首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Conceptual models of circulation theorise that the dominant forces controlling estuarine circulation are freshwater discharge from the riverine section (landward), tidal forcing from the ocean boundary, and gravitational circulation resulting from along-estuary gradients in density. In micro-tidal estuaries, sub-tidal water level changes (classified as those with periods between 3 and 10 days) with amplitudes comparable to the spring tidal range can significantly influence the circulation and distribution of water properties. Field measurements obtained from the Swan River Estuary, a diurnal, micro-tidal estuary in south-western Australia, indicated that sub-tidal water level changes at the ocean boundary were predominantly from remotely forced continental shelf waves (CSWs). The sub-tidal water levels had maximum amplitudes of 0.8 m, were comparable to the maximum tidal range of 0.6 m, propagated into the estuary to its tidal limit, and modified water levels in the whole estuary over several days. These oscillations dominated the circulation and distribution of water properties in the estuary through changing the salt wedge location and increasing the bottom water salinity by 7 units over 3 days. The observed salt wedge excursion forced by CSW was up to 5 km, whereas the maximum tidal excursion was 1.2 km. The response of the residual currents and the salinity distribution lagged behind the water level changes by ∼24 h. It was proposed that the sub-tidal forcing at the ocean boundary, which changed the circulation, salinity, and dissolved oxygen in the upper estuary, was due to a combination of two processes: (1) a gravity current generated by a process similar to a lock exchange mechanism and (2) amplified along-estuary density gradients in the upper estuary, which enhanced the gravitational circulation in the estuary. The salt intrusions under the sub-tidal forcing caused the rapid movement of anoxic water upstream, with significant implications for water quality and estuarine health.  相似文献   

2.
Wenrui Huang  M. Spaulding 《水文研究》2002,16(15):3051-3064
Residence time of an estuary can be used to estimate the rate of removal of freshwater and pollutants from river inflow. In this study, a calibrated three‐dimensional hydrodynamic model was used to determine residence time in response to the change of freshwater input in Apalachicola Bay. The bay is about 40 km long and 7 km wide, with an average 3 m water depth. Through hydrodynamic model simulations, the spatial and temporal salinity and the total freshwater volume in the bay were calculated. Then the freshwater fraction method was used to estimate the residence time. Results indicate that the residence time in Apalachicola Bay typically ranges between 3 and 10 days for the daily freshwater input ranging from 177 m3/s to 4561 m3/s. Regression analysis of model results shows that an exponential regression equation can be used to correlate the estuarine residence time to changes of freshwater input. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

3.
Physical oceanography measurements reveal a strong salinity (0.18 psu km?1) and temperature (0.07 °C km?1) front off the east coast of India in December 1997. T–S diagrams suggest lateral mixing between the fresh water at the coast and the ambient warmer, saltier water. This front seems to be the result of southward advection of fresh and cool water, formed in the northern Bay of Bengal during the monsoon, by the East Indian Coastal Current, as suggested by the large-scale salinity structure in the SODA re-analysis and the anti-cyclonic gyre in the northwestern Bay of Bengal during winter. The data further reveals an offshore front in January, which appears to be the result of a meso-scale re-circulation around an eddy, bringing cold and freshwater from the northern Bay of Bengal further away from the shore. Our cruise data hence illustrates that very strong salinity fronts can appear in the Bay of Bengal after the monsoon, as a result of intense coastal circulation and stirring by eddies.  相似文献   

4.
Oceanographic studies have been carried out in coastal and riverine waters of the area around Timika, West Papua in November 1999, March–April, July and November 2000. The temperature of the seawater along the coast is around 28 °C in winter (November 99), rising to 30.0 °C (November 00). In the open sea, 30 miles off the coast at 40 m water depth, the temperature is >30 °C with no stratification. Water temperature near the coast is consistently lower than in the open sea. This is thought to be due the cooling effect of the land, being densely covered by mangrove forest. In the upper parts of the Kamora, West Tipuka, East Tipuka, Ajkwa, Minajerwi, Mawati and Otakwa Rivers, at salinity zero psu, water temperature varies between 24.6 and 26.2 °C, which is as cold as the temperature in the upwelling Banda Sea to the NW. Some of these rivers are fed by glacial melt water from the high mountains to the east. At mid estuary, warm seawater is found under the cooler river water.Salinity near this coast varied between 24 and 30, and offshore salinity was 31–33 with no stratification. Inshore surface waters were turbid (11–14 ntu), and near bottom waters were generally much more turbid from river sediment supply and tidal resuspension. The Ajkwa River estuary has the highest turbidity (750 ntu) at zero salinity. Offshore waters were very clear (5.0–6.0 ntu), and there was no increase in turbidity near the bottom.  相似文献   

