首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 633 毫秒
1.
利用大量地质及地球化学资料,开展了柴达木盆地西部地区渐新世下干柴沟组上段盐湖沉积特征研究,重点识别岩石类型,恢复古沉积环境,建立沉积模式,探讨控制因素。研究认为:盐湖环境主要发育两大类、五小类沉积相组合,盐湖边缘沉积相包括滨岸斜坡带相组合、缓坡带相组合、陡坡带相组合,盆内沉积相包括水下隆起带相组合和盐湖深水区相组合;盐湖可划分早、中、晚3个沉积演化阶段,分别对应半咸水湖泊、咸水湖泊和盐湖;形成碳酸盐岩与钙质砂岩、富含石膏的碳酸盐岩与泥岩、厚层石盐与薄层碳酸盐岩等主要岩石组合;盐湖沉积主控因素为气候、古地貌与构造运动。  相似文献   

2.
沉积大地构造相是反映陆块区、洋区、洋与陆块之间的陆缘区(活动和被动陆缘)形成演变过程中, 在各个演化阶段及其特定的大地构造环境中形成的沉积盆地及其充填序列, 是表达大陆岩石圈板块在离散、汇聚、碰撞、走滑等动力学过程中形成的不同类型沉积盆地及其综合产物, 具有恢复陆块区和造山系形成演化的功能.为从大地构造环境和沉积盆地分析角度系统剖析中国大陆新元古代以来纷繁复杂的大陆增生历程, 根据中国大陆形成演化特点, 提出一套沉积大地构造相(沉积盆地类型)划分方案, 并简述其大地构造环境鉴别标志.该划分方案分4级(相系、大相、相和亚相): 一级为陆块区(含地块)相系和造山系相系.陆块区按构造古地理位置和区域构造应力场进一步划分出二级和三级单元.造山系由弧盆系、叠接带和对接带大相构成, 是岩石圈板块大规模水平运动, 在洋陆转换过程中岛弧增生、弧-弧碰撞、弧-陆碰撞、陆-陆碰撞和陆内俯冲的产物, 常表现为复杂岩石组成、复杂褶皱和断裂构造的巨大山系; 叠接带大相主要由弧-弧碰撞和弧-陆碰撞时, 在陆缘形成的洋-陆转化增生带, 是软碰撞产物; 对接带大相由陆-陆碰撞形成, 是硬碰撞产物.在造山系的弧盆系、叠接带和对接带大相之下, 按洋盆演化-洋陆转化历程所产生的系列构造古地理环境和建造, 进一步划分出洋盆、弧前盆地、弧间盆地、弧后盆地、残余海盆、周缘前陆盆地、弧后前陆盆地等大地构造相单元.   相似文献   

3.
青藏高原盐湖资源研究的新进展   总被引:25,自引:5,他引:20  
郑绵平 《地球学报》2001,22(2):97-102
本文着重就盐湖中心“九五”研究工作进展作一简要报道,该研究以“盐湖学”(Salinology)为指导,开展基础理论研究与开发实验相结合的探索,将盐湖资源综合性调查与典型盐湖开发研究密切结合。首次揭示了环昂拉陵区为锂硼铯(钾铷)盐湖巨大成矿域;指出扎布耶超大型锂硼盐湖矿床为一陆-陆碰撞区多级浅盆成矿模式,不同于南美弧后裂谷的高深盆锂硼成矿域;指出扎布耶超大型锂硼盐湖矿床为一陆-陆碰撞区多级浅盆成矿模式,不同于南美弧后裂谷的高深盆锂硼成矿模式;首次通过大范围盐湖综合调查,从而确认青藏高原是我国重要产卤虫盐湖远景区;以“因地制宜、就地取材、扬长避短”的原则,通过实验盐湖学研究,找到了一条适高原特殊环境的锂盐湖开发路线。  相似文献   

