首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 617 毫秒
1.
A retrospective analysis has been done for the hydrophysical fields of the Black Sea for 1993–2012 with the assimilation of undisturbed monthly average profiles of temperature and salinity that were obtained by using an original procedure of joint processing of satellite altimetry and rare hydrological observations. The accuracy of the reconstructed fields of temperature and salinity of the Black Sea is evaluated by comparison with the data of sounding from the hydrological stations and the Argo floats. A comparative analysis is performed for the integral characteristics of the fields of temperature, salinity, and kinetic energy with the same characteristics of the reanalysis for 1992–2012 that assimilated the average annual profiles of temperature and salinity, surface temperature and altimetry level of the sea after being adjusted with respect to climate seasonal variability. The proposed procedure of the reanalysis execution allows a more precise reconstruction of the interannual variability of temperature and salinity stratification in the main pycnocline. The correlation between the annual and seasonal variability of the eddy of the wind friction tangential stress and the average kinetic energy at the levels is revealed.  相似文献   

2.
We propose a procedure of reconstruction of the continuous (in time) climatic annual behavior of circulation in the Black Sea based on the successive assimilation of the climatic distributions of temperature and salinity in the complete nonlinear model. We use monthly average arrays interpolated for each day of a year by expanding in harmonic functions of time. Various procedures aimed at the assimilation of data are studied by taking into account the variance of measurement errors. Our main attention is given to the analysis of qualitative and quantitative characteristics of vertical motions in the sea depending on the quality of the data and parameters of the model. The main version of calculations is illustrated by the maps of annual variability of the fields of sea level, horizontal currents, and vertical velocity.  相似文献   

3.
We propose an improvement of the algorithm of joint assimilation of the data on climatic temperature, salinity, and altimetric sea level in a model of circulation. Unlike the previous works, the variances of the forecast errors of temperature and salinity and the cross-covariance functions of of the forecast errors of salinity-level and temperature-level depend on the dynamics of waters. It is shown that the structure of the fields of cross-covariance functions in the upper mixed layer is formed by the vertical turbulent diffusion of the variances of forecast errors of temperature and salinity. At greater depths, these statistical characteristics are mainly determined by the vertical advection. We compared the results of calculations with and without taking into account the dynamics of the statistical characteristics. The analysis of the influence of the dynamics of these characteristics makes it possible to reconstruct the mutually adapted climatic fields of temperature, salinity, and horizontal and vertical current velocities in the Black Sea with the assimilation of data in the numerical model in each time step. Translated from Morskoi Gidrofizicheskii Zhurnal, No. 4, pp. 18–31, July–August, 2008.  相似文献   

4.
The data of satellite altimetry are used to simulate the Black-Sea circulation. The altimetry data of the TOPEX/Poseidon and ERS satellites are prepared within the framework of the NASA Ocean Altimeter Pathfinder project. The additional data processing is performed to compute the dynamic level reflecting the circulation of the Black Sea. The altimetry sea-level is assimilated in an eddy-resolving model of circulation of the Black Sea based on primitive equations. The accuracy of the obtained fields of temperature and salinity is estimated by comparing with the data of large-scale hydrographic surveys according to the ComSBlack program. The prognostic capabilities of the proposed model are estimated by comparing the obtained results with the fields computed with the help of assimilation of the altimetry data.  相似文献   

5.
To study the long-term variability of the thermohaline and dynamic characteristics of the Black Sea, we use three versions of climatic fields, namely, the fields reconstructed in the model according to the old (1903–1982) and new (1903–2003) hydrological climatic data arrays of temperature and salinity and according to the data of satellite altimetry. The analysis of the altimetry-based climatic fields confirms the distinctions (established earlier according to the old and new data arrays) in the seasonal variability of the integral characteristics of temperature and salinity and in the structures of hydrophysical fields in the sea. It is shown that, in the winter-spring season, the thermohaline fields reconstructed according to the new and altimetry data arrays are characterized by a small elevation of the halocline (pycnocline) and the upper boundary of the cold intermediate layer. In all seasons, the altimetry-based surface geostrophic currents contain numerous mesoscale eddies with different signs of rotation. Moreover, in all seasons, the Rim Current reconstructed according to the altimetry data is characterized by a narrower jet almost along the entire its length. This jet is especially intense near the coasts of West Anatolia. __________ Translated from Morskoi Gidrofizicheskii Zhurnal, No. 4, pp. 3–17, July–August, 2006.  相似文献   