5.
《Continental Shelf Research》2005,25(9):1115-1131
Tidal inlet characteristics are controlled by wave energy, tidal range, tidal prism, sediment supply and direction and rates of sand delivered to the inlet. This paper deals with the relations between inlet and lagoon evolutions, linked by the tidal prism. Our study is focused on the Maumusson Inlet and the Marennes-Oléron Bay (first oyster farming area in Europe), located on the western coast of France. The tidal range (2–6 m) and wave climate (mean height: 1.5 m) place this tidal inlet system in the mixed energy (tide, waves), tide-dominated category. The availability of high-resolution bathymetric data since 1824 permits to characterise and quantify accurately morphological changes of both the inlet and the tidal bay. Since 1824, sediment filling of the tidal bay has led to a 20% decrease in its water volume, and a 35% reduction of the inlet throat section. Furthermore, the bay is subjected to a very high anthropic pressure, mainly related to oyster farming. Thus, both natural and human-related processes seem relevant to explain high sedimentation rates. Current measurements, hydrodynamic modelling and cross-sectional area of the inlet throat are used in order to quantify tidal prism changes since 1824. Both flood and ebb tidal prism decreased by 35%. Decrease in the Marennes-Oléron Bay water volume is inferred to be responsible for a part of tidal prism decrease at the inlet. Tidal prisms decrease may also be explained by an increase in frictional resistance to tidal wave propagation, due to a general shoaling and oyster farms in the bay. A conceptual model is proposed, taking into account natural and human-related sedimentation processes, and explaining tidal inlet response to tidal bay evolutions.  相似文献   

6.

Physical oceanography measurements reveal a strong salinity (0.18 psu km−1) and temperature (0.07 °C km−1) front off the east coast of India in December 1997. T–S diagrams suggest lateral mixing between the fresh water at the coast and the ambient warmer, saltier water. This front seems to be the result of southward advection of fresh and cool water, formed in the northern Bay of Bengal during the monsoon, by the East Indian Coastal Current, as suggested by the large-scale salinity structure in the SODA re-analysis and the anti-cyclonic gyre in the northwestern Bay of Bengal during winter. The data further reveals an offshore front in January, which appears to be the result of a meso-scale re-circulation around an eddy, bringing cold and freshwater from the northern Bay of Bengal further away from the shore. Our cruise data hence illustrates that very strong salinity fronts can appear in the Bay of Bengal after the monsoon, as a result of intense coastal circulation and stirring by eddies.

  相似文献   

7.
Although there have been studies on the tide in convergent bay (or estuary), the tide change in terms of phase speed, amplitude, and phase difference between elevation and tidal current from a coastal ocean to a convergent bay has not been clearly shown so far. This study systematically examines the change of tidal wave characteristics from the eastern Yellow Sea to the Asan Bay, a strongly convergent bay on the west coast of Korea, using observations and an analytical model. As the tidal wave propagates from the eastern Yellow Sea into the Asan Bay, the phase speed, amplitude, and phase difference between elevation and tidal current increase along the channel. Such a phenomenon represents a unique example of tide change from a coastal ocean to a convergent bay, indicating dominance of convergence over friction in the Asan Bay. Both analytically computed tidal amplitude and travelling time compare well with observations. In the Asan Bay, the influence of the reflected wave is only felt in the upper one fifth of the bay and is almost unperceivable in the rest of the bay. The analytical analyses presented in this paper are particularly useful for understanding the relative importance of channel convergence, bottom friction, and reflected wave on the tidal characteristics change along the channel and the proposed method could be applicable to other estuaries.  相似文献   

8.
Seasonal variation in the transverse and layered structure of estuarine circulation in Ariake Bay, Japan was investigated by box model analysis using monthly salinity data from 1990 to 2000. Two-layered gravitational estuarine circulation was intensified from autumn to spring (vertically well mixed season) accompanied by a small river discharge. Two-layered circulation was weakened accompanying the transversely segregated cyclonic circulation in the upper layer during summer (stratified season) with a large river discharge. Such seasonal variation in the transverse and layered structure of estuarine circulation is because the bay width of Ariake Bay (20 km) is narrower than the external Rossby deformation radius (235 km) but wider than the internal Rossby deformation radius (3–5 km).  相似文献   

