首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Formation and Circulation of the Intermediate Water in the Japan Sea   总被引:1,自引:0,他引:1  
In order to clarify the formation and circulation of the Japan/East Sea Intermediate Water (JESIW) and the Upper portion of the Japan Sea Proper Water (UJSPW), numerical experiments have been carried out using a 3-D ocean circulation model. The UJSPW is formed in the region southeast off Vladivostok between 41°N and 42°N west of 136°E. Taking the coastal orography near Vladivostok into account, the formation of the UJSPW results from the deep water convection in winter which is generated by the orchestration of fresh water supplied from the Amur River and saline water from the Tsushima Warm Current under very cold conditions. The UJSPW formed is advected by the current at depth near the bottom of the convection and penetrates into the layer below the JESIW. The origin of the JESIW is the low salinity coastal water along the Russian coast originated by the fresh water from the Amur River. The coastal low salinity water is advected by the current system in the northwestern Japan Sea and penetrates into the subsurface below the Tsushima Warm Current region forming a subsurface salinity minimum layer. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
Synoptic features in/around thermal fronts and cross-frontal heat fluxes in the southern Huanghai./Yellow Sea and East China Sea (HES) were examined using the data collected from four airborne expendable bathythermograph surveys with horizontal approxmately 35 km and vertical 1 m(from the surface to 400 m deep) spacings. Since the fronts are strongly affected by HES current system, the synoptic thermal features in/around them represent the interaction of currents with surrounding water masses. These features can not be obtained from climatological data. The identified thermal features are listed as follows : ( 1 ) multiple boundaries of cold water, asymmetric thermocline intrusion, locally-split front by homogeneous water of approxmately 18 ℃, and mergence of the front by the Taiwan Warm Current in/around summertime southern Cheju - Changjiang/Yangtze front and Tsushima front; (2) springtime frontal eddy-like feature around Tsushima front; (3) year-round cyclonic meandering and summertime temperature-inversion at the bottom of the surface mixed layer in Cheju - Tsushima front; and (4) multistructure of Kuroshio front. In the Kuroshio front the mean variance of vertical temperature gradient is an order of degree smaller than that in other HES fronts. The southern Cheju- Changjiang front and Cheju -Tsushima front are connected with each other in the summer with comparable cross-frontal temperature gradient. However, cross-frontal heat flux and lateral eddy diffusivity are stronger in the southern Cheju - Changjiang front. The cross-frontal heat exchange is the largest in the mixing zone between the modified Huanghai Sea bottom cold water and the Tsushima Warm Current, which is attributable to enhanced thermocline intrusions.  相似文献   

3.
Using a temperature data set from 1961 to 1990, we estimated the monthly distribution of the vertically integrated heat content in the East China Sea. We then drew the monthly map of the horizontal heat transport, which is obtained as the difference between the vertically integrated heat content and the surface heat flux. We anticipate that its distribution pattern is determined mainly due to the advection by the ocean current if it exists stably in the East China Sea. The monthly map of the horizontal heat transport showed the existence of the Taiwan-Tsushima Warm Current System (TTWCS) at least from April to August. The T-S (temperature-salinity) analysis along the path of TTWCS indicated that the TTWCS changes its T-S property as it flows in the East China Sea forming the Tsushima Warm Current water. The end members of the Tsushima Warm Current water detected in this study are water masses in the Taiwan Strait and the Kuroshio surface layer, the fresh water from the mainland of China, and the southern tip of the Yellow Sea Cold Water extending in the northern part of the East China Sea. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
Two different cold waters were found under the surface mixed layer in Tsushima Straits and the southwestern Japan Sea in autumn 2004. One is cold saline water with a low concentration of dissolved oxygen, and the other is cold less saline water with a high concentration of dissolved oxygen. The older saline water originates from the bottom of the East China Sea, strongly influenced by the Kuroshio water with high salinity. The bottom density in the eastern channel of the Tsushima Straits is coincident with that of the East China Sea in autumn, corresponding to the season when the cold saline water was frequently found in the Tsushima Straits. The newer less saline water originates from the front of Tsushima Warm Current between the Tsushima Warm Current water and the surface cold water in the Japan Sea. This water is formed by subduction above the isopycnal surface from the front of the Tsushima Warm Current.  相似文献   

5.
黄海、东海表、上层实测流分析   总被引:12,自引:3,他引:12  
根据迄今为止所获得的142套锚碇浮标和58套卫星跟踪漂流浮标的大范围测流资料,综合分析了黄海、东海表、上层环流。研究结果更加清晰、形象、直观地展示了黑潮及其向对马暖流的分支,台湾暖流的分叉,和黄海暖流、长江冲淡水及涡旋发达海区的若干主要特征。  相似文献   