4.
库车前陆盆地位于塔里木盆地北部,属于副特提斯域,古近纪受副特提斯海海水补给,古近纪—新近纪发育巨厚蒸发岩。研究显示,库车盆地始新世和中新世古盐湖卤水已演化至钾盐析出阶段,在地层中广泛发现了原生钾盐矿物,如钾石盐、光卤石、杂卤石等;通过岩芯岩屑地球化学及矿物学分析,基本确定了至少3个富钾层或成钾层位,其中始新统中上部两个和中新统中上部一个,钾离子含量最高达3%,另外,上新统可能存在一个成钾层位。本文在综述此前库车盆地构造、蒸发岩、盐类矿物学、地球化学与盐湖沉积等研究基础上,建立了新的库车盆地古盐湖构造- 沉积演变、成钾模式;提出了4个钾盐成矿区带,即北部克拉苏成矿带、中部秋里塔克成矿带、南部沙雅构造沉降成矿带以及东部阳霞凹地成钾区,这些关键认识为库车盆地的钾盐勘查提供了重要的理论和科学依据。  相似文献   

5.
秦岭-大别新元古代-中生代沉积盆地演化   总被引:1,自引:0,他引:1  
秦岭-大别造山带处于中央造山带的东部,经历了复杂的构造-沉积历史.在系统分析研究区4个二级和13个三级构造单元岩石地层、化石组合、同位素年代学及构造学等资料的基础上,划分出18个沉积盆地类型,并讨论新元古代-中生代构造-沉积演化:(1)新元古代-早古生代:商丹洋以北的北秦岭为岩浆弧和弧前盆地;南秦岭为陆内裂谷-台盆、台地-陆缘裂谷发育阶段;大别-苏鲁为陆内裂谷-台盆台地发育阶段;(2)晚古生代:北秦岭为海陆交互陆表海;勉略洋于泥盆纪开启;南秦岭为弧后陆棚与台盆台地并存发育阶段;(3)三叠纪:陆陆碰撞造山,全区进入前陆盆地发育阶段;(4)侏罗纪-白垩纪:断陷盆地和压陷盆地发育阶段.   相似文献   

6.
长山构造带(简称长山带,Truong Son)是印支陆块北部最大的构造岩浆岩带,保存了大量晚古生代-早中生代的岩浆记录,并被认为与马江古特提斯分支洋/弧后盆地的演化及随后的印支与华南陆块的拼合有关。本文系统综合了该带二叠纪-三叠纪的长英质火成岩数据并分析其岩石成因,阐明马江古特提斯分支洋/弧后盆地的构造演化过程。研究表明早二叠世花岗质岩石来自新底侵的基性岩源区,而早二叠世晚期-晚二叠世的花岗质岩石和流纹岩的源区为古-中元古代变火成岩和变杂砂岩组成的混合源区。二叠纪长英质火成岩形成于马江分支洋/弧后盆地向印支陆块的俯冲过程。三叠纪具负εHf(t)和εNd(t)值的花岗质岩石来自古-中元古代变火成岩和变沉积岩的混合源区,而具正εHf(t)值的晚三叠世花岗质岩石来自新生基性地壳并有一定变杂砂岩组分的加入。这些数据表明在三叠纪初期(~250 Ma),马江古特提斯分支洋/弧后盆地已经闭合,随后华南与印支陆块发生碰撞。在中-晚三叠世,长山带进入到碰撞后阶段。  相似文献   

7.
中生代羌塘前陆盆地充填序列及演化过程   总被引:40,自引:1,他引:40  
李勇  王成善  伊海生 《地层学杂志》2002,26(1):62-67,79
中生代羌塘前陆盆地位于青藏高原巨型造山带内 ,夹于金沙江缝合带与班公湖—怒江缝合带之间 ,是一个与两侧缝合带逆冲作用相关的沉积盆地 ,由羌北盆地 (对应于金沙江缝合带 )、羌南盆地 (对应于班公湖—怒江缝合带 )和中央隆起带构成 ,其中中央隆起是北部前陆盆地和南部前陆盆地共有的前陆隆起 ,显示为对称型复合前陆盆地 ;该盆地形成于晚三叠世 ,并持续发育至早白垩世 ,盆地中充填了巨厚的同构造期的复理石和磨拉石 ,具有总体向上变粗变浅的充填序列 ,以不整合面可将其划分为 5个由顶底不整合面限制的构造层序 ,其中晚三叠世诺利期构造层序对应于金沙江缝合带主碰撞期 ,晚三叠世瑞替期构造层序对应于金沙江缝合带碰撞闭合后冲断抬升 ,早侏罗世构造层序对应于班公湖—怒江缝合带初始逆冲推覆 ,中侏罗世—早白垩世构造层序对应于班公湖—怒江缝合带主碰撞期 ,中白垩世构造层序为班公湖—怒江缝合带碰撞闭合后冲断抬升与金沙江缝合带冲断抬升的产物 ,为中生代羌塘盆地关闭后的磨拉石建造  相似文献   