9.
A three-dimensional hydrodynamic model is used to investigate intra-tidal and spring–neap variations of turbulent mixing, stratification and residual circulation in the Chesapeake Bay estuary. Vertical profiles of salinity, velocity and eddy diffusivity show a marked asymmetry between the flood and ebb tides. Tidal mixing in the bottom boundary layer is stronger and penetrates higher on flood than on ebb. This flood–ebb asymmetry results in a north–south asymmetry in turbulent mixing because tidal currents vary out of phase between the lower and upper regions of Chesapeake Bay. The asymmetric tidal mixing causes significant variation of salinity distribution over the flood–ebb tidal cycle but insignificant changes in the residual circulation. Due to the modulation of tidal currents over the spring–neap cycle, turbulent mixing and vertical stratification show large fortnightly and monthly fluctuations. The stratification is not a linear function of the tidal-current amplitude. Strong stratification is only established during those neap tides when low turbulence intensity persists for several days. Residual circulation also shows large variations over the spring–neap cycle. The tidally averaged residual currents are about 50% stronger during the neap tides than during the spring tides.  相似文献   

10.
Physical and dynamical oceanography of Liverpool Bay   总被引:1,自引:1,他引:0  
The UK National Oceanography Centre has maintained an observatory in Liverpool Bay since August 2002. Over 8 years of observational measurements are used in conjunction with regional ocean modelling data to describe the physical and dynamical oceanography of Liverpool Bay and to validate the regional model, POLCOMS. Tidal dynamics and plume buoyancy govern the fate of the fresh water as it enters the sea, as well as the fate of its sediment, contaminants and nutrient loads. In this context, an overview and summary of Liverpool Bay tidal dynamics are presented. Freshwater forcing statistics are presented showing that on average the bay receives 233 m3 s − 1. Though the region is salinity controlled, river input temperature is shown to significantly modulate the plume buoyancy with a seasonal cycle. Stratification strongly influences the region’s dynamics. Data from long-term moored instrumentation are used to analyse the stratification statistics that are representative of the region. It is shown that for 65% of tidal cycles, the region alternates between being vertically mixed and stratified. Plume dynamics are diagnosed from the model and are presented for the region. The spring–neap modulation of the plume’s westward extent, between 3.5 °W and 4°W, is highlighted. The rapid eastward erosion of the plume during spring tides is identified as a potentially important freshwater mixing mechanism. Novel climatological maps of temperature, salinity and density from the CTD surveys are presented and used to validate numerical simulations. The model is found to be sensitive to the freshwater forcing rates, temperature and salinities. The existing CTD survey grid is shown to not extend sufficiently near the coast to capture the near coastal and vertically mixed component the plume. Instead the survey grid captures the westward spreading, shallow and transient, portion of the plume. This transient plume feature is shown in both the long-term averaged model and observational data as a band of stratified fluid stretching between the mouth of the Mersey towards the Isle of Man. Finally the residual circulation is discussed. Long-term moored ADCP data are favourably compared with model data, showing the general northward flow of surface water and southward trajectory of bottom water.  相似文献   

11.
The seasonal pattern of size-fractionated phytoplankton biomass, primary production and respiration was investigated along the longitudinal axis of the Nervión–Ibaizabal estuary (Bay of Biscay) from April 2003 to September 2004. Environmental factors influencing phytoplankton dynamics were also studied. Chlorophyll a biomass showed a longitudinal pattern of increase from the outer Abra bay to the inner estuary. On a seasonal scale, in the intermediate and inner estuary phytoplankton biomass maxima were registered in summer, the warmest and driest season, whereas in the outer bay chlorophyll a peaks occurred in May 2004, but were delayed to August 2003, likely due to a very rainy spring. Data suggest that river flow exerts a marked influence on the timing of phytoplankton biomass maxima in this estuary, decreased river flows providing a lowering of turbidity and an increase in water residence time needed for chlorophyll a to build up. Nutrient concentrations were high enough not to limit phytoplankton growth throughout the annual cycle, except silicate and occasionally phosphate in the outer bay during summer. Silicate concentration correlated positively with river flow, whereas ammonium and phosphate maximum values were generally measured in the mid-estuary, suggesting the importance of allochthonous anthropogenic sources. In the intermediate and inner estuary phytoplankton biomass was generally dominated by >8 μm size-fraction (ca. 60%), but in August 2003 <8 μm size-fraction increased its contribution in the intermediate estuary. It is argued that the lower nutrient concentrations measured in August 2003 than in August 2004 could have played a role. This is the first study in which phytoplankton primary production rates have been measured along the longitudinal axis of the Nervión–Ibaizabal estuary. Throughout the annual cycle these rates ranged from 0.001 to 3.163 g C m?3 d?1 and were comparable to those measured in nearby small estuaries of the Basque coast and other larger estuaries on the Bay of Biscay. Surface plankton community respiration rate maxima were measured during the spring 2004 chlorophyll a peak in the Abra bay and in summer months at the mid and inner estuary, coinciding with chlorophyll a biomass and primary production maxima. In general, respiration rates showed a positive correlation with temperature. In order to compare results from the Nervión–Ibaizabal estuary with other nearshore coastal and estuarine ecosystems within the Bay of Biscay a review of existing information on phytoplankton biomass and primary production dynamics was performed.  相似文献   