6.
On the Huanghai (Yellow) Sea circulation: a review by current measurements   总被引:6,自引:1,他引:5  
INTRODUCTIONTheHuanghaiSea(hereafterHS)isashallow,semi-enclosedbasinsurroundedbytheChina'sMainlandtoitswestandmorth,andbytheKoreaPeninsulatOtheeast.TheHSreceivesabundantdischargeoffreshwaterandland-basedmaterialsthroughriversfromChinaandKorea,which ThisstudywassupportedbyagrantfromtheKoreaMinistryofaudienceandTechnoing.maybeaccumulatedpartlyinsidethebasinforacertainpenedormoveoutofthebasinintothenorthwesternEastChinaSea.TheHScirculationisknowntobemostlydependentuPOnsurfacewindfie…  相似文献   

7.
Variability of Sea Surface Circulation in the Japan Sea   总被引:3,自引:0,他引:3  
Composite sea surface dynamic heights (CSSDH) are calculated from both sea surface dynamic heights that are derived from altimetric data of ERS-2 and mean sea surface that is calculated by a numerical model. The CSSDH are consistent with sea surface temperature obtained by satellite and observed water temperature. Assuming the geostrophic balance, sea surface current velocities are calculated. It is found that temporal and spatial variations of sea surface circulation are considerably strong. In order to examine the characteristics of temporal and spatial variation of current pattern, EOF analysis is carried out with use of the CSSDH for 3.5 years. The spatial and temporal variations of mode 1 indicate the strength or weakness of sea surface circulation over the entire Japan Sea associated with seasonal variation of volume transport through the Tsushima Strait. The spatial and temporal variations of mode 2 mostly indicate the temporal variation of the second branch of the Tsushima Warm Current and the East Korean Warm Current. It is suggested that this variation is possibly associated with the seasonal variation of volume transport through the west channel of the Tsushima Strait. Variations of mode 3 indicate the interannual variability in the Yamato Basin.  相似文献   

8.
The most plausible scenarios for seasonal to interannual variabilities and their possible causes are investigated for the Tsushima Current system passing through the Japan Sea. The study is based on the north and south two-box model across the polar front in an idealized upper ocean of the Japan Sea. The boxes are connected by lateral diffusive heat transport and cooled by atmospheric forcing at the annual mean state. The south box, i.e. the Tsushima Current region, only interacts with the outside warmer box in the East China Sea and has an eastward thermal-driven current originating in the outside box. The magnitude of this current depends on the strength of the thermal gradient between the north and south boxes; the inflow of warm waters can therefore be maintained by net heat loss through the sea-surface. I call such a thermal-driven inflow process a "Cooling-Induced Current" system in the present study. Under periodical heat forcing, the perturbation response of the model to water temperature fields and inflow transport were examined. It is shown that the lateral diffusion time across the polar front (over a period of 10 years) is crucial to the interannual modeled response. An analysis of the seasonal heat budget suggests that the heat transported into the Japan Sea from the East China Sea in summer is stored mainly within the Tsushima Current region and contributes to heat loss by the sea-surface cooling in winter.  相似文献   

9.
The surface circulation in the Japan Sea is investigated using a 1.5 layer reduced gravity model. Historical observations suggest strongly that an anti-clockwise circulation is dominant in the subpolar region north of the Polar Front as a general feature. This anti-clockwise circulation as well as the branching of the Tsushima Warm Current was simulated well by incorporating the Naet al. (1992)'s wind stress. The positive curl of the wind stress in the northern and the northwestern Japan Sea was found to play an important role in the formation of the subpolar gyre and the separation of the western boundary current (the East Korean Warm Current) in the Japan Sea.  相似文献   

10.
日本海环流研究综述   总被引:6,自引:0,他引:6  
日本海作为东北亚地区最大的边缘海,是西北太平洋上的重要海区。由于特殊的地理位置和复杂的地形,使得日本海的环流结构呈现独有特征,如日本海内的亚极地锋现象,复杂多变的涡旋,北部形成的深水团等。概述了日本海环流状况,着重介绍了对马海峡、郁陵海盆环流情形和日本海特征水团;总结了目前仍存在的争议问题,如对马暖流源头、对马暖流空间结构等;指出了目前日本海尚待解决的科学问题,如对马暖流流量的长期变化及其原因、东韩暖流消失现象及其机制、日本海特征水的传播路径及其影响因素、日本海的某些变化产生原因及其与全球变化的响应等。  相似文献   