8.
单昌昊  郑绵平 《地质论评》1990,36(3):220-228
大、小柴旦盐湖盆地主要沉积亚环境有:洪冲积扇(裙)、沙坪、(盐)泥坪、盐盘、沙丘区和泉沼区。盆地内的各个亚环境大致呈同心圆状分布,但由于盆地四周的构造性质和活动强度不同,使得亚环境分布不完全对称。本文还通过对大、小柴旦盐湖盆地及其他实例的沉积分布特征分析,作了盐湖盆地沉积亚环境不同发育程度及分布位置的成因解释。最后探讨了研究盐湖盆地沉积亚环境的意义。  相似文献   

9.
柴达木盆地第四纪盐湖演化   总被引:11,自引:2,他引:11       下载免费PDF全文
魏新俊  姜继学 《地质学报》1993,67(3):255-265
本文讨论了柴达木盆地第四纪沉积分布及盐矿物产出特征、新构造运动分期及其在区内的表现;指出盆地西部第三系背斜构造带之上分布的四级湖成阶地的形成与距今10万年前发生的新构造运动有关,其分布形态记录了第四纪盐湖演化的历史;结合第四纪沉积分布及盐类沉积特征把盆地第四纪盐湖演化分为4个时期,对应4个盐类沉积阶段。  相似文献   

10.
大陆碰撞造山带不同的构造演化阶段往往形成不同成因类型的周缘前陆盆地 (系统 )。根据对几个典型大陆造山带的研究 ,我们把大陆碰撞造山带的构造演化过程分为陆 -陆拼接和大规模陆内逆冲推覆 (陆内俯冲 )两个阶段 ;早期陆 -陆拼接阶段直接在俯冲板块被动大陆边缘基础上形成的前陆盆地称为“原前陆盆地” ,后期大规模陆内逆冲 -推覆 (或陆内俯冲 )阶段在俯冲板块内部形成的前陆盆地称为“远前陆盆地”(它比原前陆盆地距主缝合带远 )。原前陆盆地和远前陆盆地是同一大陆碰撞造山带不同构造演化阶段的产物 ,是两种不同成因类型的周缘前陆盆地 ,它们构成了同一大陆造山带的双前陆盆地 ,而不是传统概念的单一成因类型前陆盆地。  相似文献   

11.
Early Cenozoic Tectonics of the Tibetan Plateau   总被引:1,自引:0,他引:1  
Geological mapping at a scale of 1:250000 coupled with related researches in recent years reveal well Early Cenozoic paleo-tectonic evolution of the Tibetan Plateau. Marine deposits and foraminifera assemblages indicate that the Tethys-Himalaya Ocean and the Southwest Tarim Sea existed in the south and north of the Tibetan Plateau, respectively, in Paleocene-Eocene. The paleooceanic plate between the Indian continental plate and the Lhasa block had been as wide as 900km at beginning of the Cenozoic Era. Late Paleocene transgressions of the paleo-sea led to the formation of paleo-bays in the southern Lhasa block. Northward subduction of the Tethys-Himalaya Oceanic Plate caused magma emplacement and volcanic eruptions of the Linzizong Group in 64.5-44.3 Ma, which formed the Paleocene-Eocene Gangdise Magmatic Arc in the north of Yalung-Zangbu Suture (YZS), accompanied by intensive thrust in the Lhasa, Qiangtang, Hoh Xil and Kunlun blocks. The Paleocene-Eocene depression of basins reached to a depth of 3500-4800 m along major thrust faults and 680-850 m along the boundary normal faults in central Tibetan Plateau, and the Paleocene-Eocene depression of the Tarim and Qaidam basins without evident contractions were only as deep as 300-580 m and 600-830 m, respectively, far away from central Tibetan Plateau. Low elevation plains formed in the southern continental margin of the Tethy-Himalaya Ocean, the central Tibet and the Tarim basin in Paleocene-Early Eocene. The Tibetan Plateau and Himalaya Mts. mainly uplifted after the Indian-Eurasian continental collision in Early-Middle Eocene.  相似文献   

