首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The MACRO experiment at Gran Sasso is collecting muons since February 1989. These muons are induced by charged current interactions of atmospheric and, possibly, astrophysical muon neutrinos below the apparatus. A search has been made for discrete astrophysical sources of VHE and UHE neutrinos using the upward going muons direction information. Given the large area and the long period of data taking MACRO is, at the moment, able to set very competitive upper limits to the flux of neutrinos from most of the sources considered in the search. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
We describe the scientific motivation, experimental basis, design methodology, and simulated performance of the ExaVolt Antenna (EVA) mission, and planned ultra-high energy (UHE) particle observatory under development for NASA’s suborbital super-pressure balloon program in Antarctica. EVA will improve over ANITA’s integrated totals – the current state-of-the-art in UHE suborbital payloads – by 1–2 orders of magnitude in a single flight. The design is based on a novel application of toroidal reflector optics which utilizes a super-pressure balloon surface, along with a feed-array mounted on an inner membrane, to create an ultra-large radio antenna system with a synoptic view of the Antarctic ice sheet below it. Radio impulses arise via the Askaryan effect when UHE neutrinos interact within the ice, or via geosynchrotron emission when UHE cosmic rays interact in the atmosphere above the continent. EVA’s instantaneous antenna aperture is estimated to be several hundred m2 for detection of these events within a 150–600 MHz band. For standard cosmogenic UHE neutrino models, EVA should detect of order 30 events per flight in the EeV energy regime. For UHE cosmic rays, of order 15,000 geosynchrotron events would be detected in total, several hundred above 10 EeV, and of order 60 above the GZK cutoff energy.  相似文献   

3.
We present simulation results for the detection of ultra-high energy (UHE) cosmic ray (CR) and neutrino interactions in the Moon by radio-telescopes. We simulate the expected radio signal at Earth from such interactions, expanding on previous work to include interactions in the sub-regolith layer for single dish and multiple telescope systems. For previous experiments at Parkes, Goldstone (GLUE), and Kalyazin we recalculate the sensitivity to an isotropic flux of UHE neutrinos. We find the published sensitivity for the GLUE experiment to be too high (too optimistic) by an order of magnitude, and consequently the GLUE limit to be too low by an order of magnitude. Our predicted sensitivity for future experiments using the Australia Telescope Compact Array (ATCA) and the Australian SKA Pathfinder (ASKAP) indicate these instruments will be able to detect the more optimistic UHE neutrino flux predictions, while the square kilometre array (SKA) will also be sensitive to all bar one prediction of a diffuse ‘cosmogenic’, or ‘GZK’, neutrino flux.Outstanding theoretical uncertainties at both high-frequency and low-frequency limits currently prevent a reliable estimate of the sensitivity of the lunar Cherenkov technique for UHE cosmic ray (CR) astronomy. Here, we place limits on the effects of large-scale surface roughness on UHE CR detection, and find that when near-surface ‘formation-zone’ effects are ignored, the proposed SKA low-frequency aperture array could detect CR events above 56 EeV at a rate between 15 and 40 times that of the current Pierre Auger Observatory. Should further work indicate that formation-zone effects have little impact on UHE CR sensitivity, observations of the Moon with the SKA would allow directional analysis of UHE cosmic rays, and investigation of correlations with putative cosmic ray source populations, to be conducted with very high statistics.  相似文献   

4.
The volume and the photosensitive area of next generation detectors of the numerous rarely occurring phenomena will greatly exceed the sizes of the current experiments. These phenomena include cosmic neutrinos, atmospheric neutrinos, long-baseline neutrino beams from accelerators, geo-neutrinos, geo-reactor neutrinos, and hypothetic proton decays. Similar requirements hold for a new type of a large scanning device for homeland security and nuclear proliferation control, and for the future widely accessible medical imaging devices. Photon detectors are the most important component of such detectors. Existing photosensors are based on vacuum tubes and dynode electron multipliers that are essentially hand-made, expensive and nearly impossible to produce in large enough quantities. Silicon detectors are too small for experiments requiring a very large photosensitive area. Our laboratory is developing novel detectors with a large photosensitive area that can be mass-produced, similar to large flat panel TV displays.  相似文献   

5.
Neutrinos represent a new window to the Universe. In this paper we discuss the attempts to detect neutrinos, starting with the Homestake experiment, which showed the deficit of solar neutrinos. The detection of neutrinos from SN 1987A gave a new impetus to neutrino research. By using successive generations of neutrino detectors it was possible to show that the solar neutrino deficit could be explained by a flavor change of massive neutrinos. With the latest detector, kamLAND, it is possible to investigate the interior of the Earth through the detection of geoneutrinos.  相似文献   

