首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
近断层脉冲型地震动作用下隔震结构地震反应分析   总被引:17,自引:5,他引:17  
隔震结构在远震场地减震效果良好,但是近断层地震动的明显的长周期速度和位移脉冲运动可能对隔震建筑等长周期结构的抗震性能和设计带来不利影响,需要深入探讨。本文首先讨论近断层地震动的长周期脉冲运动特征,然后以台湾集集地震8条典型近震记录和其它4条常用近震记录以及4条远震记录作为地震动输入,对两幢安装铅芯橡胶隔震支座的钢筋混凝土框架隔震结构进行非线性地震反应时程分析,通过比较探讨了算例计算结果,定量说明隔震结构的近震脉冲效应显著,是隔震设计不容忽视的问题。  相似文献   

2.
近断层前方向性效应地震动含有高幅值,短持时的速度脉冲,与远场地震动相比存在显著差异。本文根据所选取的40条近断层地震波记录,用小波分析方法将原始记录分解为脉冲波部分和高频波部分,对弹性和非弹性单自由度体系进行分析,得出了以下结论:对于弹性体系,大约0.484倍的速度脉冲周期可以作为临界周期,脉冲波部分将对固有周期大于临界周期的结构的响应起主导作用,反之,高频波部分将会产生显著影响;对于非弹性体系,仅仅用等效速度脉冲方法模拟近断层地震动的计算精度将会受到延性系数?的影响,随着延性系数的增加,脉冲波部分满足精度要求的结构固有周期范围将明显缩小,并且向较低周期范围偏移;仅用等效速度脉冲模型来模拟近断层地震动具有一定的局限性。  相似文献   

3.
近断层地震动脉冲特性在2个水平分量上具有差异,采用平方和开方法分析了近断层脉冲地震动双向地震作用下基础隔震结构和组合隔震结构的隔震层位移,并与近断层脉冲单向地震作用进行了对比分析,结果表明:若仅地震动加速度峰值大的分量或2个方向分量均存在明显速度脉冲,则产生的隔震层位移大于单向地震动;若仅地震动加速度峰值小的分量存在明...  相似文献   

4.
Liu  Ping  Li  Ning  Ma  Hua  Xie  Lili  Zhou  Baofeng 《地震工程与工程振动(英文版)》2020,19(1):1-16
Pulse-like ground motions are capable of inflicting significant damage to structures. Efficient classification of pulse-like ground motion is of great importance when performing the seismic assessment in near-fault regions. In this study, a new method for identifying the velocity pulses is proposed, based on different trends of two parameters: the short-time energy and the short-time zero crossing rate of a ground motion record. A new pulse indicator, the relative energy zero ratio(REZR), is defined to qualitatively identify pulse-like features. The threshold for pulse-like ground motions is derived and compared with two other identification methods through statistical analysis. The proposed procedure not only shows good accuracy and efficiency when identifying pulse-like ground motions but also exhibits good performance for classifying records with high-frequency noise and discontinuous pulses. The REZR method does not require a waveform formula to express and fit the potential velocity pulses; it is a purely signal-based classification method. Finally, the proposed procedure is used to evaluate the contribution of pulse-like motions to the total input energy of a seismic record, which dramatically increases the seismic damage potential.  相似文献   

5.
本文基于小波包技术的随机地震动模拟方法,提出一种改进的参数化随机近断层脉冲型地震动模拟方法。然后,通过识别和提取近断层脉冲型地震动数据库中脉冲型地震动的特征参数,建立了基于震源、传播路径和场地特征等参数的脉冲模型参数预测方程。最后,通过模拟实际记录和误差分析检验了改进的模拟方法的有效性。结果表明:应用改进的模拟方法得到的地震动时程无论在波形、频率特性还是峰值上均与实际记录具有较好的一致性。改进的模拟方法在保留地震动时频非平稳性的基础上,能够有效地提高近断层脉冲型地震动的模拟效果,并且能够很好地体现脉冲型地震动的主要特征。  相似文献   