12.
《Gondwana Research》2013,24(4):1429-1454
Different hypotheses have been proposed for the origin and pre-Cenozoic evolution of the Tibetan Plateau as a result of several collision events between a series of Gondwana-derived terranes (e.g., Qiangtang, Lhasa and India) and Asian continent since the early Paleozoic. This paper reviews and reevaluates these hypotheses in light of new data from Tibet including (1) the distribution of major tectonic boundaries and suture zones, (2) basement rocks and their sedimentary covers, (3) magmatic suites, and (4) detrital zircon constraints from Paleozoic metasedimentary rocks. The Western Qiangtang, Amdo, and Tethyan Himalaya terranes have the Indian Gondwana origin, whereas the Lhasa Terrane shows an Australian Gondwana affinity. The Cambrian magmatic record in the Lhasa Terrane resulted from the subduction of the proto-Tethyan Ocean lithosphere beneath the Australian Gondwana. The newly identified late Devonian granitoids in the southern margin of the Lhasa Terrane may represent an extensional magmatic event associated with its rifting, which ultimately resulted in the opening of the Songdo Tethyan Ocean. The Lhasa−northern Australia collision at ~ 263 Ma was likely responsible for the initiation of a southward-dipping subduction of the Bangong-Nujiang Tethyan Oceanic lithosphere. The Yarlung-Zangbo Tethyan Ocean opened as a back-arc basin in the late Triassic, leading to the separation of the Lhasa Terrane from northern Australia. The subsequent northward subduction of the Yarlung-Zangbo Tethyan Ocean lithosphere beneath the Lhasa Terrane may have been triggered by the Qiangtang–Lhasa collision in the earliest Cretaceous. The mafic dike swarms (ca. 284 Ma) in the Western Qiangtang originated from the Panjal plume activity that resulted in continental rifting and its separation from the northern Indian continent. The subsequent collision of the Western Qiangtang with the Eastern Qiangtang in the middle Triassic was followed by slab breakoff that led to the exhumation of the Qiangtang metamorphic rocks. This collision may have caused the northward subduction initiation of the Bangong-Nujiang Ocean lithosphere beneath the Western Qiangtang. Collision-related coeval igneous rocks occurring on both sides of the suture zone and the within-plate basalt affinity of associated mafic lithologies suggest slab breakoff-induced magmatism in a continent−continent collision zone. This zone may be the site of net continental crust growth, as exemplified by the Tibetan Plateau.  相似文献   

13.
Progress and Prospects of Salt Lake Research in China   总被引:3,自引:0,他引:3  
China has unique salt lake resources, and they are distributed in the east of Eurasian salt lake subzone of the Northern Hemisphere Salt Lake Zone, mainly concentrated in the regions with modern mean annual precipitation lower than 500 mm. This paper preliminarily reviews the progress made in salt lake research in China for the past 60 years. In the research of Paleoclimate and paleoenvironment from salt lake sediments, a series of salts have been proposed to be indicators of paleoclimate, and have been well accepted by scholars. The chloride-sulfate depositional regions of the west Qaidam and the east Tarim have been revealed to be the drought center of China since the Quaternary, and more than 6 spreading stages of arid climate(salt forming) have been identified. Five pan-lake periods with highstands have been proved to exist during the late Quaternary on the Tibetan Plateau. In mineral resource prospecting and theories of the forming of salt deposits: the atlas(1:2500000) of hydrochemical zoning of salt lakes on the Tibetan Plateau has been compiled for the first time, revealing the zonal distribution and transition from carbonate type to chloride type from south to north and presenting corresponding mineral assemblages for different type of salt lakes; several large continental salt deposits have been discovered and the theory of continental potash deposition has been developed, including the salt deposition in deep basins surrounded by high mountains, the mineral deposition from multistage evolution through chains of moderate or shallow lakes with multilevels, the origin of potassium rich brines in gravel layers, and the forming of potassium deposits through the inheriting from ancient salt deposits, thus establishing the framework of "Continental Potash Deposition Theory"; several new types of Mg-borate deposits have been discovered, including the ulexite and pinnoite bed in Da Qaidam Lake, Qinghai, the pinnoite and kurnakovite bed in Chagcam Caka, Tibet, the kurnakovite bed in Lake Nyer, and the corresponding model of borate deposition from the cooling and dissolution of boron rich brines was proposed based on principles of geology, physics and chemistry. The anti-floatation-cold crystallization method developed independently has improved the capacity of KCl production to 3 million tons per year for the Qarham, serving the famous brand of potash fertilizer products. One 1.2 million ton K-sulfate production line, the biggest in the world, has been built in Lop Nor, and K-sulfate of about 1.6 million tons was produced in 2015. Supported by the new technology, i.e. brine preparation in winter-cooling-solarization-isolation-lithium deposition from salt gradient solar pond" the highest lithium production base at Zabuye Lake(4421 m), Tibet, has been established, which is the first lithium production base in China that reaches the year production of 5000 tons of lithium carbonate. The concept of Salt lake agriculture(Salt land agriculture) has been established based on the mass growth of Dunaliella and other bacillus-algae and the occurrence of various halophytes in saltmarsh and salt saline-alkali lands, finding a new way to increase arable lands and develop related green industry in salt rich environments. Finally this paper presents some new thoughts for the further research and development on salt science, and the further progress in salt science and technology will facilitate the maturing of the interdisciplinary science "Salinology".  相似文献   