6.
7.
The main effort in Europe to evaluate the interest for IAEA of neutrinos detectors close to nuclear power stations is made within the Double Chooz experiments. Specific simulation of diversion scenarios as well as new experimental measurements of neutrinos emitted are underway. On behalf of a collective work by S. Cormon, M. Fallot, H. Faust, T. Lasserre, A. Letourneau, D. Lhuillier, V. Sinev from DAPNIA, Subatech and ILL.  相似文献   

8.
Neutrino telescopes are moving steadily toward the goal of detecting astrophysical neutrinos from the most powerful galactic and extragalactic sources. Here we describe analysis methods to search for high energy point-like neutrino sources using detectors deep in the ice or sea. We simulate an ideal cubic kilometer detector based on real world performance of existing detectors such as AMANDA, IceCube, and ANTARES. An unbinned likelihood ratio method is applied, making use of the point spread function and energy distribution of simulated neutrino signal events to separate them from the background of atmospheric neutrinos produced by cosmic ray showers. The unbinned point source analyses are shown to perform better than binned searches and, depending on the source spectral index, the use of energy information is shown to improve discovery potential by almost a factor of two.  相似文献   

9.
After recent results from solar neutrino experiments and KamLAND we can definitely say that neutrinos from SN1987A underwent flavor conversion, and the conversion effects must be taken into account in the analysis of the data. Assuming the normal mass hierarchy of neutrinos we calculate the permutation factors p for the Kamiokande-2, IMB and Baksan detectors. The conversion inside the star leads to p=0.28–0.32; the oscillations in the matter of the Earth give partial (and different for different detectors) regeneration of the original signal, reducing this factor down to 0.15–0.20 (at E=40 MeV). We study in details the influence of conversion on the observed signal depending on the parameters of the original neutrino spectra. For a given set of these parameters, the conversion could lead to an increase of the average energy of the observed events up to 50% and of the number of events by a factor of 2 at Kamiokande-2 and by a factor of 3–5 at IMB. Inversely, we find that neglecting the conversion effects can lead up to 50% error in the determination of the average energy of the original spectrum and about 50% error in the original luminosity. Comparing our calculations with experimental data we conclude that the Kamiokande-2 data alone do not favor strong conversion effect, which testifies for small difference of the original and spectra. In contrast, the combined analysis of the Kamiokande and IMB results slightly favors strong conversion effects (that is, large difference of the original spectra). In comparison with the no-oscillation case, the latter requires lower average energy and higher luminosity of the original flux.  相似文献   

10.
Detecting neutrinos associated with the still enigmatic sources of cosmic rays has reached a new watershed with the completion of IceCube, the first detector with sensitivity to the anticipated fluxes. In this review, we will briefly revisit the rationale for constructing kilometer-scale neutrino detectors and summarize the status of the field.  相似文献   

11.
Comparison of solar-neutrino signals in SNO [Phys. Rev. Lett. 87 (2001) 071301] and Super-Kamiokande (SK) [Phys. Rev. Lett. 86 (2001) 5651] detectors results in discovery of νe→νμ,τ oscillations at level 3.1–3.3σ [Phys. Rev. Lett. 87 (2001) 071301]. This comparison involves the assumption of neutrino spectrum and a choice for the thresholds of detection in both experiments. In this paper we obtain an exact formula for the comparison of the signals which is valid for arbitrary spectra and thresholds. We find that the no-oscillation hypothesis (astrophysical solutions) is excluded at 3.3σ. If the energy-dependent component of the survival probability for electron neutrinos is small as compared with the average value, i.e. in the case of small distortion of the observed spectrum, the oscillation hypothesis can also be tested to similar accuracy. The oscillation to sterile neutrino only, is excluded at 3.3σ level, and oscillation to active neutrinos is confirmed at 2.8σ.  相似文献   

12.
《Astroparticle Physics》2002,16(4):119-359
The core collapse of a massive star in the Milky Way will produce a neutrino burst, intense enough to be detected by existing underground detectors. The AMANDA neutrino telescope located deep in the South Pole ice can detect MeV neutrinos by a collective rate increase in all photo-multipliers on top of dark noise. The main source of light comes from positrons produced in the CC reaction of anti-electron neutrinos on free protons . This paper describes the first supernova search performed on the full sets of data taken during 1997 and 1998 (215 days of live time) with 302 of the detector's optical modules. No candidate events resulted from this search. The performance of the detector is calculated, yielding a 70% coverage of the galaxy with one background fake per year with 90% efficiency for the detector configuration under study. An upper limit at the 90% c.l. on the rate of stellar collapses in the Milky Way is derived, yielding 4.3 events per year. A trigger algorithm is presented and its performance estimated. Possible improvements of the detector hardware are reviewed.  相似文献   

