首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
China is one of the ancient civilization countries. Owing to the blind reclamation, the vegetation had been destroyed, causing soil erosion and desertification, and making the civilization center move to the Changjiang (Yangtze) River valley from the Huanghe (Yellow) River. This movement began in the Qin and Han dynasties (221 B.C-220 A.D.) because at that time the large-scale reclamation was felled, the grassland was reclaimed into farmland, the vegetation was seriously destroyed in the loess and north of the Huanghe River, and the climate was getting colder; and the turn from north to south occurred in the Sui and Tang dynasties (581-907 A.D.) and completed in the Song Dynasty (960-1279 A.D.). However, at present the vegetation damage of the Changjiang River valley is very serious too and the silt carrying capacity of the Changjiang River is increasing sharply; thus the Changjiang River is in danger of becoming a second Huanghe River, so we must pay attention to the protection of ecological environmen  相似文献   

2.
《山地科学学报》2020,17(1):156-172
Loose deposits, rainfall and topography are three key factors that triggering debris flows.However, few studies have investigated the effects of loose deposits on the whole debris flow process.On June 28, 2012, a catastrophic debris flow occurred in the Aizi Valley, resulting in 40 deaths.The Aizi Valley is located in the Lower Jinsha River,southwestern Sichuan Province, China. The Aizi Valley debris flow has been selected as a case for addressing loose deposits effects on the whole debris flow process through remote sensing, field investigation and field experiments. Remote sensing interpretation and laboratory experiments were used to obtain the distribution and characteristics of the loose deposits, respectively. A field experiment was conducted to explore the mechanics of slope debris flows, and another field investigation was conducted to obtain the processes of debris flow formation, movement and amplification. The results showed that loose deposits preparation, slope debris flow initiation,gully debris flow confluence and valley debris flow amplification were dominated by the loose deposits.Antecedent droughts and earthquake activities may have increased the potential for loose soil sources in the Aizi Valley, which laid the foundation for debris flow formation. Slope debris flow initiated under rainfall, and the increase in the water content as well as the pore water pressure of the loose deposits were the key factors affecting slope failure. The nine gully debris flows converged in the valley, and the peak discharge was amplified 3.3 times due to a blockage and outburst caused by a large boulder. The results may help in predicting and assessing regional debris flows in dry-hot and seismic-prone areas based on loose deposits, especially considering large boulders.  相似文献   

3.
The floodplain -egetation of the Tarim River in Northwest China is strongly influenced by irrigated agriculture. The abstrac- tion of river water disturbs; the natural dynamics of the floodplain ecosystem. The human impact on the hydrological system by bank dams and the irrigation of cotton plantings have caused adverse changes of the Tarim River and its floodplains, so the current stocks of the typical Tugai vegetation show significant signs of degradation. Field studies of soils and statistical analysis of soil moisture data have shown that the vitality of the Tugai vegetation is primarily determined by its position to the riverbank and the groundwater. There exist complex interactions between soil hydrological conditions and the vitality of the vegetation. But the availability of water is not only influenced by the groundwater level and seasonal flood events. The spatial distribution of stocks at different states of vitality seems also to be decisively influenced by physical soil properties. Our results show that the water supply of plant communities is strongly in- fluenced by the soil texture. Spatial differences of soil moisture and corresponding soil water tensions may be the decisive factors for the zonafion of vegetation. Physical soil properties control the water retention and rising of capillary water from deeper soil layers and the phreatic zone and may supply the root systems of the phreatophytic vegetation with water. Keywords: soil moisture;soil texture; soil water tensions; Tarim River; water retention  相似文献   

