首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Using the Normalized Difference Vegetation Index (NDVI) as an indicator of vegetation growth, we explored the characteristics and differences in the response to drought of five vegetation biomes in Northeast China, including typical steppe, desert steppe, meadow steppe, deciduous coniferous forest and deciduous broad-leaved forest during the period 1982-2009. The results indicate that growing season precipitation may be the primary vegetation growth-limiting factor in grasslands. More than 70% of the temporal variations in NDVI can be explained by the amount of precipitation during the growing season in typical and desert steppes. During the same period, the mean temperature in the growing season could explain nearly 43% of the variations in the mean growing season NDVI and is therefore a dominant growth-limiting factor for forest ecosystems. Therefore, the NDVI trends differ largely due to differences in the vegetation growth-limiting factors of the different vegetation biomes. The NDVI responses to droughts vary in magnitude and direction and depend on the drought-affected areas of the five vegetation types. Specifically, the changes in NDVI are consistent with the variations in precipitation for grassland ecosystems. A lack of precipitation resulted in decreases in NDVI, thereby reducing vegetation growth in these regions. Conversely, increasing precipitation decreased the NDVI of forest ecosystems. The results also suggest that grasslands under arid and semi-arid environments may be more sensitive to drought than forests under humid environments. Among grassland ecosystems, desert steppe was most sensitive to drought, followed by typical steppe; meadow steppe was the least sensitive.  相似文献   

2.
生态水文过程是生态水文学的重要研究内容,是生态系统中水文过程和生态过程通量变化问的互馈关系。油蒿(Artemisiaordosica)作为我国特有的优良固沙物种,在荒漠生态系统重建与恢复中起着非常重要的作用。本文以生态水文学为指导思想,综述研究了降水、冠层降雨再分配、根系水分再分配、土壤水分变化、蒸散发以及油蒿群落演替等生态、水文过程中油蒿与水文环境间的相互作用关系,提出现存的问题和未来研究应关注的方向,为后续研究提供理论依据。  相似文献   

3.
Soil respiration is a key component of the global terrestrial ecosystem carbon cycle. The static opaque chamber method was used to measure the CO2 effluxes from soil of a semiarid Aneurolepidium chinense steppe and a Stipa krylovii steppe in the Xilin River Basin of Inner Mongolia, China from March 2002 to December 2004. The results indicated that the soil respiration rates of the semiarid Aneurolepidium chinense steppe and the Stipa krylovii steppe were both relatively high from mid-May to mid-September of each year and remained low during the rest of the year. The minimum value of soil respiration occurred in December or January and negative effluxes of CO2 appeared for several days during the non-growing season of individual years at the two sampling sites. A high annual variation was found in the two steppes with the coefficients of variance (CV) being over 94%, even high to 131%. The annual sums of soil CO2 efflux of the Aneurolepidium chinense steppe varied between 356.4 gC m?2 yr?1 and 408.8 gC m?2 yr?1, while those of the Stipa krylovii steppe in the three years were in the range of 110.6 gC m?2 yr?1 to 148.6 gC m?2 yr?1. The mean respiration rates of the Aneurolepidium chinense steppe were significantly higher than those of the Stipa krylovii steppe in different statistical periods with the exception of the non-growing season. About 59.9% and 80.6% of the soil respiration variations in both steppes for the whole sampling period were caused by the changes of temperature and soil water content. In the Aneurolepidium chinense steppe, the soil respiration rate has significant or extremely significant positive correlation (r = 0.58 ? 0.85, p < 0.05 or p < 0.01) with air temperature and ground temperature of the topsoil except in 2002; the unique contributions of temperature change to the soil respiration variation of the three years were 53.3%, 81.0% and 58.6%, respectively. But, for the Stipa krylovii steppe in the same time interval, the soil water content (especially that of the 10–20 cm layer) has a greater effect on the change of soil respiration, and the unique contributions of the change of the 10–20 cm soil water content to the variations of soil respiration in 2002 and 2003 were 60.0% and 54.3%, respectively. In 2004, in spite of the higher contribution of temperature than soil water content, the contribution of ground temperature at a depth of 10 cm was only 46.2%, much weaker than that of any single year in the Aneurolepidium chinense steppe.  相似文献   

