首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
All of the available hydrographic station data (temperature, salinity, dissolved oxygen, phosphate and nitrate) taken in various seasons from 1964 to 1985 are analyzed to show where the upper portion of the Japan Sea Proper Water (UJSPW) is formed and how it circulates. From vertical distributions of water properties, the Japan Sea Proper Water can be divided into an upper portion and a deep water at the 1 (potential density referred to 1000 db) depth of 32.05 kg m–3 surface. The UJSPW in the north of 40°N increases in dissolved oxygen contents and decreases in phosphate contents in winter, while no significant seasonal variation is seen in the south of 40°N. Initial nutrient contents calculated from relationships between AOU and nutrients on isopycnal surfaces show no significant regional difference in the Japan Sea; this suggests that the UJSPW has originated from a single water mass. From depth, dissolved oxygen and phosphate distributions on 1 32.03 kg m–3 surface, core thickness distribution and subsurface phosphate distribution, it is inferred that the UJSPW is formed by the wintertime convection in the region west of 136°E between 40° and 43°N, and advected into the region west of the Yamato Rise along the Continent; finally, it must enter into the Yamato Basin.  相似文献   

2.
The transport of Japan Basin Bottom Water (JBBW) into the Yamato Basin in the Japan Sea is an important boundary condition for the modification of the abyssal water mass in the Yamato Basin. To estimate the volume transport of JBBW, two year-long observations (October 2011–October 2012 and May 2014–May 2015) were carried out using current meters moored in the deep channel connecting the Japan Basin with the Yamato Basin. The mean transport toward the Yamato Basin from the Japan Basin was estimated to be 7.37 × 104 and 5.15 × 104 m3 s?1, consistent with previous estimates from box model analysis and lowered acoustic Doppler current profiler observations. The time series of JBBW transport showed significant variability. A cause of the variability was bottom-intensified flow fluctuations in the 3- to 15-day period band, which suggests bottom-trapped topographic Rossby waves in the deep channel. In addition, during August–October 2014, notable variation of JBBW transport accompanied significant decreases of potential temperature and dissolved oxygen concentration. Detailed examination of the episodic variations of flows, potential temperature, and dissolved oxygen concentration, together with consideration of sea surface height variations, suggested that rapid northward meandering of the surface subarctic front was another cause of the significant variation in JBBW transport.  相似文献   

3.
The water under the main thermocline in the Japan Sea is a single water mass referred to as the Japan Sea Proper Water. It can be defined as having temperature below 2.0°C, salinity above 34.00%, and dissolved oxygen below 7.0 ml 1−1. In the north most of the water above the potential temperature 0.1°C depth (about 800–1000 m) is a mode water, with σθ of 27.32 to 27.34 kg m−3. North of 40°N it has high oxygen (more than 6.00 ml 1−1) with a distinct discontinuity (oxygen-cline) at the bottom of the mode water. The most probable region for the formation of the water is the area north of 41°N between 132° and 134°E. The deeper water probably is formed in the norther area of 43°N, and directly fills the main part of the Japan Basin north of 41°N and east of 134°E.  相似文献   