4.
Under the condition of different precipitation intensities, different gradients, different land-use types and different vegetation coverage, the soil erosion and transference of element (or pollutant) are studied by simulating and analyzing the surface run-off of experimental plots in the catchment area of Songhua Lake, with an area of about 43 370.8km^2. And the influencing factors that produce the spatial difference are analyzed and assessed. It is put for-ward that the irrational land utilization is the reason of soil erosion and pollutant run-off. The gradient of farmland,the growing season of vegetation and the vegetation coverage are chiefly restricting factors that lead to the soil ero-sion and pollutant run-off. This study can provide the fundamental data for comprehensive planning and harnessing of the non-noint source t3ollution in the valley.  相似文献   

5.
Withthesocialdevelopment,humanbeingshadtopaymuchatentiontothecrisisofenvironmentastotheeconomiccrisis.Waterdeficiencyanddeser...  相似文献   

6.
人工堤坝影响下的黄河三角洲海岸带生态特征分析   总被引:1,自引:0,他引:1  
在滨海地区,堤坝干扰对自然植被景观及土壤属性的梯度变化规律有重要的影响.本文采用统计分析和梯度分析的方法,在RS信息提取和GIS空间分析技术的支持下,从植被群落的变化入手,从样地尺度上研究堤坝对黄河三角洲海岸带土壤环境的影响并揭示堤坝干扰下,土壤属性的梯度变化规律.研究表明:(1)堤坝影响海岸带地区自然植被的盖度,并且...  相似文献   

7.
The sediment flux data, measured from a dry-hot valley of the Longchuan River, a tributary of the lower Jinsha River, were analyzed with Mann-Kendall test, Seasonal Mann-Kendall test and Sen‘s test. In both the upper reaches (Xiaohekou) and the lower reaches (Xiaohuangguayuan), the sediment fluxes showed a significant increase from 1970 to 2001, despite the fact that the water discharge did not change significantly during the period and numerous reservoir constructions which contribute to the trap of sediment. This can be attributed to the intensification of human activities, especially the activities related to land surface disturbances such as deforestation and afforestation, expansion of agriculture land, and road constructions. This increase is more significant in the lower reaches of the river observed at the place of Xiaohuangguayuan due to the dry-hot climate. The profound increase in sediment flux has significant implications for effective management of the sedimentation problems of the on-going Three Gorges Reservoir.  相似文献   

8.
长江三角洲城市化地区植被初级生产力的时空变化研究   总被引:1,自引:0,他引:1  
城市化过程对植被初级生产具有重要影响。以往研究主要集中于城市用地扩张对植被初级生产力的直接影响分析,而较少关注其间接效果。本文以长江三角洲地区为例,分别从地区尺度和城市尺度分别分析了2000-2013年植被初级生产力的时空变化,探讨了其与气温、降水量及城市建成区绿化覆盖率的关系。研究表明:地区尺度上,2000-2013年长江三角洲植被初级生产力呈现不断增加,其中城市建成区植被初级生产力呈现显著增加的趋势(P<0.05);城市尺度上,城市建成区内植被初级生产力主要呈现增加的趋势,而其外围缓冲区内则与此相反。在当前气候变化背景下,这可能与城市建成区绿化覆盖率不断增加,及快速的城市扩张有关。  相似文献   

9.
To understand the impacts of reforestation on woody species composition, species diversity and community structure, seven plantation forests in dry-hot valley of the Jinsha River in Southwest China were investigated, with adjacent wastelands, natural shrub grassland and a natural forest as references. Species importance value, species richness, species heterogeneity and Sorenson similarity index between plantations and the natural forest were analyzed. Results indicated that compared to wastelands and natural shrub grassland, reforestation improved species diversity and community structure, and more forest woody species found suitable habitats in plantations. Species diversity in understory of plantations and Sorenson similarity index were significantly negatively correlated with stem density in mature plantations (26-31 years old). Higher species diversity and Sorenson similarity index existed in mature sparse plantations due to lower stem density and more tree species planted initially. In contrast, reference natural forest, with species heterogeneity of 2.28 for shrub layer, showed the highest species diversity. It would take a long time for species composition and diversity to recover through reforestation in a dry-hot valley. Therefore, it was essential to protect remnant natural forests strictly and reforest with suitable management such as lower stem density and increasing genetic diversity of trees planted.  相似文献   