12.
A 2D depth-averaged numerical model is set up to simulate the macro-scale hydrodynamic characteristics, sediment transport patterns and morphological evolution in Hangzhou Bay, a large macro-tidal estuary on the eastern coast of China. By incorporating the shallow water equations, the suspended sediment transport equation and the mass-balance equation for sediment; short-term hydrodynamics, sediment transport and long-term morphological evolution for Hangzhou Bay are simulated and the underlying physical mechanisms are analyzed. The model reproduces the spatial distribution patterns of suspended sediment concentration (SSC) in Hangzhou Bay, characterized by three high SSC zones and two low SSC zones. It also correctly simulates the residual flow, the residual sediment transport and the sediment accumulation patterns in Hangzhou Bay. The model results are in agreement with previous studies based on field measurements. The residual flow and the residual sediment transport are landwards directed in the northern part of the bay and seawards directed in the southern part. Sediment accumulation takes place in most areas of the bay. Harmonic analysis revealed that the tide is flood-dominant in the northern part of the bay and ebb-dominant in the southern part of the bay. The strength of the flood-dominance increases landwards along the northern Hangzhou Bay. In turn sediment transport in Hangzhou Bay is controlled by this tidal asymmetry pattern. In addition, the direction of tidal propagation in the East China Sea, the presence of the archipelago in the southeast and the funnel-shaped geometry of the bay, play important roles for the patterns of sediment transport and sediment accumulation respectively.  相似文献   

13.
Sea surface temperature satellite imagery and a regional hydrodynamic model are used to investigate the variability and structure of the Liverpool Bay thermohaline front. A statistically based water mass classification technique is used to locate the front in both data sets. The front moves between 5 and 35 km in response to spring–neap changes in tidal mixing, an adjustment that is much greater than at other shelf-sea fronts. Superimposed on top of this fortnightly cycle are semi-diurnal movements of 5–10 km driven by flood and ebb tidal currents. Seasonal variability in the freshwater discharge and the density difference between buoyant inflow and more saline Irish Sea water give rise to two different dynamical regimes. During winter, when cold inflow reduces the buoyancy of the plume, a bottom-advected front develops. Over the summer, when warm river water provides additional buoyancy, a surface-advected plume detaches from the bottom and propagates much larger distances across the bay. Decoupled from near-bed processes, the position of the surface front is more variable. Fortnightly stratification and re-mixing over large areas of Liverpool Bay is a potentially important mechanism by which freshwater, and its nutrient and pollutant loads, are exported from the coastal plume system. Based on length scales estimated from model and satellite data, the erosion of post-neap stratification is estimated to be responsible for exporting approximately 19% of the fresh estuarine discharge annually entering the system. Although the baroclinic residual circulation makes a more significant contribution to freshwater fluxes, the episodic nature of the spring–neap cycle may have important implications for biogeochemical cycles within the bay.  相似文献   

14.
A numerical study of horizontal dispersion in a macro tidal basin   总被引:2,自引:2,他引:0  
Tidal circulation in Cobscook Bay, a macro tidal basin, is simulated using the three-dimensional, nonlinear, finite element ocean model, QUODDY_dry. Numerical particles are released from various transects in the bay at different tidal phases and tracked for several tidal cycles. Initially, nearby particles in the main tidal channel experience a great deal of spreading and straining, and after a few tidal cycles, they are separated in different parts of the bay. The fundamental mechanism for particle dispersion is the chaotic advection that arises from long tidal excursions passing through many residual eddies. A loosely correlated, inverse relationship between the two dimensionless parameters, ν (the ratio of the residual current to the tidal current) and λ (the ratio of the tidal excursion to the main topographic scale), can be constructed for large values of ν. Several Lagrangian statistical measures are used to quantify and distinguish dispersion regimes in different parts of Cobscook Bay. It is found that the effective Lagrangian dispersion coefficient can be estimated using the product of the magnitude of residual currents and the tidal excursion.  相似文献   