13.
We propose a decay signature for non-thermal small black holes with masses in the TeV range which can be discovered by neutrino observatories. The black holes would result due to the impact between ultra high energy neutrinos with nuclei in water or ice and decay instantaneously. They could be produced if the Planck scale is in the few TeV region and the highly energetic fluxes are large enough. Having masses close to the Planck scale, the typical decay mode for these black holes is into two particles emitted back-to-back. For a certain range of angles between the emitted particles and the center of mass direction of motion, it is possible for the detectors to measure separate muons having specific energies and their trajectories oriented at a large enough angle to prove that they are the result of a back-to-back decay event.  相似文献   

14.
A core collapse in the Milky Way will produce an enormous burst of neutrinos in detectors world‐wide. Such a burst has the potential to provide an early warning of a supernova's appearance. I will describe the nature of the signal, the sensitivity of current detectors, and SNEWS, the SuperNova Early Warning System, a network designed to alert astronomers as soon as possible after the detected neutrino signal. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
The possibility of detecting neutrinos from the Sun and supernovae with detectors based on the nuclei 7Li, 19F, 127I, and 23Na is discussed.  相似文献   

16.
极高能宇宙线一般指来自地外的能量高于1018电子伏特(eV)的高能质子与原子核,其起源的研究一直是高能天体物理和粒子天体物理领域的热点问题.近年随着一些大型探测器(如Pierre Auger天文台)的运行,极高能宇宙线的研究取得很大进展.然而由于极高能宇宙线事例相对较少及其在从源到地球传播过程中的复杂性(如与宇宙微波背景辐射以及磁场的作用),需要通过观测这些宇宙线在强子反应中产生的次级粒子(如中微子)来获得其起源的额外信息.最近,位于南极的IceCube中微子天文台探测到了54个能量分布在60TeV{3PeV内的中微子事例,开启了高能中微子天文学的新时代.在本文中,我们研究了高能中微子、极高能宇宙线的天体物理起源以及它们之间可能的联系.  相似文献   

17.
The KamLAND liquid scintillator detector demonstrated the detection of antineutrinos produced by natural radioactivities in the Earth, so-called geoneutrinos. Although this first result of geoneutrinos is consistent with current geophysical models, more accurate measurements are essential to provide a new window for exploring the inside of the Earth. In this article I would like to discuss the future prospects of KamLAND geoneutrino detection, and the possibility of directional measurement of incoming geoneutrinos. It is interesting to consider the application of geoneutrino detectors to measurements of other neutrino signals. The possibility of detecting the solar 7Be, pep and CNO neutrinos is discussed. A new type detector concept is proposed not only to explore the precise measurement of reactor neutrino oscillations but also to enable us to realize the neutrino tomography inside the Earth.  相似文献   

18.
The characteristics of the gravitational collapse of a supernova and the fluxes of active and sterile neutrinos produced during the formation of its protoneutron core have been calculated numerically. The relative yields of active and sterile neutrinos in corematter with different degrees of neutronization have been calculated for various input parameters and various initial conditions. A significant increase in the fraction of sterile neutrinos produced in superdense core matter at the resonant degree of neutronization has been confirmed. The contributions of sterile neutrinos to the collapse dynamics and the total flux of neutrinos produced during collapse have been shown to be relatively small. The total luminosity of sterile neutrinos is considerably lower than the luminosity of electron neutrinos, but their spectrum is considerably harder at high energies.  相似文献   

19.
We investigate the possibility to use the neutrinos coming from a future galactic supernova explosion to perform neutrino oscillation tomography of the Earth’s core. We propose to use existing or planned detectors, resulting in an additional payoff. Provided that all of the discussed uncertainties can be reduced as expected, we find that the average matter densities of the Earth’s inner and outer cores could be measured with a precision competitive with geophysics. However, since seismic waves are more sensitive to matter density jumps than average matter densities, neutrino physics would give partly complementary information.  相似文献   

20.
We show that, contrary to a recent suggestion, fluxes of 30 GeV-1 TeV neutrinos that may accompany-ray bursts are at least a few orders of magnitude too weak to be detected by the current or planned neutrino detectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号