4.
The subsurface current of the Japan Sea was observed by two Autonomous Lagrangian Circulation Explorer (ALACE) floats. One float, having a 20-day cycle, was deployed on 29 July 1995 in the eastern Japan Basin and drifted in the northeastern part of the basin until 15 September 2000. The other float, with a 10-day cycle, was deployed on 4 August 1995 in the western Japan Basin and drifted in the western Japan Basin, in the Yamato Basin and around the Yamato Rise until it reached its life limit in mid-May 2000. An anticlockwise circulation in the eastern Japan Basin was observed and it was assumed to be in the upper portion of the Japan Sea Proper Water (UJSPW) or in the intermediate water. The spatial scale of the circulation increased as the depth decreased. A clockwise circulation was observed around the Yamato Rise in the UJSPW. Smaller clockwise and anticlockwise rotations were observed in the western Japan Sea, where a seasonal variation was seen in drift speed with different phase by depth. The correlation coefficient between drift speeds of two floats indicated little coherence among the subsurface circulation between the east and the west of the Japan Basin, or between the north and the south of the subpolar front. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
The Formation and Circulation of the Intermediate Water in the Japan Sea   总被引:1,自引:0,他引:1  
In order to clarify the formation and circulation of the Japan/East Sea Intermediate Water (JESIW) and the Upper portion of the Japan Sea Proper Water (UJSPW), numerical experiments have been carried out using a 3-D ocean circulation model. The UJSPW is formed in the region southeast off Vladivostok between 41°N and 42°N west of 136°E. Taking the coastal orography near Vladivostok into account, the formation of the UJSPW results from the deep water convection in winter which is generated by the orchestration of fresh water supplied from the Amur River and saline water from the Tsushima Warm Current under very cold conditions. The UJSPW formed is advected by the current at depth near the bottom of the convection and penetrates into the layer below the JESIW. The origin of the JESIW is the low salinity coastal water along the Russian coast originated by the fresh water from the Amur River. The coastal low salinity water is advected by the current system in the northwestern Japan Sea and penetrates into the subsurface below the Tsushima Warm Current region forming a subsurface salinity minimum layer. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
The Ulleung Basin is one of three deep basins that are contained within the East/Japan Sea. Current meter moorings have been maintained in this basin beginning in 1996. The data from these moorings are used to investigate the mean circulation pattern, variability of deep flows, and volume transports of major water masses in the Ulleung Basin with supporting hydrographic data and help from a high-resolution numerical model. The bottom water within the Ulleung Basin, which must enter through a constricted passage from the north, is found to circulate cyclonically—a pattern that seems prevalent throughout the East Sea. A strong current of about 6 cms−1 on average flows southward over the continental slope off the Korean coast underlying the northward East Korean Warm Current as part of the mean abyssal cyclonic circulation. Volume transports of the northward East Korean Warm Current, and southward flowing East Sea Intermediate Water and East Sea Proper Water are estimated to be 1.4 Sv (1 Sv=10−6 m3 s−1), 0.8 Sv, and 3.0–4.0 Sv, respectively. Deep flow variability involves a wide range of time scales with no apparent seasonal variations, whereas the deep currents in the northern East Sea are known to be strongly seasonal.  相似文献   

7.
Water masses in the East Sea are newly defined based upon vertical structure and analysis of CTD data collected in 1993–1999 during Circulation Research of the East Asian Marginal Seas (CREAMS). A distinct salinity minimum layer was found at 1500 m for the first time in the East Sea, which divides the East Sea Central Water (ESCW) above the minimum layer and the East Sea Deep Water (ESDW) below the minimum layer. ESCW is characterized by a tight temperature–salinity relationship in the temperature range of 0.6–0.12 °C, occupying 400–1500 m. It is also high in dissolved oxygen, which has been increasing since 1969, unlike the decrease in the ESDW and East Sea Bottom Water (ESBW). In the eastern Japan Basin a new water with high salinity in the temperature range of 1–5 °C was found in the upper layer and named the High Salinity Intermediate Water (HSIW). The origin of the East Sea Intermediate Water (ESIW), whose characteristics were found near the Korea Strait in the southwestern part of the East Sea in 1981 [Kim, K., & Chung, J. Y. (1984) On the salinity-minimum and dissolved oxygen-maximum layer in the East Sea (Sea of Japan), In T. Ichiye (Ed.), Ocean Hydrodynamics of the Japan and East China Seas (pp. 55–65). Amsterdam: Elsevier Science Publishers], is traced by its low salinity and high dissolved oxygen in the western Japan Basin. CTD data collected in winters of 1995–1999 confirmed that the HSIW and ESIW are formed locally in the Eastern and Western Japan Basin. CREAMS CTD data reveal that overall structure and characteristics of water masses in the East Sea are as complicated as those of the open oceans, where minute variations of salinity in deep waters are carefully magnified to the limit of CTD resolution. Since the 1960s water mass characteristics in the East Sea have changed, as bottom water formation has stopped or slowed down and production of the ESCW has increased recently.  相似文献   