10.
The Yalu Tsangpo River basin is a typical semi-arid and cold region in the Qinghai-Tibet Plateau, where significant climate change has been detected in the past decades. The objective of this paper is to demonstrate how the regional vegetation, especially the typical plant types, responds to the climate changes. In this study, the model of gravity center has been firstly introduced to analyze the spatial-temporal relationship between NDVI and climate factors considering the time-lag effect. The results show that the vegetation grown has been positively influenced by the rainfall and precipitation both in moving tracks of gravity center and time-lag effect especially for the growing season during the past thirteen years. The herbs and shrubs are inclined to be influenced by the change of rainfall and temperature, which is indicated by larger positive correlation coefficients at the 0.05 confidence level and shorter lagging time. For the soil moisture, the significantly negative relationship of NDV-PDI indicates that the growth and productivity of the vegetation are closely related to the short-term soil water, with the correlation coefficients reaching the maximum value of o.81 at Lag 0-1. Among the typicalvegetation types of plateau, the shrubs of low mountain, steppe and meadow are more sensitive to the change of soil moisture with coefficients of -0.95, -0.93, -0.92, respectively. These findings reveal that the spatial and temporal heterogeneity between NDVI and climatic factors are of great ecological significance and practical value for the protection of eco-environment in Qinghai-Tibet Plateau.  相似文献   

11.
国产高分辨率卫星遥感技术的发展为第四系宏观、局部及细部特征调查提供了新的手段。中巴经济走廊东段地区分布较多的冲洪积扇、河谷阶地、冰川堆积等地貌类型,为了研究国产高分数据在该地区第四纪地质调查中的适用性,以高分二号(GF-2)影像为主要数据源,借助数字高程模型构建三维场景,选取中巴公路沿线盖孜河流域乌鲁阿特山前冲洪积扇、盖孜河河谷阶地与克拉牙依拉克冰川堆积物3处典型第四纪地层为研究对象,建立了遥感解译标志,并进行了精细尺度遥感解译;经过野外实地验证,查明了其物质组成与变化规律,修正了前人关于克拉牙依拉克冰川不同期次冰碛物的划分范围;通过对盖孜河河谷阶地分析,盖孜河流域晚更新世以来经历了至少5次阶段性构造抬升,阶地基座冰碛物至少由两期冰川作用形成。研究表明,GF-2影像能快速从宏观尺度上识别地貌、松散堆积物变化特征,能够看到常规方法无法观察到的地质现象;满足大比例尺解译、制图要求,特别是在微地貌识别以及第四纪地层解译中,能够提升精细地质解译水平。研究成果能为盖孜河流域河流、冰川的发展演化过程研究提供基础地质资料,为中巴公路沿线第四纪土体遥感调查提供典型案例。   相似文献   

12.
高时间分辨率遥感在土壤质地空间变化识别中的应用   总被引:2,自引:0,他引:2  
在土壤信息推测研究中,遥感技术通常被作为辅助手段,用来提供地形和植被数据,并利用它们与土壤之间的关系推导土壤空间信息。然而,在平原等地形平缓的农业区,易于观测的地形和植被等环境因素,通常与土壤的协同程度较低,不能有效用于推测土壤质地等属性的空间变化。对于这类地区,如何寻找新的易于获取的变量,以准确地揭示土壤属性的空间变化,是需要解决的问题。本文提出了利用高时间分辨率遥感捕捉这类地区土壤质地空间变化的方法。采用光谱-时间响应线对多时相的光谱数据进行组织表达,使用光谱信息散度定量刻画不同光谱-时间响应线之间的差异。结果显示,在相同的地形和植被条件下,土壤质地相同的区域,其地表动态反馈模式明显相似;土壤质地不同的区域,其反馈模式也明显不同;土壤质地越相似,反馈模式也呈相似趋势。这表明,高时间分辨率遥感获取的地表动态反馈能够有效地指示土壤质地的空间差异。本文的工作表明了高时间分辨率遥感在土壤空间变化识别方面的应用潜力。  相似文献   