6.
We compare the thermohaline and dynamic characteristics of the Black Sea reconstructed by using two versions of climatic temperature and salinity fields:old (1903–1982)and new (1903–2003). The fields are reconstructed with the help of continuous assimilation of the climatic temperature and salinity in the model. It is shown that the climatic thermohaline fields constructed with regard for the data of observations for the last 20 yr are characterized by an insignificant elevation of the halocline (pycnocline)in the winter-spring period and the elevation of the upper boundary of the cold intermediate layer in the spring-summer period. The intensity of surface geostrophic currents is greater than the same quantity computed on the basis of the old climatic data for the whole year. The horizontal currents in the sea computed according to the new climatic data are more intense. __________ Translated from Morskoi Gidrofizicheskii Zhurnal, No. 3, pp. 11–30, May–June, 2005.  相似文献   

7.
We realize the algorithm of adaptive statistics of forecasting errors for the assimilation of the climatic fields of temperature and salinity in the σ-coordinate model of the dynamics of the Black Sea. The principal relations of this algorithm and its simplified version based on the Kalman filter are presented. The distinctive features of realization of the algorithm specified by the model are discussed. We also present the results of comparison of the hydrophysical fields of the Black Sea reconstructed according to the algorithm of adaptive statistics and a simplified scheme of assimilation of the climatic data. It is shown that the dependence of sources in the transport equations (heat and salt diffusion) on the four-dimensional variances of forecasting errors and threedimensional measurement errors enables one to reconstruct the mutually adapted climatic parameters of the sea more exactly.  相似文献   

8.
In this study a new approach for reconstructing the Mean Dynamic Topography of the Black Sea is applied. Constant observations (SVP measurements), drifters, and data of vertical sounding of the temperature and salt content together with measurements of sea level anomalies received from Topex/Poseidon mission satellite data were used. The absolute sea level received by altimetry data using the mean dynamic topography received during work was compared to the dynamic level received according to independent marine surveys. The comparison showed that the method represented in the study permits one to define more exactly the dynamic topography of the Black Sea when compared with the studies of previous authors. The results of this study will be useful to reconstruct the areas of the geostrophic currents according to satellite altimetry.  相似文献   

9.
A numerical primitive-equation model of the hydrodynamics of the Black Sea and the Sea of Azov in σ-coordinates is proposed. The model has a resolution of ~4 × 4 km in horizontal coordinates with 40-σ levels in the vertical and includes the four-dimensional variational initialization of temperature and salinity fields. A numerical initialization algorithm combines splitting methods and adjoint equations. Flow, temperature, sea level, and salinity fields driven by atmospheric forcing are calculated for the year 2008. The calculations are made in a variational initialization — prediction regime. Temperature and salinity fields are initialized at the end of each month. The optimality system includes forward and adjoint transport-diffusion equations for heat and salt that are linearized on the assimilation interval. Results of three numerical experiments with different sets of assimilated data in comparison with the prediction obtained from the forward model are discussed.  相似文献   