8.
Intermediate Waters in the East/Japan Sea   总被引:4,自引:0,他引:4  
Properties of the intermediate layer in the East/Japan Sea are examined by using CREAMS data taken mainly in summer of 1995. Vertical profiles of potential temperature, salinity and dissolved oxygen and relationships between these physical and chemical properties show that the dissolved oxygen concentration of 250 μmol/l, roughly corresponding to 0.6°C at the depth of about 400 db, makes a boundary between intermediate and deep waters. Water colder than 0.6°C has a very stable relationship between potential temperature and salinity while salinity of the water warmer than 0.6°C is lower in the western Japan Basin than that in the eastern Japan Basin. The low salinity water with high oxygen corresponds to the East Sea Intermediate Water (ESIW; <34.06 psu, >250 μmol/l and >1.0°C) which was previously identified by Kim and Chung (1984) and the high salinity water with high oxygen found in eastern Japan Basin is named as the High Salinity Intermediate Water (HSIW; >34.07 psu, >250 μmol/l and >0.6°C). Spatial distribution of salinity and acceleration potential on the surface of σϑ = 27.2 kg/m3 shows that the ESIW prevailing in the western Japan Basin is transported eastward by a zonal flow along the polar front near 40°N and a cyclonic gyre in the eastern Japan Basin is closely related to the HSIW. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
Approximately 12,000 km2 of acoustic backscatter imagery (sidescan) data and swath bathymetry data were collected jointly by Republic of Korea (ROK) Navy, the Naval Oceanographic Office (NAVOCEANO), Hawaii Mapping Research Group (HMRG) and the Naval Research Laboratory (NRL) in the East Sea (Sea of Japan) in 1995. Preliminary analysis of these data have revealed a large network of canyons with well-developed fan deposits and slumps which were not previously mapped. Also identified is a 1400 km2 area occupied by more than 300 circular, low-backscatter features ca. 50–1000 m in diameter which are interpreted to be pockmarks or mounds created by escaping methane gas, methane-rich porewater and mud.Indirect evidence for the probable existence of methane gas hydrate include the five following observations: (1) Core samples in the region contain high levels of organic carbon (>7%), degassing cracks caused by gas expansion, and emit a strong H2S odor. (2) Extensive canyon formation and slumping may have occurred as the result of the destabilization of sediments due to gas accumulation. (3) Several of the high backscatter objects occur at the crest of a bathymetric high under which gas could be accumulating and periodically releasing in a manner similar to that documented on the Vestnesa Ridge in the Norwegian-Greenland Sea. (4) Pockmark-like features have been identified in 3.5 kHz records on the northern edge of the Ulleung Basin. (5) Drill core samples from the morphologically similar Yamato Basin, which is adjacent to the Ulleung Basin, have positively identified methane and numerous gas voids in unconsolidated sediments. No bottom simulating reflector (BSR) has been identified in seismic reflection profiles collected across the slope in Ulleung Basin.  相似文献   

10.
Constant flows, as well as oscillatory tidal flow, play an important role in the long-term dispersion of water in the Seto Inland Sea. Two kinds of numerical model (1-line and 2-line models) of the Seto Inland Sea have been developed to determine the role of density-induced currents, one type of the constant flow, in water dispersion in the Inland Sea. The seasonal variations of temperature, salinity and density fields are simulated and the density-induced current field is predicted at the same time. It is found that the most appropriate value of the longitudinal eddy diffusion coefficient,K x, is 5×106–7×106 cm2sec–1. The value of the overall mean dispersion coefficient is of the order of 107cm2sec–1 (Hayami and Unoki, 1970). Consequently, it is suggested that 50–70% of the total dispersion in the Seto Inland Sea can be attributed to currents other than density-induced currents,i.e., tidal currents, tide-induced currents and wind-driven currents.In winter, both density and velocity fields, calculated using the 1-line model, satisfy the conditions for the existence of a coastal front in Kii Channel and in the eastern Iyo-nada.  相似文献   