11.
东海和南黄海夏季环流的斜压模式   总被引:17,自引:6,他引:17  
王辉 《海洋与湖沼》1996,27(1):73-78
基于拉格朗日余流及其输运过程的一种三维空间弱非线性理论,引进了黑潮边界力及长江径流,给出了东海和南黄海的夏季环流及上升流区的分布。计算结果表明:在黑潮西侧存在着台湾-对马暖流系统;进入朝鲜海峡的对马暖流来自台湾暖流、黑潮、东海混合水和西朝鲜沿岸流;黄海暖流主要来源于东海混合水,表面有部分来自对马暖流;闽浙沿岸存在上升流区且构成一带状区域;在长江口外、东海东北部和陆坡上也存在在上升流式;陆坡处上升流  相似文献   

12.
本文全面地分析了此段海流的流路与流速结构,首次提出研究海域近底层的环流示意图。指出在夏季,韩国南岸和日本九州北岸均存在着一支南下的逆流,九州西岸出现两种或多种形式的流路。对马暖流在源地流速很弱,流向不稳定,流路时隐时显不明显,只有离开源地后才逐渐显示出一支海流轮廓;强流区在朝鲜海峡附近。该海流可明显地划分为三段。流速夏强冬弱,夏季流幅宽约80km。  相似文献   

13.
Four sources of surface heat flux (SHF) and the satellite remote sensing sea surface temperature (SST) data are combined to investigate the heat budget closure of the Huanghai Sea (HS) in winter. It is found that heat loss occurs all over the HS during winter and the area averaged heat content change decreases with a rate of -106 W/m2. Comparing with the area averaged SHF of -150 W/m-2 from the four SHF data sets, it can be concluded that the SHF plays a dominant role in the HS heat budget during winter. In contrast, the heat advection transported by the Huanghai Warm Current (Yellow Sea Warm Current, HWC) accounted for up to 29% of the HS heat content change. Close correlation, especially in February, between the storm events and the SST increase demonstrates that the HWC behaves strongly as a wind-driven compensation current.  相似文献   

14.
By using Acoustic Doppler Current Profiler (ADCP) measurements with the four round-trips method to remove diurnal/semidiurnal tidal currents, the detailed current structure and volume transport of the Tsushima Warm Current (TWC) along the northwestern Japanese coast in the northeastern Japan Sea were examined in the period September–October 2000. The volume transport of the First Branch of the TWC (FBTWC) east of the Noto Peninsula was estimated as approximately 1.0 Sv (106 m3/s), and the FBTWC continued to flow along the Honshu Island to the south of the Oga Peninsula. To the north of the Oga Peninsula, the Second Branch of Tsushima Warm Current and the eastward current established by the subarctic front were recombined with the FBTWC and the total volume transport increased to 1.9 Sv. The water properties at each ADCP line strongly suggested that most of the upper portion of the TWC with high temperature and low salinity flowed out to the North Pacific as the Tsugaru Warm Current. In the north of the Tsugaru Strait, the volume transport of the northward current was observed to be as almost 1 Sv. However, the component of the TWC water was small (approximately 0.3 Sv).  相似文献   

15.
By using a rectangular basin of uniform depth with inflow and outflow openings, the circulation in the Japan Sea is investigated numerically. Heat flux through the sea surface is determined from the annual mean atmospheric conditions for the Japan Sea, but no wind stress is considered.In the transient state, the warm water supplied through an inflow opening travels cyclonically along the coast as a density-driven boundary current in a rotating system. In the quasi-steady state, the warm water flows northward as a western boundary current which corresponds to the East Korean Warm Current and gradually separates from the coast as it flows northward. No strong boundary current corresponding to the nearshore branch of the Tsushima Current exists.Under annual mean atmospheric conditions, formation of the deep water characteristic of the Japan Sea and of the thermal front corresponding to the Polar Front do not take place.  相似文献   

16.
东中国海环流及其季节变化的数值模拟   总被引:1,自引:0,他引:1  
关于东中国海环流的研究,国内外学者已做了大量的工作。早期科学家们主要依赖于对温盐资料和少数测流资料的分析研究对渤、黄、东海的环流结构有了较系统和深入的认识。东中国海环流是由一个气旋式的“流涡”组成,东侧主要是北上的黑潮-对马暖流-黄海暖流及其延伸部分;西侧为南下的沿岸流系。黑潮对东中国海环流的影响是如此之大,以致于除了某些局部区域外,上述海域主要流系的冬、夏季分布形式比较相似而无本质上的差异(胡敦欣等,1993)。但本文所研究海域正处于世界上最显著的季风区,冬、夏季盛行风向基本相反,过渡季节(春、秋季)风向多变,风力减弱;海洋热盐结构季节变化明显(如冬季混合强,而夏季层化明显等),这些因素都使得东中国海环流存在着较明显的季节变化。 自20世纪80年代以来,东中国海环流的数值模拟工作逐步展开,并已成为研究环流结构及其形成机制的强有力工具。但由于数值模式本身以及计算方案的缺陷(如有些学者用固定的风场、温盐场对东中国海环流进行诊断模拟等)和观测资料的不足,数值模拟的结果难以得到验证,渤、黄、东海的环流研究中仍有大量的问题存在争议,以待澄清。例如,台湾暖流的来源、流径;对马暖流的来源;夏季黄海暖流的流径以及黄海冷水团环流等均有不同的论述。对黄、东海环流季节变化的数值模拟工作也较少,多用冬、夏典型月份的风场强迫积分至稳定态,给出冬、夏季环流,这种做法值得商榷。三维环流模式很难在1个月内达到稳定态,尤其是夏季层化明显、风力减弱的情况下,非常定风场的影响更应引起人们的重视。 本文采用比较符合实际的计算方案,用年循环风场和海面热通量场为外强迫,对渤、黄、东海的环流及其季节变化进行了模拟,并对一些争议问题进行了探讨。  相似文献   