10.
This paper considers the main steps in improving the methods for calculating the ocean (sea) dynamics on the basis of observational data on sea-water temperature and salinity. The results of diagnostic and adaptation calculations for the near-equatorial area of the West Atlantic in the area of the Lomonosov countercurrent formation are presented. We consider the problem of the complex use of measurements of temperature, salinity, and current velocity in the POLYMODE polygons with their assimilation into the model using a Kalman filter. The results of calculations of the coordinated fields with the mechanism of geostrophic adaptation and using asynchronous measurements obtained by the Razrezy program are given. We discuss further modifications of the assimilation algorithms for hydrological observation data in models of sea dynamics and the principles of adaptation of hydrophysical fields that made it possible to reconstruct the climate fields of the Black Sea and to reproduce the basin dynamics for 23 years.  相似文献   

11.
We analyze the seasonal variability of the climatic hydrophysical fields of the Black Sea reporduced in three numerical experiments carried out according to the model of circulation. The numerical predictions are performed for a period of 12.5 yr on the basis of the hydrological data accumulated in 1983–1995. The monthly average climatic fields of the current speed are reconstructed according to the data on the climatic fields of temperature and salinity by the method of hydrodynamic adaptation (standard). It is shown that, in prognostic calculations, the seasonal variability of temperature and salinity is qualitatively close to the “standard” dependence. At the same time, the quantitative difference between the climatic behavior of the model and the standard dependence may be significant. The annual cycle of the currents is characterized by the intensification of the Main Black-Sea Current in winter. The structure of the hydrophysical fields of the sea in the model becomes much more realistic if it is based on the actual hydrological data. Translated by Peter V. Malyshev and Dmitry V. Malyshev  相似文献   

12.
The methodology of joint processing of the satellite altimetry and occasional hydrological observations in the Black Sea for 1993–2012 is developed. The original technique for reconstruction of the 3D temperature and salinity fields in the deep-sea part is proposed and implemented. This technique makes it possible to identify the depths at which a contribution of adiabatic processes to the deformation of the temperature and salinity profiles of the sea is predominant. Daily-averaged 3D fields of the seawater temperature and salinity in a baroclinic layer on a regular grid are reconstructed. The evaluation of accuracy of the reconstructed temperature and salinity arrays is performed by comparing them with the data of hydrological exploration. Structures of the temperature and salinity fields are correlated naturally with topography of the altimetric level and clearly indicate the synoptic variability. Seasonal and interannual variabilities of the kinetic energy (averaged over horizons of the 63–400 m layer) of the geostrophic currents calculated using the dynamic method makes it possible to reveal a sharp increase in the kinetic energy of the currents in the winter season of 2002. A high correlation is found between the interannual variability of the ERA-Interim wind stress curl averaged over the surface of the deep sea part and the kinetic energy of the geostrophic currents in the 63–400 m layer.  相似文献   

13.
Computations involving a complete baroclinic model for the Black Sea are analysed. Monthly climatic temperature and salinity data were used. Dynamic fields were derived for each of the 12 months. The characteristics of the cold intermediate layer, which represents an essential feature of the Black Sea thermal structure, are examined.Translated by V. Puchkin.  相似文献   

14.
We propose an algorithm of adaptive statistics of prognostic errors aimed at the assimilation of the climatic temperature and salinity fields in a model of dynamics of the sea. The algorithm is used for the numerical solution of the proposed differential equations for the dispersions of prognostic errors of temperature and salinity. The sources in the equations of advective diffusion of heat and salt depend on the four-dimensional dispersions of prognostic errors and one-dimensional (along the vertical coordinate) dispersions of measurement errors. The dispersions of prognostic errors are corrected at the times of assimilation of the data. We perform the reconstruction and analysis of the climatic fields of currents in the Black Sea. It is shown that the structure of the fields of dispersions in the upper mixed layer is determined by the vertical diffusion. Below this layer, the distribution of dispersions depends on the vertical advection. The algorithm of adaptive statistics of prognostic errors allows us to reconstruct the improved mutually adapted hydrophysical parameters with regard for the dynamics of the dispersions of errors. __________ Translated from Morskoi Gidrofizicheskii Zhurnal, No. 1, pp. 26–37, January–February, 2008.  相似文献   