11.
Hydrographic observations have revealed detailed structure of the Bottom Water in the Japan Sea. The Yamato Basin Bottom Water (YBBW) exhibits higher temperatures and lower dissolved oxygen concentrations than those found in the Japan Basin Bottom Water (JBBW). Both Bottom Waters meet around the boundary region between the Yamato and the Japan Basins, forming a clear benthic front. The structure of the benthic front suggests an estuary-like water exchange between both Basins, with the inflow from the Japan Basin passing under the outflow from the Yamato Basin. It is inferred from the property distributions that the JBBW flowing into the Yamato Basin is entrained by the cyclonic circulation in the basin, and modified to become the YBBW. Vertical diffusion and thermal balance in the YBBW are examined using a box model. The results show that the effect of geothermal heating has about 70% of the magnitude of the vertical thermal diffusion and both terms cancel the advection term of the cold JBBW from the Japan Basin. The box model also estimates the turnover time and vertical diffusivity for the YBBW as 9.1 years and 3.4 × 10−3 m2s− 1, respectively.  相似文献   

12.
The abundance and vertical distribution pattern of a mysidMeterythrops microphthalma were investigated in the Japan Sea. Results from vertical hauls from 602–982 m depth to the surface around Yamato Rise in April 1987 indicated that the dominance (by biomass) ofM. microphthalma was third to fifth of major zooplankton taxa. Vertical distribution investigated at a single station in Toyama Bay in June, September and December 1986 showed that the most part of population of this mysid inhabited consistently below 250 m depth. No marked diurnal vertical migration was evident. Data on body composition and oxygen consumption rate ofM. microphthalma are presented. Water content of the body was 75.6–83.8% of wet weight, and ash was 11.4–20.4% of dry weight. Carbon, hydrogen and nitrogen were 37.9–47.5%, 6.2–7.4% and 9.4–10.1%, respectively, of dry weight. Oxygen consumption rates were 2.2–11.0µl O2 individual–1 hr–1 at 0.5°C, and were directly proportional to body mass. From the comparison with the published data on epipelagic and bathypelagic mysids it is revealed that both body nitrogen composition and oxygen consumption rate expressed as adjusted metabolic rate [AMR02,µl O2 (mg body N)–0.85 hr–1] ofM. microphthalma are intermediate between high epipelagic and low bathypelagic levels, indicating typical mesopelagic features.  相似文献   

13.
We measured abundance and biomass of 3 major groups of microzooplankton, i.e. tintinnids, naked ciliates and copepod nauplii, at 21 stations in the Inland Sea of Japan in October 1993, January, April and June 1994. The average abundance of the microzooplankton over the entire Inland Sea of Japan ranged from 2.39×105 indiv. m–3 in January to 4.00×105 indiv. m–3 in April. Ciliated protozoans, i.e. tintinnids plus naked ciliates, numerically dominated the microzooplankton. The average biomass of the microzooplankton was exceedingly high in October (8.62 mg C m–3) compared to that in the other months (2.06, 2.79 and 2.68 mg C m–3 in January, April and June, respectively). The ciliated protozoans also dominated in terms of biomass except in October, when copepod nauplii were more important. Estimated production rate of the microzooplankton was highest in October (average: 6.02 mg C m–3d–1) and followed in order by June, April and January (1.94, 1.14 and 0.54 mg C m–3d–1, respectively). Due to higher specific growth rate, the production rate by the ciliated protozoans far exceeded that by the copepod nauplii. The trophic importance of the microzooplankton in the pelagic ecosystem of the Inland Sea of Japan was assessed by estimating carbon flow through the microzooplankton community.  相似文献   

14.
The distribution of228Ra in surface and subsurface waters in the Japan Sea was studied. The concentrations of228Ra in surface waters were around 100 dpm/1000l which were much higher than those reported for Pacific surface waters. The concentrations of228Ra decreased with increasing depth to less than 10 dpm/1000l in the Japan Sea Proper Water. Based on the comparison between observed values of228Ra and calculated profile through the near-surface water mass and the underlying main water mass in the Japan Sea, the apparent vertical eddy diffusion coefficient was estimated to be about 2 cm2 s–1.  相似文献   