15.
Liverpool Bay is a region of freshwater influence which receives significant freshwater loading from a number of major English and Welsh rivers. Strong tidal current flow interacts with a persistent freshwater-induced horizontal density gradient to produce strain-induced periodic stratification (SIPS). Recent work (Palmer in Ocean Dyn 60:219–226, 2010; Verspecht et al. in Geophys Res Lett 37:L18602, 2010) has identified significant modification to tidal ellipses in Liverpool Bay during stratification due to an associated reduction in pycnocline eddy viscosity. Palmer (Ocean Dyn 60:219–226, 2010) identified that this modification results in asymmetry in flow in the upper and lower layers capable of permanently transporting freshwater away from the Welsh coastline via a SIPS pumping mechanism. Observational data from a new set of observations from the Irish Sea Observatory site B confirm these results; the measured residual flow is 4.0 cm s−1 to the north in the surface mixed layer and 2.4 cm s−1 to the south in the bottom mixed layer. A realistically forced 3D hydrodynamic ocean model POLCOMS succeeds in reproducing many of the characteristics of flow and vertical density structure at site B and is used to estimate the transport of water through a transect WT that runs parallel with the Welsh coast. Model results show that SIPS is the dominant steady state, occurring for 78.2% of the time whilst enduring stratification exists only 21.0% of the year and enduring mixed periods, <1%. SIPS produces a persistent offshore flow of freshened surface water throughout the year. The estimated net flux of water in the surface mixed layer is 327 km3 year 1, of which 281 km3 year−1 is attributable to SIPS periods. Whilst the freshwater component of this flux is small, the net flux of freshwater through WT during SIPS is significant, the model estimates 1.69 km3 year−1 of freshwater to be transported away from the coast attributable to SIPS periods equivalent to 23% of annual average river flow from the four catchment areas feeding Liverpool Bay. The results show SIPS pumping to be an important process in determining the fate of freshwater and associated loads entering Liverpool Bay.  相似文献   

16.
《Continental Shelf Research》1998,18(10):1157-1177
The spatial and temporal variability of water entering and leaving the Chesapeake Bay estuary was determined with a spatial resolution of 75 m. The four cruises during which the observations were made took place under different conditions of freshwater discharge, tidal phase, and wind forcing. The tidal variability of the flows was dominated by the semidiurnal constituents that displayed greatest amplitudes and phase lags near the surface and in the channels that lie at the north and south sides of the entrance. The subtidal variability of the flows was classified into two general scenarios. The first scenario occurred during variable or persistently non-southwesterly winds. Under these conditions there was surface outflow and bottom inflow in the two channels, inflow over the shoal between the two channels, and possible anticyclonic gyre formation over the shoal. The flow pattern in the channels was produced by gravitational circulation and wind forcing. Over the shoal it was caused by tidal rectification and wind forcing. The second scenario occurred during persistently southwesterly winds. The anticyclonic gyre over the shoal vanished suggesting that wind forcing dominated the tidal rectification mechanism over the shoal, while gravitational circulation and wind forcing continued to cause the flows in the channels. In both scenarios, most of the volume exchange took place in the channels.  相似文献   

17.
The spatial and diurnal tidal variability of dissolved organic carbon (DOC) concentrations and the composition of dissolved organic matter (DOM), as evaluated by high-temperature catalytic oxidation and excitation–emission matrix combined with parallel factor analysis (EEM–PARAFAC), respectively, were determined in Liverpool Bay. EEM–PARAFAC modeling resulted in six fluorescent components characterized as terrestrial humic-like (two), microbial humic-like (two), and protein-like (two). The spatial distributions of DOC and the four humic-like components were negatively correlated with salinity in the high-salinity waters observed in this study (30.41–33.75), suggesting that terrestrial DOM was conservatively distributed. The spatial patterns of protein-like components were largely different from those of DOC, humic-like components, and chlorophyll a, suggesting that these distributions were the combined result of production and degradation in the bay in addition to river inputs. These findings suggest that the DOM dynamics in Liverpool Bay are strongly controlled by river-dominated allochthonous DOM inputs with some less significant contributions of autochthonous DOM within the bay. In addition, the temporal variations of DOM associated with the diurnal tidal cycles were determined at one inshore (31.34–32.24 salinity) and one offshore (33.64–33.75 salinity) station in the bay. Negative linear relationships between salinity and DOM characteristics, i.e., DOC, humic-like, and protein-like components, were observed at the inshore station. In contrast, no relationship was observed at the offshore station, suggesting that the export of DOM through rivers and possibly tidal flats have a noticeable influence on DOM concentration and composition up to a relatively elevated salinity of around 33 in Liverpool Bay.  相似文献   