6.
通过对隔震结构进行非线性动力响应分析,分别研究地震动参数和支座参数对结构地震响应的影响。首先,建立铅芯橡胶支座基础隔震结构的非线性运动方程;然后,以人工合成脉冲型地震动作为输入,运用MATLAB进行编程并求解结构在脉冲型地震动作用下的地震响应;最后,分别研究速度脉冲周期、支座屈服力、屈服后与屈服前的刚度比对隔震支座最大位移和上部结构层间位移的影响。研究结果表明,脉冲周期对结构地震响应影响很大,在进行隔震设计时应使结构自振周期远离脉冲周期;支座刚度比对结构地震响应影响较大,在进行支座选型时应重点关注;支座屈服力对支座位移的影响显著,屈服力越大,支座位移越小。  相似文献   

7.
近断层速度脉冲地震动的三维有限差分模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
根据台湾西部地质地貌特征和1999年集集MW7.6地震的研究成果,建立三维速度结构模型和震源模型,并采用三维有限差分法对双冬断层可能产生的近断层脉冲型地震动进行数值模拟。结果表明,方向性效应引起的双向速度脉冲集中在垂直于断层滑动分量的方向上,而滑冲效应引起的单向速度脉冲则集中在平行于断层滑动分量的方向上。受方向性效应和上盘效应的共同调制,近断层脉冲型地震动反映出不对称带状分布的特征,速度脉冲主要分布在距离断层面约10 km的范围内。凹凸体的特性影响着地震动的时空分布,由地震波场显示南投和台中处于强地震动危险区。近场脉冲型地震动的研究对分析速度脉冲形成机理以及地震危险性有一定的参考意义。  相似文献   

8.
In this study, we analyzed 100 three-component strong ground motion records observed within 200 km of the causative fault of the 6 February 2023 MW7.8 Pazarcık (Kahramanmaraş) Earthquake in SE Türkiye. The wavelet method was utilized to identify and analyze the characteristics of pulse-like ground motions in the near-fault region, while considering the uncertainty of the pulse orientation during the analysis. Our investigation focused on the effects of the focal mechanism and rupture process on the spatial distribution, pulse orientation, and maximum pulse direction of the observed pulse-like ground motion. We also analyzed the amplitude and period of the observed ground pulses and the effect of long-period amplification on the ground motion response spectra. Our results indicated the following: (1) A total of 21 typical ground velocity pulses were observed during this earthquake, exhibiting complex characteristics due to the influence of the strike-slip mechanism and rupture directivity. Most ground pulses (17 out of 21) were recorded within 20 km of the fault, in a wide range of orientations, including normal and parallel to the fault direction. The waveforms exhibited unidirectional features, indicating the effects of left-lateral fault slip. Distinct pulses observed more than 20 km from the fault were mainly oriented normal to the fault. The waveforms were bidirectional with double- or multi-round trips as a result of rupture directivity. (2) The amplitudes of the observed pulses ranged from 30.5 to 220.0 cm/s, with the largest peak velocity of 220.0 cm/s observed at Station 3138. The pulse periods ranged from 2.3 to 14.5 s, with the longest pulse period of 14.5 s observed at Station 3116. The amplitude and period of the pulses observed during this earthquake were comparable to those of similar-magnitude global earthquakes. The amplitude of the pulses decreased significantly with increasing fault distance, whereas the pulse period was not significantly affected by the fault distance. (3) Compared with non-pulse records, the velocity pulse records had a pronounced amplification effect on the acceleration response spectra near the pulse period, with factors ranging from 2.1 to 5.8. The larger velocity pulses also significantly amplified the velocity response spectra, particularly over the long periods. This significant amplification effect of the pulses on the response spectra leads to empirical models underestimating the long-period earthquake ground motion.  相似文献   

9.
基于多尺度分析方法的近断层地震动特性分析   总被引:8,自引:2,他引:6       下载免费PDF全文
近断层长周期地震动是一类较特殊的破坏性地震动.为了深入探讨近断层地震动的低频分量组成及其脉冲特性,基于小波理论中的多尺度分析方法提出了一种地震动分量分解方法,据此可将一条地震动分解成频率各不相同的多条分量.首先从频域、时域以及动态响应三个方面阐述了该分解方法的有效性和精确性.进而采用这种方法对近期12次大地震中的53条典型近断层地震动进行了分解,共获得266条地震动分量.分析了近断层地震动中的长周期分量随场地、断层距等影响因素的变化特征;再以卓越分量作为最大脉冲的简化模型,探讨了速度幅值和脉冲周期随震级、断层距的变化关系.结果表明:近断层长周期地震动主要由周期为0.2~2 s的分量组成;近断层土层场地地震动中的长周期分量比岩石场地多;在0~15 km的近断层区域,随断层距的增加,地震动中长周期分量的比重明显减小;卓越分量的速度幅值PGVp约为原始地震动速度幅值PGV的0.6倍,且两者之间具有明显的线性关系;PGVp随断层距的增大而减小,随震级的增大而增大;卓越分量周期Tp随震级的增大呈对数线性增大趋势.  相似文献   