4.
通过LI-COR8100A土壤碳通量观测系统分别于2013年1月、5月、10月和11月进行了塔克拉玛干沙漠腹地塔中流沙下垫面土壤呼吸速率测定试验,并分析了相应的土壤水热因子对呼吸速率的影响。结果表明:塔克拉玛干沙漠腹地土壤呼吸速率整体偏低,但具有明显的昼夜波动性和季节变化特征。研究区流沙土壤中可能存在的无机碳过程是导致夜间及凌晨的土壤呼吸速率为负值,白天为正值的主要原因。不同时段的土壤呼吸速率(Rs)分别与土壤表层0~5 cm平均土壤温度(T)和湿度(W)间存在较为同步的昼夜变化趋势且具有良好的回归关系。相对于单因素影响的回归分析,土壤温、湿度的协同作用能够从整体角度更好地解释土壤呼吸速率的变化情况。回归方程Rs=a+bT+cW和Rs=a+bT+cW+dTW可解释不同时段土壤呼吸速率76.0%以上的变化情况。这说明土壤温、湿度是控制土壤呼吸速率的主要环境因子。沙漠腹地土壤极低的水分条件成为土壤呼吸的限制性因子,呼吸速率对于作为限制性因子的土壤湿度的变化响应则更加直接,而对于土壤温度变化的敏感性就有所下降,导致土壤呼吸速率与土壤温度回归关系出现明显的时滞环现象。  相似文献   

5.
Soil respiration is an important component of the global carbon cycle and is highly responsive to changes in soil temperature and moisture. Accurate prediction of soil respiration and its changes under future climatic conditions requires a clear understanding of the processes involved. Most current empirical soil respiration models incorporate just few of the underlying mechanisms that may influence its response. In this study, a new partially process-based component model that separately treated several source components of soil respiration was tested with data from a climate change experiment that manipulated atmospheric [CO2], air temperature and soil moisture. Results from this model were compared to results from other widely used models with the parameters fitted using experimental data. Using the component model, we were able to estimate the relative proportions of heterotrophic and autotrophic respiration in total soil respiration for each of the different treatments. The value of the Q 10 parameters for temperature response component of all of the models showed sensitivity to soil moisture. Estimated Q 10 parameters were higher for wet treatments and lower for dry treatments compared to the values estimated using either the data from all treatments or from only the control treatments. Our results suggest that process-based models provide a better understanding of soil respiration dynamics under changing environmental conditions, but the extent and contribution of different source components need to be included in mechanistic and process-based soil respiration models at corresponding scales.  相似文献   

6.
Predictions of future climate change rely on models of how both environmental conditions and disturbance impact carbon cycling at various temporal and spatial scales. Few multi-year studies, however, have examined how carbon efflux is affected by the interaction of disturbance and interannual climate variation. We measured daytime soil respiration (R s) over five summers (June–September) in a Sierra Nevada mixed-conifer forest on undisturbed plots and plots manipulated with thinning, burning and their combination. We compared mean summer R s by year with seasonal precipitation. On undisturbed plots we found that winter precipitation (PPTw) explained between 77–96% of interannual variability in summer R s. In contrast, spring and summer precipitation had no significant effect on summer R s. PPTw is an important influence on summer R s in the Sierra Nevada because over 80% of annual precipitation falls as snow between October and April, thus greatly influencing the soil water conditions during the following growing season. Thinning and burning disrupted the relationship between PPTw and Rs, possibly because of significant increases in soil moisture and temperature as tree density and canopy cover decreased. Our findings suggest that R s in some moisture-limited ecosystems may be significantly influenced by annual snowpack and that management practices which reduce tree densities and soil moisture stress may offset, at least temporarily, the effect of predicted decreases in Sierran snowpack on R s.  相似文献   