13.
Land use change is one of the major factors that affect soil organic carbon(SOC) variation and global carbon balance. However, the effects of land use change on SOC are always variable. In this study, using a series of paired-field experiments, we estimated the effects of revegetation types and environmental conditions on SOC stock and vertical distribution after replacement of cropland with poplar(Populus tomentosa) and korshinsk peashrub(Caragana korshinskii) in three climate regions(Chifeng City, Fengning City and Datong City of the ′Beijing-Tianjin Sandstorm Source Control′(BTSSC) program area. The results show that SOC sequestration rate ranges from 0.15 Mg/(ha·yr) to 3.76 Mg/(ha·yr) in the soil layer of 0–100 cm in early stage after cropland afforestation in the BTSSC program area. The SOC accumulation rates are the highest in Fengning for both the two vegetation types. Compared to C. korshinskii, P. tomentosa has greater effects on SOC accumulation in the three climate regions, but significantly greater effect only appears in Datong. The SOC density increases by 20%–111% and 15%–59% for P. tomentosa and 9%–63% and 0–73% for C. korshinskii in the 0–20 cm and 20–100 cm soil layers, respectively. Our results indicate that cropland afforestation not only affects SOC stock in the topsoil, but also has some effects on subsoil carbon. However, the effect of cropland afforestation on SOC accumulation varied with climate regions and revegetation types. Considering the large area of revegetation and relatively high SOC accumulation rate, SOC sequestration in the BTSSC program should contribute significantly to decrease the CO2 concentration in the atmosphere.  相似文献   

14.
神农架林区是我国物种多样性最为丰富的地区之一,地形地貌复杂,对植被分布影响巨大。本文利用该地区2007年数字高程数据、2007年植被分布图以及2017年野外实地调查数据,基于最大熵模型和空间分析理论,从植被类型和种群两个角度研究该地区不同尺度植被空间分布的地形特征,分别量化植被类型和种群空间分布的地形范围,得到植被类型与地形因子关系模型、植被种群与地形因子关系模型。结果表明:①神农架林区影响植被空间分布的地形因子不同,其中影响针叶林分布的最重要的地形因子是高程和高程变异系数,影响阔叶林分布的是高程和坡向,影响灌丛分布的是坡向变率和坡向,影响草丛分布的较为分散;②典型植被种群分布的地形范围和植被类型的基本一致,其中90%针叶林分布在高程1600~2600 m间,典型种群巴山冷杉和华山松主要分布在高程1700~3200 m和1700~2200 m;85%的阔叶林分布在高程1000~2000 m间,典型种群青冈类和鹅耳枥主要分布在高程1200~2200 m间;95%的灌丛分布在坡向变率0~40°间,典型种群杜鹃和蔷薇主要分布在坡向变率小于40°的范围,但相应的关系模型存在差异,植被类型与地形因子为高斯模型,典型种群与地形因子关系模型相对复杂,不同种群的分布模式不同;③虽然坡度常作为数字地形的重要因子,但本文研究发现该地区坡度对植被类型和种群分布的影响不明显。研究结果可为神农架林区植被保护和恢复,以及植被规划和管理提供基础参考。  相似文献   