10.
As the forward directivity and fling effect characteristics of the near-fault ground motions, seismic response of structures in the near field of a rupturing fault can be significantly different from those observed in the far field. The unique characteristics of the near-fault ground motions can cause considerable damage during an earthquake. This paper presents results of a study aimed at evaluating the near-fault and far-fault ground motion effects on nonlinear dynamic response and seismic damage of concrete gravity dams including dam-reservoir-foundation interaction. For this purpose, 10 as-recorded earthquake records which display ground motions with an apparent velocity pulse are selected to represent the near-fault ground motion characteristics. The earthquake ground motions recorded at the same site from other events that the epicenter far away from the site are employed as the far-fault ground motions. The Koyna gravity dam, which is selected as a numerical application, is subjected to a set of as-recorded near-fault and far-fault strong ground motion records. The Concrete Damaged Plasticity (CDP) model including the strain hardening or softening behavior is employed in nonlinear analysis. Nonlinear dynamic response and seismic damage analyses of the selected concrete dam subjected to both near-fault and far-fault ground motions are performed. Both local and global damage indices are established as the response parameters. The results obtained from the analyses of the dam subjected to each fault effect are compared with each other. It is seen from the analysis results that the near-fault ground motions, which have significant influence on the dynamic response of dam–reservoir–foundation systems, have the potential to cause more severe damage to the dam body than far-fault ground motions.  相似文献   

11.
Near-fault ground motions containing high energy and large amplitude velocity pulses may cause severe damage to structures. The most widely used intensity measure (IM) is the elastic spectral acceleration at the fundamental period of the structure (Sa(T1)); however, Sa(T1) is not a sufficient IM with respect to the effects of the pulse-like ground motions on structural response. For near-fault ground motions, including pulse-like and non–pulse-like time histories, we propose a vector-valued IM consisting of a new IM called instantaneous power (IP(T1)) and the Sa(T1). The IP(T1) is defined as the maximum power of the bandpass-filtered velocity time series over a time interval of 0.5T1. The IP(T1) is period-dependent because the velocity time series is filtered over a period range (0.2T1-3T1). This allows the IP(T1) to represent the power of the near-fault ground motions relevant to the response of the structure. Using two-dimensional models of the 2- and 9-story steel-frame buildings, we show that the proposed [Sa(T1), IP(T1)] vector IM gives more accurate estimates of the maximum inter-story drift and collapse capacity responses from near-fault ground motions than using the vector IM consisting of the Sa(T1), the presence of the velocity pulse, and the period of the velocity pulse. Moreover, for the structures considered, for a given Sa(T1), the IP(T1) is more strongly correlated with structural damage from near-fault ground motions than the combination of the velocity pulse and pulse period.  相似文献   

12.
Accelerograms recorded near active faults have some important characteristics that make them different from those recorded in far-fault regions. High-frequency components in acceleration records and long-period velocity pulses are among notable specifications of such ground motions. In this paper, a moving average filtering with appropriate cut-off frequency has been used to decompose the near-fault ground motions into two components having different frequency contents: first, Pulse-Type Record (PTR) that possesses long-period pulses; second, the relatively high-frequency BackGround Record (BGR), which does not include large velocity pulses. Comparing the results with those extracted through wavelet analysis shows that moving average filter is an appropriate and efficient tool for near-fault records decomposition. The method is applied to decompose a suite of 91 selected near-fault records and the elastic response of structures is examined through their response to the decomposed parts. The results emphasizes that in contrast with ordinary far-fault earthquake records, response spectra of near-fault ground motions typically have two distinct local peaks, which are representatives of the high- and low-frequency components, i.e., BGR and PTR, respectively. Moreover, a threshold period is identified below which the response of structures is dominated by BGR while PTR controls the response of structures with periods longer than this period.  相似文献   

