy taking place throughout the development of basin reorganizations.  相似文献   

16.
通过对胶州湾青岛近海沉积物微古化石及浅层地震资料的综合解释,运用层序地层概念,确定了层序界面的划分方法。初次海泛面之下为河流沉积,微体古生物缺乏,其上岩性以含贝壳的砂质粗粒为主,微古特征表现为低丰度、低分异度。浓缩段岩性为虫孔发育的泥质细粒组分,微古丰度出现最高值。据此可将胶州湾青岛近海层序地层划分为半个三级层序.海进体系域发育海侵边界层、潮沟充填及古滨岸沉积,高位体系域形成大沽河洋河复合三角洲沉积体及湾口两侧的潮汐三角洲沉积体。以层序的方法研究近岸沉积物有利于不同地域不同时代地层间的对比,通过岩性和微体化石及矿物分布等特征综合确定海泛面,在具有多物源、快速沉积特点的近岸海湾有一定的现实意义。  相似文献   

17.
Based on cores, well logs and seismic data, we established the isochronous sequence stratigraphic framework of the Lower Silurian Longmaxi Formation and predicted the shale lithofacies distribution within the sequence stratigraphic framework using geostatistical inversion. The results of our study show that the Lower Member of the Longmaxi Formation is a third order sequence that includes a transgressive systems tract (TST), an early highstand systems tract (EHST) and a late highstand systems tract (LHST). Four lithofacies units have been recognized, specifically siliceous shale, argillaceous shale, calcareous shale and mixed shale. The results of geostatistical inversion reveal that the TST is characterized by flaky siliceous shale and some sparsely distributed calcareous shale. The EHST is dominated by mixed shale with minor amounts of siliceous shale, which occurs in only a small area. Moreover, in the LHST, argillaceous shale occupies almost the entire study region. Comparing to traditional geological research with geophysical research, the vertical resolution of the predictive results of geostatistical inversion could reach 1–2 m. Geostatistical inversion effectively solves the problem of precisely identifying the lithofacies in the Fuling shale gas field and predicting their spatial distribution. This successful study showcases the potential of this method for carrying out marine shale lithofacies prediction in China and other locations with similar geological backgrounds.  相似文献   

18.
The sequence stratigraphic architecture includes a complex array of stratal geometries with different degrees of stratigraphic significance. The ‘non-unique’ variability of the sequence stratigraphic framework (i.e., stratal geometries which are not diagnostic for the definition of systems tracts and bounding surfaces) is irrelevant to the workflow of sequence stratigraphy. What is relevant is the observation of the ‘unique’ stratal geometries that are diagnostic for the definition of units and surfaces of sequence stratigraphy. In downstream-controlled settings, these unique stratal stacking patterns relate to the forced regressive, normal regressive, and transgressive shoreline trajectories. Multiple controls interact during the formation of each type of stacking pattern, including accommodation, sediment supply, and the energy of the sediment-transport agents. This interplay explains the non-unique variability, but does not change the unique criteria that afford a consistent application of sequence stratigraphy. The distinction between unique and non-unique stratal geometries is critical to the sequence stratigraphic methodology. Failure to rationalize the non-unique variability within the context of unique stratal geometries is counterproductive, and obscures the simple workflow of sequence stratigraphy. This is the case with uncalibrated numerical modeling, which may overemphasize non-unique or even unrealistic stratigraphic scenarios. While useful to test the possible controls on stratigraphic architecture, modeling requires validation with real data, and plays no role in the sequence stratigraphic methodology.  相似文献   

19.
Five sequences are defined in the Oligocene succession of the Danish North Sea sector. Two of the sequences, 4.1a and 4.3, have been identified onshore Denmark.Two types of prograding lowstand deposits are recognized. Sand-dominated deposits occur proximally, comprising sharp-based forced regressive deposits covered with prograding low-stand deposits. Clay-dominated prograding lowstand deposits occur distally in the sequences. The highstand deposits are proximally represented by thick prograding sandy deposits and distally by thin and condensed intervals.The main sediment input direction was from the north and the northeast. A succession oif lithofacies, from shallow marine facies dominated by sand to outer shelf facies dominated by clay, is mapped in each of the sequences. An overall southward progradation of the shoreline took place during the Oligocene, interrupted only by minor shoreline retreats.  相似文献   

20.
渤海海域凹陷由于资料的限制,其沉积相研究多为宏观的区域性研究,制约了储层的精细解释。基于最新采集的高精度地震三维资料,结合地震地层学、层序地层学、地震沉积学等理论方法,开展渤中凹陷西斜坡BZ3-8区块东营组重点目的层,东二下层序高分辨率井震层序分析及其地震沉积学研究。结果表明,研究区南北两侧具有不同的物源体系和沉积相模式。低水位体系域(LST)和高水位体系域(HST)时期,研究区北部物源均形成扇形、朵形的地震多属性及振幅切片异常,对应于扇三角洲沉积;南部物源均形成NE向展布的条带状地震多属性及振幅切片异常,对应于辫状河三角洲沉积。海进体系域(TST)时期,湖平面快速上升导致扇体不发育,仅在研究区北部局部发育小规模的扇三角洲沉积。东二下层序LST(富砂)-TST(富泥)-HST(富砂)的岩相演化规律,充分反映了经典层序地层学理论层序格架中的地层岩相组合分布规律,对储层和烃源岩的预测具有指示意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号