7.
西藏藏北高原典型植被生长对气候要素变化的响应   总被引:4,自引:2,他引:4       下载免费PDF全文
选取西藏藏北高原西部高寒草原植被、中部高寒草甸植被及东南部高寒灌丛草甸植被 3 种藏北地区最典型的植被类型, 结合临近 3 个气象观测站的资料, 分析这 3 种典型植被类型地区 1999—2001 年旬平均气温、旬总降水量和 SPOT VEGETATION 卫星 10 d 最大值合成归一化植被指数 (NDVI) 变化特征以及 3 种典型植被基于 SPOT VEGETATION NDVI 的生长变化对旬平均气温和旬总降水量两个主要气候要素变化的响应关系。 结果表明: 藏北地区降水资源的空间分布特点是东南部向西北部逐渐减少, 气温则由南向北逐渐递减, 与降水资源分布相反, 蒸发量西部高, 东部低; SPOT VEGETATION NDVI 能够较为准确地反映 3 种典型植被生长变化特征, 所反映的植被返青期和枯黄期等重要植被生长阶段与由积温计算的植被生长特征基本一致; 藏北地区基于 SPOT VEGETATION NDVI 的植被生长变化与气温的相关系数明显高于与降水的相关系数 , 其中以那曲为代表的高寒草甸植被的 NDVI 与旬气温和旬降水总量的相关系数最大, 分别为 0.81 和 0.68 , 表明藏北地区由于海拔高, 气候寒冷, 气温对该地区植被生长的影响明显高于降水的影响, 即该地区植被生长变化对气温的响应程度明显高于对降水的响应程度 , 是植被生长的限制性因素; 不同植被类型对气温和降水两个要素的响应程度大小依次是高寒草甸、高寒灌丛草甸和高寒草原。  相似文献   

8.
ABSTRACT Canopy resistance substantially affects the partitioning of available energy over vegetated surfaces. This study analyzed the variability of canopy resistance and associated driving environmental factors over a desert steppe site in Inner Mongolia, China, through the use of eddy-flux and meteorological data collected from 2008 to 2010. Distinct seasonal and interannual variabilities in canopy resistance were identified within those three years, and these variabilities were controlled primarily by precipitation. Strong interannual variability was found in vapor pressure deficit (VPD), similar to that of air temperature. Based on the principal component regression method, the analysis of the relative contribution of five major environmental factors [soil-water content (SWC), leaf-area index (LAI), photosynthetically active radiation (Kp), VPD, and air temperature] to canopy resistance showed that the canopy-resistance variation was most responsive to SWC (with 〉 35% contribution), followed by LAI, especially for water-stressed soil conditions (〉 20% influence), and VPD (consistently with an influence of approximately 20%). Canopy-resistance variations did not respond to Kp due to the small interannual variability in Kp during the three years. These analyses were used to develop a new exponential function of water stress for the widely used Jarvis scheme, which substantially improved the calculation of canopy resistance and latent heat fluxes, especially for moist and wet soils, and effectively reduced the high bias in evaporation estimated by the original Jarvis scheme. This study highlighted the important control of canopy resistance on plant evaporation and growth for the investigated desert steppe site with a relatively low LA1.  相似文献   

9.
Chinese temperate grasslands play an important role in the terrestrial carbon cycle. Based on the parameterization and validation of Terrestrial Ecosystem Model (TEM, Version 5.0), we analyzed the carbon budgets of Chinese temperate grasslands and their responses to historical atmospheric CO2 concentration and climate variability during 1951–2007. The results indicated that Chinese temperate grassland acted as a slight carbon sink with annual mean value of 7.3 T?g C, ranging from -80.5 to 79.6 T?g C yr-1. Our sensitivity experiments further revealed that precipitation variability was the primary factor for decreasing carbon storage. CO2 fertilization may increase the carbon storage (1.4 %) but cannot offset the proportion caused by climate variability (-15.3 %). Impacts of CO2 concentration, temperature and precipitation variability on Chinese temperate grassland cannot be simply explained by the sum of the individual effects. Interactions among them increased total carbon storage of 56.6 T?g C which 14.2 T?g C was stored in vegetation and 42.4 T?g C was stored in soil. Besides, different grassland types had different responses to climate change and CO2 concentration. NPP and RH of the desert and forest steppes were more sensitive to precipitation variability than temperature variability while the typical steppe responded to temperature variability more sensitively than the desert and forest steppes.  相似文献   