13.
首先讨论了近断层脉冲型地震动的特点,并以台湾集集地震实际脉冲型近震记录为地震动输入,应用含潜在约束策略的序列二次规划算法,对安装铅芯橡胶隔震支座的钢筋混凝土框架隔震结构的隔震器参数和上部结构构件截面几何尺寸进行一体化优化设计,然后输入E l Centro(1940)、Taft(1952)地震波对优化后的隔震结构进行地震反应分析。计算结果表明,对考虑脉冲型近断层地震动作用的隔震结构进行参数优化设计后,该隔震结构能同时满足脉冲型和普通非脉冲型近震作用的结构设计需求。  相似文献   

14.
选取断层距小于200 km的64组强震记录数据,基于小波方法分析汶川地震近断层速度脉冲的地震动特性,并将此次地震中获取到的速度脉冲周期和幅值参数与Chi-Chi 地震和Northridge地震进行了比较,统计分析地震震级、距离对速度脉冲的周期和幅值参数的影响.研究表明:(1)汶川地震近断层速度脉冲具有周期长、幅值小的特点.速度脉冲周期主要分布在6~14 s之间,其中51MZQ台沿平行断层的分量脉冲周期最大为14.2 s,速度脉冲幅值与Chi-Chi 地震和Northridge地震相比明显偏小.(2) 速度脉冲记录出现在沿着地震断层破裂传播的方向上,且与地表断裂的距离都在30 km以内,这些长周期速度脉冲的形成可能主要由破裂传播的向前方向性效应引起.(3)速度脉冲的周期随矩震级呈对数线性增大,且随断层距增大有减小趋势.在矩震级小于Mw7.5时,观测到的地震动脉冲幅值为50~150 cm/s之间,与100 cm/s的典型断层滑动速率非常接近;而震级大于Mw7.5时,断层距10km范围内脉冲的幅值已经超过100 cm/s,个别记录的脉冲幅值甚至达到200 cm/s,远超过前人给出的饱和值,这可能与大的永久形变或该处土层介质条件有关.  相似文献   

15.

In nonlinear dynamic structural analysis, a suite of pulse-like ground motions is required for the performance-based design of structures near active faults. The dissimilarity in the amplitude and frequency content of the earthquake time series referred to nonstationary properties in temporal and spectral, respectively. An approach is proposed based on the nonstationary properties of the far-field records and the seismological information in an event for simulating pulse-like records. The pulse-like earthquake time history is estimated via the superposition of the residual part of the earthquake with the estimated pulse. The wavelet-based Hilbert transform is utilized to characterize the nonstationary properties, the instantaneous amplitude, and frequencies of far-field records to model residual part. The effects of near-fault and pulse are estimated based on the seismological properties of the region. The validation of the procedure is indicated by comparing simulated time-series, response spectra, and Arias intensity with recorded pulse-like records in two different earthquakes in California; the Mw 6.7 1994 Northridge and the Mw 6.5 1979 Imperial valley.

  相似文献   

16.
The damping modification factor (DMF) has been extensively used in earthquake engineering to describe the variation of structural responses due to varied damping ratios. It is known that DMFs are dependent not only on structural dynamic properties but also on characteristics of ground motions. DMFs regulated in current seismic codes are generally developed based on far-fault ground motions and are inappropriately used in structural design where pulse-like near-fault ground motions are involved. In this paper, statistical investigation of the DMF is performed based on 50 carefully selected pulse-like near-fault ground motions. It is observed that DMFs for pulse-like ground motions exhibit significant dependence on the pulse period T p in a specific period range. If the period of the structure in response is close to the pulse period, the DMF attains the same level as that derived from far-fault ground motions; as the period of the structure is considerably larger or smaller than the pulse period T p , the response reduction effect by the increased damping ratio is generally small, except for large earthquakes with long pulse periods, which exhibit significant reduction of response for structures with periods smaller than T p . Based on the statistical results of DMFs, the empirical formulas for estimating DMFs for displacement, velocity and acceleration spectra are proposed, the effect of structural period, pulse period and damping ratio are considered in the formulas, and the formulas are designed to satisfy the specific reliability requirement in the period range of 0.1 < T/T p  < 1, which is of engineering interest.  相似文献   