15.
The concentration level of cadmium (Cd) and the regeneration related to phosphate (PO4) were examined at two stations (CM10, CM12) in the eastern Japan Basin in July 1998. The observed Cd concentrations were around 0.2–0.3 nM and 0.5–0.6 nM in the surface and deep layers (Japan Sea Proper Water; JSPW), respectively; the concentration of Cd in the JSPW was much lower than that in the Pacific deep water, which is attributed to its specific formation system (which driven by the winter convection of the surface layer within the Japan Sea, thereafter descending to the deep layer) connected with the relatively active vertical mixing in the Japan Sea. A plot of Cd against PO4 showed good linearity with positive y-intercept values, suggesting that the excess Cd was apparently not available in the biogeochemical cycle. The molecular ratios of consumed O2 to regenerated Cd and PO4 in the JSPW were 688,000, 140 and 881,000, 146 for CM10 and CM12, respectively, and a lower preformed Cd concentration (around 0.37 nM) was also estimated in the JSPW, different from that of the North Pacific deep water (613,000 for Cd, 170 for PO4, and 0.64 nM of preformed Cd).  相似文献   

16.
In order to clarify the structure of the strong tidal current at the Naruto Strait in the Seto Inland Sea of Japan, the sea-level values were observed in the strait and the current measurements were made with an Acoustic Doppler Current Profiler (ADCP).The tidal volume transports for M2 and S2 tides were about 74×103 and 26×103 m3 sec–1, respectively. The horizontal profile of the velocity at the phase of the strong tidal current compares favorably with a theoretical profile of the two-dimensional steady turbulent jet except for the side parts of the profile. Moreover, the entrainment rate of the surrounding water into the strong tidal jet was estimated from the difference of mass flux between two cross-sections at the strait, the entrainment rate and entrainment constant for both the northward and southward flows being about 1.3–2.5×10–4m–1 and about 0.03–0.05, respectively.  相似文献   

17.
In the current study, low-background γ-spectrometry was employed to determine the 228Ra/226Ra activity ratio and 137Cs activity of 84 coastal water samples collected at six sites along the main island of Japan (Honshu Island) within the Sea of Japan, including the Tsushima Strait, and two other representative sites on Honshu Island (a Pacific shore and the Tsugaru Strait) at 1-month intervals in 2006.The 228Ra/226Ra ratio of coastal waters in the Sea of Japan exhibited similar patterns of seasonal variation, with minimum values during early summer (228Ra/226Ra = 0.6–0.8), maximum values during autumn (228Ra/226Ra = 1.5–3), and a time lag in their temporal changes ( 2.5 months and over  1300 km distance). However, the 2 other sites represented no clear periodic variation.In contrast to the positive correlation between 137Cs activity (0.6–1.7 mBq/L) and salinity (15–35), the 228Ra/226Ra ratio of coastal water samples from the Sea of Japan was not observed to correlate with salinity, and the increase in the 228Ra/226Ra ratio was not as marked (0.5–1; May–June 2004 and 2005) during the migration along Honshu Island. The input of land-derived water and/or the diffusion of radium from coastal sediments is unlikely to have affected the wide seasonal variation in the 228Ra/226Ra ratio observed in these water samples.The seasonal variation in the 228Ra/226Ra ratio recorded for the coastal waters of the Sea of Japan is considered to be mainly controlled by the remarkable changes in the mixing ratio of the 228Ra-poor Kuroshio and the 228Ra-rich continental shelf waters within the East China Sea (ECS). After passing through the Tsushima Strait, this water mass moves northeast along the coastline of the Sea of Japan as the Tsushima Coastal Branch Current (TCBC).  相似文献   