15.
Combined measurements of satellite altimeters make it possible to determine anomalies of the sea level of the Black Sea on a regular grid with a high spatial resolution 1/8°. In this work arrays of total geostrophic velocities of currents in the Black Sea basin are retrieved and compared with drifter measurements of current velocities for 1999–2007. The comparison is performed both for the whole array of drifter measurements (~110000 measurements) and individually for each drifter. To retrieve the velocities, two different arrays of mean dynamic topography (MDT) are used: synthetic and climatic mean dynamic topography. The comparison results demonstrate that using synthetic MDT is preferable for calculating geostrophic velocities. Velocities calculated by from satellite altimetry data agree with velocities obtained by in-situ data.  相似文献   

16.
We present the results of an analysis of the seasonal variability of current fields in the Caspian Sea, reconstructed by assimilation of climatic temperature and salinity into the primitive-equation model of water circulation on the basis of an algorithm for adaptive statistics of prediction errors. The sources in heat and salt transfer-diffusion equations depend on the spatial and temporal variability of the variances of prediction errors and one-dimensional (in the vertical coordinate) variances of measurement errors for temperature and salinity. The variances of prediction errors are adjusted at the moments of data assimilation in accordance with a simplified Kalman filter. The climatic circulation of waters in the Caspian Sea is shown to be highly varying. The maximum of its intensity over the entire depth is reached in February. The minimum of kinetic energy is observed in April. The currents in deep-sea areas are determined by the balance between wind and baroclinic factors of the formation of circulation with wind currents prevalent.  相似文献   

17.
A numerical experiment with assimilation of hydrological observational data from a survey in October 2007 on the northwestern shelf of the Black Sea was carried out using the hydrodynamic model with nonlinear equations of motion, equations of heat and salt advection, and data assimilation. The results of this calculation are compared with thermohydrodynamic fields obtained without taking into account temperature and salinity measurements. It is shown that allowance for the observation data leads to qualitative and quantitative differences in the structure of the hydrophysical fields. Mesoscale eddies and intense jet streams that agree with satellite observations were found in the field of currents and were investigated. These eddies are not resolved in low-resolution field experiments.  相似文献   

18.
The Black Sea dynamics for two decades (1993–2012) is analyzed. The study is carried out in numerical simulation with the use of a circulation model and assimilation of satellite measurements of free surface elevations and sea-surface temperatures (SSTs). The Black Sea circulation model has a spatial resolution of 4.8 km and 35 vertical levels, which thicken toward the surface. Arrays of ERA-Interim data are used for simulating the atmospheric forcing. A set of 3D arrays of the Black Sea hydrophysical fields is calculated on a regular grid with a time resolution of 24 h. The results are analyzed and compared with available contact measurements of temperature and salinity. This comparison shows a quite good quality of the resulted hydrophysical fields of the Black Sea.  相似文献   

19.
A procedure for the four-dimensional (4D) analysis of the hydrophysical fields in the Black Sea with an assimilation of the temperature and salinity (T, S) data was realized on the basis of a numerical model which involves the primitive equations of motion, and the heat and salt advection equations. Two experiments were carried out which differed by the observation data assimilation procedure. Analysis has shown that the observation data assimilation procedure realized using the energy-balanced model allows the reproduction of some synoptic features of the circulation in the Black Sea. A comparison of two computations demonstrates the efficiency of assimilating the measurement data on the basis of the 4D analysis as compared with the sequential objective analysis.Translated by Mikhail M. Trufanov.  相似文献   

20.
The paper discusses the results of numerical experiments on response of the Black Sea to the ‘real’ (mean monthly) atmospheric forcing. A new version of the multi-layer quasi-isopycnic model is applied which does not use the rigid-lid approximation and allows for a salt flux through the sea surface. Ways of obtaining quantitative agreement between the calculated data due only to the external forcing, without invokingin situ temperature/salinity observations are suggested. Translated by Vladimir A. Puchkin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号