14.
迟效国  张蕊  范乐夫  王利民 《岩石学报》2017,33(10):3011-3026
近年来地震层析成像揭示出可可西里-西昆仑中新世-第四纪钾质火山岩带下方存在一个深达900km的巨型地幔低速体,空间上与新特提斯洋和印度大陆俯冲断离板片沉降形成的冷地幔下降流共存(Replumaz et al.,2010a,b),两者构成统一的地幔对流体系。研究表明,羌塘古近纪(60~34Ma)钠质玄武岩和高钾钙碱性玄武岩均以富含Ti O2、P2O5和大离子亲石元素为特征,主体具有与OIB相近的微量元素组成和弱亏损的Sr、Nd同位素特征,指示岩浆起源于软流圈的上涌熔融,但Nb、Ta的弱亏损表明岩浆源区有岩石圈地幔熔融组分的贡献。羌塘(32~26Ma)碱性钾质玄武岩与可可西里和西昆仑中新世以来喷发的钾质玄武岩的地球化学性质相近,不相容元素比值和Sr、Nd同位素组成指示岩浆起源于古俯冲地幔楔的低程度熔融。这些特征表明藏北软流圈上涌作用始于古近纪,初始上涌中心位于羌塘地体之下。计算表明藏北古近纪火山岩距离当时的印度大陆北缘的最大和最小距离约为1250km和700km,与现今可可西里地幔低速体的南、北边界与印度大陆北缘的距离相近,支持羌塘古近纪地幔上涌作用也是受藏南冷地幔下降流所驱动。青藏高原在南北缩短过程中不仅表现为软流圈自西向东挤出流动,地幔垂向对流也是其重要的运动形式,在地幔上升流形成的藏北热幔区内,地壳的水平缩短增厚与岩石圈地幔的伸展减薄呈脉动式共存。藏南冷地幔下降流和藏北热地幔上升流的持续北移是导致藏北后碰撞火山岩时空迁移的主要控制因素。  相似文献   

15.
古盐湖卤水温度对钾盐沉积的控制作用探讨   总被引:2,自引:0,他引:2  
古盐湖卤水的温度对钾盐沉积的控制作用的定量研究是钾盐成矿机理分析的重点和难点。本文分析和测试陕北盐盆奥陶系马家沟组、四川盆地三叠系嘉陵江组、云南兰坪-思茅盆地白垩系及老挝沙空那空盆地白垩系等八个含盐系的石盐岩中的流体包裹体,并利用均一温度计算了古盐湖的蒸发速率。若以老挝白垩纪时盐湖的蒸发速率为标准值100,陕北奥陶纪、四川三叠纪、云南白垩纪的蒸发速率标准值分别为54、68和90,而目前在老挝和云南白垩系都找到了一定规模的钾盐矿,因此高温(气温及水温)是盐湖成钾的有利条件,在卤水演化成钾的过程中可以起到重要的"催化"作用。  相似文献   