10.
Active layer plays a key role in regulating the dynamics of hydrothermal processes and ecosystems that are sensitive to the changing climate in permafrost regions. However, little is known about the hydrothermal dynamics during freeze-thaw processes in permafrost regions with different vegetation types on the Qinghai-Tibetan Plateau (QTP). In the present study, the freezing and thawing processes at four sites (QT01, 03, 04, and 05) with different vegetation types on the QTP was analyzed. The results indicated that the impact on the soil water and heat during the summer thawing process was markedly greater than that during the autumn freezing process. Furthermore, the thermal-orbit regression slopes for all sites exhibited a homologous variation as the depth increased, with the slowest attenuation for the meadow sites (QT01 and QT03) and a slightly faster attenuation for the desert steppe site (QT05). The air and ground surface temperatures were similar in winter, but the ground surface temperature was significantly higher than the air temperature in summer in the radiation-rich environment at all sites on the QTP. The results also indicated that the n-factors were between 0.36 and 0.55 during the thawing season, and the annual mean temperature near the permafrost table was between − 1.26 and − 1.84 °C. In the alpine desert steppe region, the thermal conditions exhibited to show a warming trend, with a current permafrost table temperature of − 0.22 °C. The annual changing amplitude of the ground temperature at the permafrost table was different for different vegetation types.  相似文献   

11.
The tendencies in the response of the annual plant productivity and soil organic carbon content in Russia and adjacent countries to climate changes, observed for the last 30 years, are analyzed. It is shown that the changes observed in the air temperature and atmospheric precipitation promote an increase in natural vegetation productivity over approximately 88% of the territory. Minor centers of decreased productivity of ecosystems are found in the central and northeastern districts of European Russia, in the south of Eastern Siberia, and in the Far East. A tendency to climatogenic growth of the soil organic carbon content is detected almost everywhere in the forest, forest-steppe, and steppe Russian zones.  相似文献   

12.
基于MODIS NDVI和气候信息的草原植被变化监测   总被引:10,自引:4,他引:6       下载免费PDF全文
对植被的动态监测可以从一定程度上反映气候变化趋势。该文利用2000—2005年MODIS NDVI数据对锡林郭勒盟典型草原植被变化进行动态监测,在此基础上,以降水量、水汽压、平均气温、最高气温、最低气温、日照时数作为气候指标,分析锡林郭勒盟典型草原和荒漠草原MODIS NDVI与同期及前期气候因子的相关性,探讨草原植被变化的气候驱动因子。结果表明:2000—2005年锡林郭勒盟植被改善面积大于退化面积,植被退化面积最大的区域为荒漠草原,占全盟面积的12.84%,植被改善面积最大的区域为典型草原,占全盟面积29.09%。4类草原改善趋势由强到弱的顺序为草甸草原、典型草原、沙地草原、荒漠草原。对于典型草原,其NDVI与最高气温关系最密切,其次为水汽压;对于荒漠草原,其NDVI与最高气温关系最为密切,其次为最低气温。此外,NDVI对气候因子的响应表现出明显的时滞效应。  相似文献   

13.
Changes to soil freezing dynamics with climate change can modify ecosystem carbon and nutrient losses. Soil freezing is influenced strongly by both air temperature and insulation by the snowpack, and it has been hypothesized that winter climate warming may lead to increased soil freezing as a result of reduced snowpack thickness. I used weather station data to explore the relationships between winter air temperature, precipitation and soil freezing for 31 sites in Canada, ranging from the temperate zone to the high Arctic. Inter-annual climate variation and associated soil temperature variation over the last 40 years were examined and used to interpolate the effects of projected climate change on soil freezing dynamics within sites using linear regression models. Annual soil freezing days declined with increasing mean winter air temperature despite decreases in snow depth and cover, and reduced precipitation only increased annual soil freezing days in the warmest sites. Annual soil freeze–thaw cycles increased in both warm and dry winters, although the effects of precipitation were strongest in sites that experience low mean winter precipitation. Overall, it was projected that by 2050, changes in winter temperature will have a much stronger effect on annual soil freezing days and freeze–thaw cycles than changes in total precipitation, with sites close to but below freezing experiencing the largest changes in soil freezing days. These results reveal that experimental data relevant to the effects of climate changes on soil freezing dynamics and changes in associated soil physical and biological processes are lacking.  相似文献   