18.
The dynamics controlling the response of the Baltic Sea to changed atmospheric and hydrologic forcing are reviewed and demonstrated using simple models. The response time for salt is 30 times longer than for heat in the Baltic Sea. In the course of a year, the Baltic Sea renews most of its heat but only about 3% of its salt. On the seasonal scale, surface temperature and ice-coverage are controlled by the atmospheric conditions over the Baltic Sea as demonstrated by e.g. the strong inter-annual variations in winter temperature and ice-coverage due to variations in dominating wind directions causing alternating mild and cold winters. The response of surface temperature and ice-coverage in the Baltic Sea to modest climate change may therefore be predicted using existing statistics. Due to the long response time in combination with complicated dynamics, the response of the salinity of the Baltic Sea cannot be predicted using existing statistics but has to be computed from mechanistic models. Salinity changes primarily through changes in the two major forcing factors: the supply of freshwater and the low-frequency sea level fluctuations in the Kattegat. The sensitivity of Baltic Sea salinity to changed freshwater supply is investigated using a simple mechanistic steady-state model that includes baroclinic geostrophic outflow from the Kattegat, the major dynamical factor controlling the freshwater content in the Kattegat and thereby the salinity of water flowing into the Baltic Sea. The computed sensitivity of Baltic Sea surface salinity to changes of freshwater supply is similar to earlier published estimates from time-dependent dynamical models with higher resolution. According to the model, the Baltic Sea would become fresh at a mean freshwater supply of about 60 000 m3 s−1, i.e. a 300% increase of the contemporary supply. If the freshwater supply in the different basins increased in proportion to the present-day supply, the Bothnian Bay would become fresh already at a freshwater supply of about 37 000 m3 s−1 and the Bothnian Sea at a supply of about 45 000 m3 s−1. The assumption of baroclinic geostrophic outflow from the Kattegat, crucial for the salinity response of the Baltic Sea to changed freshwater supply, is validated using daily salinity profiles for the period 1931–1977 from lightship Läsö Nord.  相似文献   

19.
Observations were made of time variations of carbon dioxide in seawater, pCO2, and in the atmosphere, PCO2, in the Seto Inland Sea of Japan. The pCO2 data showed well defined diurnal variation; high values at nighttime and low values during daylight hours. The pCO2 correlated negatively with dissolved oxygen. These results denote that the diurnal variation of pCO2 is associated with effects of photoplankton's activity in seawater. The pCO2 measured in the Seto Inland Sea showed higher values than the PCO2 during June to November, denoting transport of carbon dioxide from the sea surface to the atmosphere, and lower values during December to May, denoting transport of carbon dioxide from the atmosphere to the sea surface. The exchange rates of carbon dioxide were calculated using working formula given by Andriéet al. (1986). The results showed that the Seto Inland Sea gained carbon dioxide of 1.0 m-mol m–2 d–1 from the atmosphere in March and lost 1.7 m-mol m–2 d–1 to the atmosphere in August.  相似文献   

20.
The Japan Sea Intermediate Water; Its Characteristics and Circulation   总被引:6,自引:0,他引:6  
In the southern Japan Sea there is a salinity minimum layer between the Tsushima Current Water and the Japan Sea Proper Water. Since the salinity minimum corresponds to the North Pacific Intermediate Water, it is named the Japan Sea Intermediate Water (JIW). To examine the source and circulation of JIW, the basin-wide salinity minimum distribution was investigated on the basis of hydrographic data obtained in 1969. The young JIW, showing the highest oxygen concentration and the lowest salinity, is seen in the southwestern Japan Sea west of 133°E, while another JIW with lower oxygen and higher salinity occupies the southeastern Japan Sea south of the subpolar front. Since the young JIW shows high oxygen concentrations, high temperatures and low densities, the source of the water is probably in the surface layer. It is inferred that the most probable region of subduction is the subarctic front west of 132°E with the highest oxygen and the lowest salinity at shallow salinity minimum. In addition, property distributions suggest that JIW takes two flow paths: a eastward flow along the subarctic front and an southward flow toward the Ulleung Basin. On the other hand, a different salinity minimum from JIW occupies the northern Japan Sea north of the subarctic front, which shows an apparently higher salinity and high oxygen concentration than JIW. However, this salinity minimum is considered not to be a water mass but to be a boundary between overlying and underlying water masses. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号