17.
陈波  谢俊举  温增平 《地震学报》2013,35(2):250-261
研究了具有不同自振特性的建筑结构在近断层速度脉冲型及非速度脉冲型地震动作用下的结构层间变形分布,揭示了近断层速度脉冲对工程结构地震响应的特殊影响. 从汶川MS8.0地震近断层强震记录中选取两组典型速度脉冲型记录和非脉冲型记录, 根据确定的目标地震动强度水平,利用时域叠加小波函数法对选择的强震记录进行调整, 使之与目标地震动水平对应的加速度反应谱保持一致, 以此作为结构地震反应分析的地震动输入. 选取具有不同自振特征的3层、11层和20层典型钢筋混凝土框架结构, 建立有限元分析模型, 分别计算在速度脉冲型与非速度脉冲型记录作用下这些结构层间变形分布. 研究表明,速度脉冲型记录与非速度脉冲型记录作用下结构层间变形有明显差异, 且与结构自振特征有关.就低层结构的层间变形而言, 非速度脉冲型记录的影响较速度脉冲型记录的影响大. 随着结构自振周期的增加, 高阶振型的影响更加明显. 与非速度脉冲型记录相比,速度脉冲型记录的结构层间位移反应中值及离散程度较大. 速度脉冲型记录更容易激发高层结构的高阶振型, 产生较大的层间位移反应. 非速度脉冲型记录对中低层结构层间变形影响较大.因此, 在开展近断层结构地震影响评价时, 应考虑近断层速度脉冲的影响.   相似文献   

18.
近断层脉冲型地震动的模拟方法   总被引:12,自引:1,他引:11       下载免费PDF全文
近断层地震动的向前方向性效应和永久地面位移效应导致其速度时程表现为长周期、大峰值的速度脉冲,其位移时程表现为阶跃型脉冲. 针对这些特点,同时考虑向前方向性效应和永久地面位移效应,提出了一种简单的、连续函数形式表达的等效速度脉冲模型. 在该模型中,包含描述速度脉冲周期、峰值和形状的5个待定参数,方便了实际脉冲型地震记录的拟合及模拟. 等效速度脉冲模型只包含单一的频率成分,不能反映脉冲型地震记录的高频成分. 根据对11次地震28条地震记录的分析, 速度脉冲的频率一般小于1Hz. 因此, 在模拟脉冲型地震记录的方法中,分别模拟低频脉冲成分和高频成分,并将两者叠加生成近断层脉冲型地震动的模拟时程.   相似文献   

19.
选取161条速度脉冲型近断层地震动记录,采用最小二乘法拟合得到近断层地震动抗震设计Newmark三联谱,研究了震级、场地和断层类型对近断层设计谱的影响。结果表明:大震(级)相比小震(级)的影响较为显著,大震(级)下设计谱具有更宽的加速度敏感区段,中长周期段内的反应谱谱值更高;在3类断层类型中,大震(级)下逆斜断层的反应谱加速度敏感区段最宽,谱值最大。对于近断层区域的结构在大震(级)下应该考虑增大特征周期并提高设计谱谱值,还应充分考虑逆斜断层等断层类型的影响。  相似文献   

20.
In this paper, response spectral characteristics of one-, two-, and three-lobe sinusoidal acceleration pulses are investigated, and some of their basic properties are derived. Furthermore, the empirical mode decomposition (EMD) method is utilized as an adaptive filter to decompose the near-fault pulse-like ground motions, which were recorded during the September 20, 1999, Chi-Chi earthquake. These ground motions contain distinct velocity pulses, and were decomposed into high-frequency (HF) and low-frequency (LF) components, from which the corresponding HF acceleration pulse (if existing) and LF acceleration pulse could be easily identified and detected. Finally, the identified acceleration pulses are modeled by simplified sinusoidal approximations, whose dynamic behaviors are compared to those of the original acceleration pulses as well as to those of the original HF and LF acceleration components in the context of elastic response spectra. It was demonstrated that it is just the acceleration pulses contained in the near-fault pulse-like ground motion that fundamentally dominate the special impulsive dynamic behaviors of such motion in an engineering sense. The motion thus has a greater potential to cause severe damage than the far-field ground motions, i.e. they impose high base shear demands on engineering structures as well as placing very high deformation demands on long-period structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号