18.
While recent studies have revealed that tidal fluctuations in an estuary significantly affect groundwater flows and salt transport in the riparian zone, only seawater salinity in the estuary has been considered. A numerical study is conducted to investigate the influence of estuarine salinity variations on the groundwater flow and salt dynamics in the adjacent aquifer to extend our understanding of these complex and dynamic systems. Tidal salinity fluctuations (synchronous with estuary stage) were found to alter the magnitude and distribution of groundwater discharge to the estuary, which subsequently impacted on groundwater salinity patterns and residence times, especially in the riparian zone. The effects of salinity fluctuations were not fully captured by adopting a constant, time-averaged estuarine salinity. The modelling analysis also included an assessment of the impact of a seasonal freshwater flush in the estuary, similar to that expected in tropical climates (e.g. mean estuary level during flood significantly greater than average), on adjacent groundwater flow and salinity conditions. The three-month freshwater flushing event temporarily disrupted the salt distribution and re-circulation patterns predicted to occur under conditions of constant salinity and tidal water level fluctuations in the estuary. The results indicate that the salinity variations in tidal estuaries impact significantly on estuary–aquifer interaction and need to be accounted for to properly assess salinity and flow dynamics and groundwater residence times of riparian zones.  相似文献   

19.
A three‐dimensional, time‐dependent hydrodynamic and salinity model was applied to the Danshuei River estuarine system and adjacent coastal sea in Taiwan. The model forcing functions consist of tidal elevations along the open boundary and freshwater flows from the main stem and tributaries in the Danshuei River system. The bottom roughness height was calibrated and verified with model simulation of barotropic flow, and the turbulent diffusivities were calibrated through comparison of time‐series of salinity distributions. The overall model verification was achieved with comparisons of residual current and salinity distribution. The model simulation results are in qualitative agreement with the available field data. The model was then used to investigate the tidal current, residual current, and salinity patterns under the low freshwater flow condition in the modelling domain. The results reveal that the extensive intrusion of saline water imposes a significant baroclinic forcing and induces a strong residual circulation in the estuary. The downriver net velocity in the upper layer increases seaward despite the enlargement of the river cross‐section in that direction. Strong residual circulation can be found near the Kuan‐Du station. This may be the result of the deep bathymetric features there. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
Projections of the impacts of modern Relative Sea Level (RSL) rise on estuarine mangroves should be supported by coastal topographic data and records of mangrove dynamics under past RSL change. This work identified inland and seaward mangrove migrations along the Jucuruçu River (Bahia, Northeastern Brazil), during the Holocene based on sedimentary features, palynological and geochemical (δ13C, δ15N, C/N) data integrated with digital elevation models. During the Middle Holocene, in response to RSL rise, the estuary saw mangrove forest establish up to ~37 km inland. RSL stood between -1.4 (+0.36/-2.2 m) and +1 (2.19/0.2 m) around 7400 cal yr BP, and rose to a highest position of +3.25 (4.22/2.45 m) reached around 5350 cal yr BP. That marine incursion caused the inland replacement of freshwater vegetation by mangroves on tidal flats. Since then, the estuary experienced RSL fall, reducing inland tidal water salinity towards the Late Holocene, making that the mangroves were replaced by freshwater floodplain vegetation. Today, in the seaward part of the estuary near its mouth, mangroves occupy an area of ~10 km2 along tidal channels. Considering a RSL rise of 98 cm up to the end of the 21st century, at a rate significantly higher than that of Middle Holocene RSL rise (1.5 mm/yr) and fall (0.6 mm/yr), the current mangrove substrates are expected to drown and/or eroded near the coast, while new mangroves may establish inland, at topographically higher tidal flats in nowadays freshwater-tidal zones. Mangrove area could expand over 13 km2 of coastal and flood plain. Following the same interaction between RSL/climate changes and Holocene mangrove dynamics, such upstream mangrove migration may be attenuated or intensified by changes in fluvial discharge. © 2019 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号