14.
采用LI-6400-09土壤呼吸室对盘锦湿地芦苇群落土壤呼吸作用,于2004年7月—2005年12月进行连续野外观测。结果表明:非淹水状态下,湿地芦苇群落土壤呼吸作用具有明显的日变化和季节变化特征;淹水状态下,湿地芦苇群落土壤呼吸作用接近于0。2005年潮汐造成的洪水减少了2/3的土壤呼吸作用。2004年和2005年芦苇群落土壤呼吸作用最大值都出现于洪水退去后。影响湿地芦苇群落土壤呼吸作用空间异质性的主导因子是生物因子,而在同一时间影响湿地芦苇群落土壤呼吸作用的主导因子是温度和水分。  相似文献   

15.
以锡林郭勒盟及其周边地区17个气象站点1960年以来的月气温和降水量数据为基础,利用气象学与生态学知识,按照荒漠草原区、典型草原区、草甸草原区和农牧交错区4个生态地理区对锡林郭勒盟及其周边地区的气象站点进行分区归并,统计各区的De Martonne干燥度指数,在Matlab等软件的支持下,用小波分析的方法,研究各区年平均气温的周期性变化规律及各区之间的异同点。研究结果表明,在25-32a时间尺度上,随着时间的推移,锡林郭勒盟4个生态地理区年干燥度均呈现明显的周期变化,形成正负相间的震荡中心;草甸草原区和农牧交错区表现出干燥程度增加的趋势。总体上推测,2007年以后的15a左右时间,锡林郭勒盟的4个生态地理区的气候均将呈现比较干燥的状态。  相似文献   

16.
Effects Of Grazing On Soil Respiration Of Leymus Chinensis Steppe   总被引:2,自引:0,他引:2  
Soil respiration, canopy temperature, soil moisture, above and belowground biomass were observed in 2001, 2002, 2004 and 2005 at fenced and grazed typical Leymus chinensis steppes in Inner Mongolia. Based on soil respiration data obtained by the enclosed chamber method, diurnal and seasonal dynamics of soil respiration and their controlling factors were analyzed. The effects of grazing on diurnal and seasonal soil respirations were not significant. The diurnal patterns of soil respiration could be expressed as a one-humped curve and the lowest and highest values appearing from 1:00 to 3:00 and from 11:00 to 14:00, respectively. Canopy temperature had a strong influence on the diurnal variation of soil respiration. The rates of soil respiration rose to a seasonal maximum from the middle of June to the end of July and then gradually decreased. Soil moisture explained about 71.3% and 58.3% of the seasonal variation in soil respiration at fenced and grazed plots, respectively, and canopy temperature only 33.9% and 39.7%. Soil respiration rate, above and belowground biomass and soil moisture were significantly increased at the fenced plots compared to the grazed plots (P < 0.05), but the difference was not significant in canopy temperature. The mean soil respiration rates were 247.85 and 108.31 mgCO2 m−2 h−1 during the whole experiment at fenced and grazed plots, respectively. Soil respiration rate was enhanced significantly at the fenced plots, which might attribute to the increasing soil moisture and biomass. The response of soil respiration rate to grazing varied among different sites and might be related to local soil moisture status.  相似文献   

17.
Arctic ecosystems could provide a substantial positive feedback to global climate change if warming stimulates below-ground CO2 release by enhancing decomposition of bulk soil organic matter reserves.Ecosystem respiration during winter is important in this context because CO2 release from snow-covered tundra soils is a substantial component of annual net carbon (C) balance, and because global climate models predict that the most rapid rises in regional air temperature will occur in the Arctic during winter. In this manipulative field study, the relative contributions of plant and bulk soil organic matter C pools to ecosystem CO2 production in mid-winter were investigated. We measured CO2 efflux rates in Swedish sub-arctic heath tundra from control plots and from plots that had been clipped in the previous growing season to disrupt plant activity. Respiration derived from recently-fixed plant C (i.e., plant respiration, and respiration associated with rhizosphere exudates and decomposition of fresh litter) was the principal source of CO2 efflux, while respiration associated with decomposition of bulk soil organic matter was low, and appeared relatively insensitive to temperature. These results suggest that warmer mid-winter temperatures in the Arctic may have a much greater impact on the cycling of recently-fixed, plant-associated C pools than on the depletion of tundra bulk soil C reserves, and consequently that there is a low potential for significant initial feedbacks from arctic ecosystems to climate change during mid-winter.  相似文献   