16.
在前人研究成果的基础上,划分出青藏高原及邻区上新世残留盆地共95个,探讨了青藏高原及邻区上新世构造岩相古地理演化。青藏高原上新世总体构造地貌格局主要受控于印度板块与欧亚板块沿雅鲁藏布江缝合带的碰撞及持续挤压,影响着青藏高原广大范围内的构造抬升。东北部昆仑山、祁连山地区是两大构造隆起蚀源区,两大山系夹持的柴达木盆地是高原东北部最大的陆内盆地,祁连山以北和以东地区则以盆山相间的格局接受周围山系的剥蚀物质,直到晚上新世(青藏运动"A"幕)高原东北部进一步强烈隆升,山间盆地抬升成为剥蚀区。新疆塔里木和青藏高原东部羌塘、可可西里地区主体表现为大面积的构造压陷湖盆-冲泛平原沉积区。高原东南部为一系列走滑拉分断裂运动形成的拉分盆地,上新世早期堆积洪冲积相砾岩,中期为湖泊、三角洲沉积,晚期随着山体的进一步抬升,盆地又接受冲洪积扇相砾岩堆积,并被河流侵蚀剥露。高原南部上新世多分布一些近南北向盆地,是响应高原隆升到一定程度垮塌而成的断陷盆地,同东南部拉分盆地类似,上新世沉积相也由早至晚分为3个阶段。恒河地区上新世由于喜马拉雅山的快速抬升,沉积以粗碎屑为主,形成狭长的西瓦利克群堆积。上新世青藏高原总体地势继承了中新世西高东低、南高北低的地貌特征,但地势高差明显较中新世增大。  相似文献   

17.
在前人研究成果的基础上,分析青藏高原始新世残留盆地的构造背景、岩石地层序列和青藏高原始新世期间的构造岩相古地理特征。松潘-甘孜和冈底斯带为大面积构造隆起蚀源区,塔里木东部、柴达木、羌塘、可可西里地区主体表现为大面积的构造压陷湖盆-冲泛平原沉积,高原西部和南部为新特提斯海。从构造岩相古地理演化的角度揭示青藏高原始新世构造隆升与沉积响应的耦合关系,划分出2个强隆升期,分别是强隆升期Ⅰ(55-51Ma)和强隆升期Ⅱ(45-34Ma)。  相似文献   

18.
青藏高原新生代火山活动的深部力学背景   总被引:2,自引:0,他引:2  
为了研究火山形成基本要素——岩浆运移通道的形成, 基于重力异常反演的青藏高原下地壳底部的地幔对流应力场, 结合地壳破裂形成机理和对流应力场与青藏高原新生代火山分布的关系, 以及青藏高原下地幔对流演化的数值模拟结果, 分析了高原火山岩浆运移通道产生的深部力学机制.研究表明, 高原下地幔对流应力场存在两个大的拉张区, 高原中部和北部的火山岩均分布于拉张应力区.南部的林子宗火山区对应了印度板块与欧亚大陆碰撞前或碰撞早期高原下的地幔上升流.对流应力的量级为~100Ma, 这与导致地壳破裂的应力量级相当.所有这些证据表明, 青藏高原下地幔对流应力场可能是导致高原地壳破裂, 并发展为岩浆物质通道的主要力学机制之一.   相似文献   

19.
THE LITHOSPHERIC EVOLUTION IN THE QIANGTANG BLOCK OF NORTHERN TIBET PLATEAU: EVIDENCE FROM CENOZOIC VOLCANISM  相似文献   

20.
Nam Co is the largest (1920 km2 in area) and highest (4718 m above sea level) lake in Tibet. According to the discovery of lake terraces and highstand lacustrine deposits at several places in Nam Co and its adjacent areas, the authors confirm the existence of an ancient large lake in the southeastern part of the northern Tibetan Plateau. On the basis of the U-series, 14C and ESR dating, coupled with the levelling survey of lake deposits and geomorphology, the evolutionary process of the ancient large lake in the southeastern part of the northern Tibetan Plateau may fall into three stages: (1) the ancient large lake stage at 115-40 ka BP, when the ancient lake level was 140-26 m above the level of present Nam Co; (2) the outflow lake stage at 40-30 ka BP, when the ancient level was 26-19 m above the present lake level; and (3) the Nam Co stage since 30 ka BP, when the ancient lake level was < 19 m above the present lake level. During the ancient large lake stage, a large number of modern large, medium-siz  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号