15.
Soil seed banks can act as a potential seed source for natural revegetation and restoration. However, in a saline-alkaline grassland, it remains unclear how the stages of vegetation succession affect the characteristics of soil seed banks and the potential of soil seed banks of different successional stages for vegetation restoration. In this study, seasonal changes of the soil seed bank, and seed production and dispersal dynamics along degradation successional gradients were investigated in a saline-alkaline grassland in Northeast China, where the dominant grass during the 1960 s, Leymus chinensis was replaced with the secondary successional order of Puccinellia chinampoensis, Chloris virgata, and Suaeda salsa, together with bare patches. It was found that the soil seed bank composition varied according to the changing vegetation and had the highest species richness(7–16) in the climax successional stage, but had a low S?rensen similarity(0.22–0.37) with the aboveground vegetation. There was a high seed density of the soil seed bank(21 062–62 166/m2 in August and December) and also high S?rensen similarity index values(0.47–0.60) in the secondary successional stages of P. chinampoensis, C. virgata, and S. salsa. In bare patches, there were many seeds in the soil seed bank and some seedlings also appeared in the aboveground vegetation, indicating the existence of a persistent soil seed bank. Seed density and species richness differed substantially among the different successional stages, which was related to the reproductive characteristics of the standing plants in vegetation communities. Due to the lack of propagules of perennial species, especially the climax species of L. chinensis, in the soil, the successful restoration of the degraded saline-alkaline grassland was not possible. The study proved that in a degraded saline-alkaline grassland dominated by biennial or annual species, the soil seed bank was important for the revegetation of the current dominant plants, but not for the restoration of the original target species. Therefore, it is necessary to induce seeds or other propagules of the target perennial species.  相似文献   

16.
为实现水土流失区植被遥感信息的准确提取,本文采用2007年ALOS 10 m多光谱影像,利用土壤调节植被指数SAVI和MSAVI,对福建长汀水土流失区马尾松林不同植被覆盖密度的3个实验区进行植被提取,并选用不同的土壤调节因子(L=0.25,0.5,0.75,1)做实验,将结果和以NDVI植被指数提取的结果进行对比,分析了提取效果及受土壤噪音的影响程度。实验表明,SAVI指数能提高水土流失区的植被提取精度。在中、低植被覆盖区,其提取的总精度比NDVI高出2%~7%,Kappa系数高出7%~18%;而土壤调节因子L的取值对植被信息的提取也呈现出一定的规律性,即:随着L从0向1递增,SAVI提取稀疏植被的能力上升而探测阴坡植被的能力下降。总体来看,对于低植被覆盖和中等植被覆盖地区,可分别用SAVI(L取0.75)和SAVI(L取0.5)来提取植被信息,对于高植被覆盖区,仍可直接用NDVI进行植被信息提取;研究发现MSAVI在植被信息提取中并不具有特别的优势。  相似文献   

17.
秦巴山区植被覆盖与土壤湿度时空变化特征及其相互关系   总被引:2,自引:0,他引:2  
基于2001-2014年MODIS-NDVI和MODIS-LST数据,利用温度植被干旱指数对土壤湿度进行遥感反演,分析了秦巴山区植被覆盖与土壤湿度时空变化特征及其相互关系。研究发现:① 秦巴山区植被覆盖与土壤湿度均呈增加趋势;② 植被覆盖整体水平较高且表现出“四周低,中间高”的空间分布特征,土壤湿度整体表现出“北低南高”的空间分布特征,大体上二者呈现出空间分布正相关性;③ 植被改善趋势表现明显,显著改善区分布分散,无明显集中区域,退化区域主要集中于北部渭河沿岸及东部边缘少量地区;土壤湿度增长态势明显,增大区分布于除西北边缘及东北边缘外的几乎整个研究区中,减小区域面积小且大部分表现不显著;④ 秦巴山区植被覆盖与土壤湿度时空变化上呈现出明显的正相关性,其中69.71%的区域表现出土壤湿度增大-植被覆盖改善的特征,分布于研究区除四周边缘地带外的大部分地区。  相似文献   