17.
The Current System in the Yellow and East China Seas   总被引:18,自引:1,他引:18  
During the 1990s, our knowledge and understanding of the current system in the Yellow and East China Seas have grown significantly due primarily to new technologies for measuring surface currents and making high-resolution three-dimensional numerical model calculations. One of the most important new findings in this decade is direct evidence of the northward current west of Kyushu provided by satellite-tracked surface drifters. In the East China Sea shelf region, these recent studies indicate that in winter the Tsushima Warm Current has a single source, the Kuroshio Branch Current in the west of Kyushu, which transports a mixture of Kuroshio Water and Changjiang River Diluted Water northward. In summer the surface Tsushima Warm Current has multiple sources, i.e., the Taiwan Warm Current, the Kuroshio Branch Current to the north of Taiwan, and the Kuroshio Branch Current west of Kyushu. The summer surface circulation pattern in the East China Sea shelf region changes year-to-year corresponding to interannual variations in Changjiang River discharge. Questions concerning the Yellow Sea Warm Current, the Chinese Coastal Current in the Yellow Sea, the current field southwest of Kyushu, and the deep circulation in the Okinawa Trough remain to be addressed in the next decade. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
南黄海环流的若干特征   总被引:47,自引:7,他引:40  
主要根据近几年来中韩黄海水循环动力学合作调查结果,结合有关历史资料,对南黄海环流的若干特征进行了分析。所得主要认识为:(1)南黄海环流存在明显的季节变异。冬、夏季环流的基本形态有着较大的差别。(2)黄海暖流的路径和强度均有一定的年际变化。分析显示,1997年冬季,暖流路径明显偏于槽的西侧;而1986年冬,暖流的主流路径则沿槽北上。(3)黄海暖流并非对马暖流的直接分支。黄海暖流水是对马暖流水和陆架水混合而成。而且,它主要是在济州岛西侧海域,从锋区中衍生出来的。(4)夏季黄海表、底层环流大致皆是由一大的道时针向流系构成。但在其表层海盐尺度的气旋式环流内部还存在小的气旋和反气旋流环。分析亦表明,不论表层或底层,皆无高盐暖水从济州岛邻近海域进入黄海东部的明显迹象。  相似文献   

19.
Water, Salt, Phosphorus and Nitrogen Budgets of the Japan Sea   总被引:1,自引:0,他引:1  
Water, salt, phosphorus and nitrogen budgets of the Japan Sea have been calculated by box model analysis using historical data. Average residence time of the Tsushima Warm Current Water in the upper 200 m is 2.1 years and that of the Japan Sea Proper Water is 90 years. The salt flux from the Tsushima Strait balances those through the Tsugaru and Soya Straits. Average residence times of phosphorus and nitrogen from the Tsushima Strait are 2.2 years and 1.6 years, respectively, in the upper 200 m of the Japan Sea. Total nitrogen/total phosphorus ratios of riverine load, the Tsushima Warm Current water and the water in the Japan Sea are 16.4, 16.6 and 11.3, respectively. This suggests that denitrification is dominant in the Japan Sea. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
依据黄、东海环流的的动力学模型 ,运用“流速分解法”对黄、东海正压环流进行了数值模拟。计算结果表明冬季黄海正压环流主要受风应力影响 ,基本形态为黄海暖流由济州岛西南进入南黄海中部 ,其东西两侧分别为两支向南流动的沿岸流 ;夏季主要受到潮致体力的影响 ,为一逆时针涡旋。东海环流主要是边界力作用驱动的结果 ,东海黑潮、台湾暖流和对马暖流较稳定。冬季风应力对东海环流表层流场有消弱作用 ,在夏季则有一定增强作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号