18.
The eddy covariance technique was used to measure the CO2 flux over four differently grazed Leymus chinensis steppe ecosystems (ungrazed since 1979 (UG79), winter grazed (WG), continuously grazed (CG), and heavily grazed (HG) sites) during four growing seasons (May to September) from 2005 to 2008, to investigate the response of the net ecosystem exchange (NEE) over grassland ecosystems to meteorological factors and grazing intensity. At UG79, the optimal air temperature for the half-hourly NEE occurred between 17 and 20 °C, which was relatively low for semi-arid grasslands. The saturated NEE (NEEsat) and temperature sensitivity coefficient (Q 10) of ecosystem respiration (RE) exhibited clear seasonal and interannual variations, which increased with canopy development and the soil water content (SWC, at 5 cm). The total NEE values for the growing seasons from 2005 to 2008 were ?32.0, ?41.5, ?66.1, and ?89.8 g C m?2, respectively. Both the amounts and distribution of precipitation during the growing season affected the NEE. The effects of grazing on the CO2 flux increased with the grazing intensity. During the peak growth stage, heavy grazing and winter grazing decreased NEEsat and gross primary production (45 % for HG and 34 % for WG) due to leaf area removal. Both RE and Q 10 were clearly reduced by heavy grazing. Heavy grazing changed the ecosystem from a CO2 sink into a CO2 source, and winter grazing reduced the total CO2 uptake by 79 %. In the early growing season, there was no difference in the NEE between CG and UG79. In addition to the grazing intensity, the effects of grazing on the CO2 flux also varied with the vegetation growth stages and SWC.  相似文献   

19.
半干旱草原碳收支对陆地生态系统碳源汇功能变化具有重要影响。本文基于通榆草甸草原站2011~2017年和毛登典型草原站2013~2017年涡动相关法观测数据,分析了生长季碳通量日变化特征,研究了碳通量日变化过程对主要环境因子的响应。结果表明:两处草原7月碳吸收活动最强,草甸草原生长季各月总初级生产力(gross primary production, GPP)、生态系统呼吸(ecosystem respiration, Re)和净碳交换量(net ecosystem exchange, NEE)的峰值均高于典型草原。NEE的日变化以单峰型为主,但7月、8月饱和水汽压差较高时,GPP在正午前后降低,引起NEE的双峰型日变化。光合有效辐射是草甸草原NEE日变化的主导因子,而在典型草原,浅层土壤含水量(5 cm)也主导了NEE日变化。水分亏缺使草原碳交换速率显著降低,草甸草原固碳速率对水分亏缺的敏感性强于典型草原。同时,水分亏缺也改变了GPP、Re和NEE对温度和光合有效辐射的响应关系。  相似文献   

20.
Increased precipitation during the vegetation periods was observed in and further predicted for Inner Mongolia. The changes in the associated soil moisture may affect the biosphere-atmosphere exchange of greenhouse gases. Therefore, we set up an irrigation experiment with one watered (W) and one unwatered plot (UW) at a winter-grazed Leymus chinensis-steppe site in the Xilin River catchment, Inner Mongolia. UW only received the natural precipitation of 2005 (129 mm), whereas W was additionally watered after the precipitation data of 1998 (in total 427 mm). In the 3-hour resolution, we determined nitrous oxide (N20), methane (CH4) and carbon dioxide (CO2) fluxes at both plots between May and September 2005, using a fully automated, chamber-based measuring system. N20 fluxes in the steppe were very low, with mean emissions (±s.e.) of 0.9-4-0.5 and 0.7-4-0.5 μg N m^-2 h^-1 at W and UW, respectively. The steppe soil always served as a CH4 sink, with mean fluxes of -24.1-4-3.9 and -31.1-4- 5.3 μg C m^-2 h^-1 at W and UW. Nighttime mean CO2 emissions were 82.6±8.7 and 26.3±1.7 mg C m^-2 h^-1 at W and UW, respectively, coinciding with an almost doubled aboveground plant biomass at W. Our results indicate that the ecosystem CO2 respiration responded sensitively to increased water input during the vegetation period, whereas the effects on CH4 and N2O fluxes were weak, most likely due to the high evapotranspiration and the lack of substrate for N2O producing processes. Based on our results, we hypothesize that with the gradual increase of summertime precipitation in Inner Mongolia, ecosystem CO2 respiration will be enhanced and CH4 uptake by the steppe soils will be lightly inhibited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号