18.
Nitrogen(N) and phosphorus(P) are limited nutrients in terrestrial ecosystems, and their limitation patterns are being changed by the increase in N deposition. However, little information concerns the plant growth and the soil biological responses to N and P additions among different soils simultaneously, and these responses may contribute to understand plant-soil interaction and predict plant performance under global change. Thus, this study aimed to explore how N and P limitation changes in different soil types, and reveal the relationship between plant and soil biological responses to nutrient additions. We planted Dodonaea viscosa, a globally distributed species in three soil types(Lixisols, Regosols and Luvisols) in Yuanmou dry-hot valley in Southwest China and fertilized them factorially with N and P. The growth and biomass characters of D. viscosa, soil organic matter, available N, P contents and soil carbon(C), N, P-related enzyme activities were quantified. N addition promoted the growth and leaf N concentration of D. viscosa in Lixisols; N limitation in Lixisols was demonstrated by lower soil available N with higher urease activity. P addition promoted the growth and leaf P concentration of D. viscosa in Luvisols; severe P limitation in Luvisols was demonstrated by a higher soil available N: P ratio with higher phosphatase activity. Urease activity was negatively correlated with soil available N in Nlimited Lixisols, and phosphatase activity was negatively correlated with soil available P in P-limited Luvisols. Besides, the aboveground biomass and leaf N concentration of D. viscosa were positively correlated with soil available N in Lixisols, but the aboveground biomass was negatively correlated with soil available P. Our results show similar nutrient limitation patterns between plant and soil microorganism in the condition of enough C, and the nutrient limitations differ across soil types. With the continued N deposition, N limitation of the Lixisols in dry hot valleys is expected to be alleviated, while P limitation of the Luvisols in the mountaintop may be worse in the future, which should be considered when restoring vegetation.  相似文献   

19.
Vegetation in hot and arid valleys is a crucial indicator of ecosystem health, but is vulnerable to human activities and environmental change. Using the Longkaikou Reservoir in the Jinsha River in southwestern China as a case study, we developed a spatially explicit model that combined the plant growth, fruiting, seed dispersal, and seed germination stages to reveal the potential impact of multiple human activities(reservoir construction, logging, grazing, and aerial seeding) on the vegetation dynamics of Dodonaea viscosa and Pinus yunnanensis. After reservoir construction, the grassland area of 68 km~2 in 2003 decreased to 24 km~2 in 2018, replaced by forest, shrubland, and bodies of water, and the precipitation increased during the dry season, which indicated the improvement of the local plant and soil environment. Our model predicted that when soil moisture decreased by more than 20% compared to current levels, the area of D. viscosa increased greatly at low elevations; however, when at higher soil moisture, P. yunnanensis would occupy more of the study area. Logging and grazing would slightly change the spatial pattern of vegetation and delay P. yunnanensis communities from achieving stability by directly reducing plant biomass. Countermeasures such as aerial seeding would increase the total area by 13.13 km~2 and 8.09 km~2 of two plants, respectively, and accelerate the stabilization of plant communities. The effects of multiple human activities on vegetation may counteract each other; for example, logging decreased the P. yunnanensis area whereas aerial seeding increased it, and plant biomass changed in response to this pressure. Given the complex relationships between vegetation and human impacts, our study provides a scientific basis for vegetation restoration and ecological security in this hot and arid valley.  相似文献   

20.
Secondary forests account for a large amount of subtropical forest due to persistent anthropogenic disturbance in China. The interaction between vegetation and soil during recovery process is rather complex and dependent on forest conditions. Understanding how vegetation and soil properties changes and how their relationship develops in secondary forests is key to effective forest restoration and management. Here we explored the patterns of vegetation and soil properties as well as their correlations during forest recovery process in a subtropical forest in south China. Plots of three forest types, i.e., broadleaf-conifer mixed forest, broadleaved forest and old growth stand, were established to represent the recovery stages. The results showed that diversity patterns in the tree, shrub and herb layers were different: in the tree layer the species diversity peaked at the intermediate stage, while in the understory layers it decreased chronologically. Most of the soil factors showed an increasing trend, and different effects of soil factors were found for the three layers as well as for the two spatial scales. Together, our results suggested that vegetation and soil might be interdependent during the recovery course. Further studies are needed on exploring how vegetation interplays with soil at different scales and how nutrient limitations affects the vegetation development in a chronosequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号