首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 271 毫秒
1.
Estimation of forest structural parameters by field-based data collection methods is both expensive and time consuming. Satellite remote sensing is a low-cost alternative in modeling and mapping structural parameters in large forest areas. The current study investigates the potential of using WordView-2 multispectral satellite imagery for predicting forest structural parameters in a dryland plantation forest in Israel. The relationships between image texture features and the several structural parameters such as Number of Trees (NT), Basal Area (BA), Stem Volume (SV), Clark-Evans Index (CEI), Diameter Differentiation Index (DDI), Contagion Index (CI), Gini Coefficient (GC), and Standard Deviation of Diameters at Breast Heights (SDDBH) were examined using correlation analyses. These variables were obtained from 30 m × 30 m square-shaped plots. The Standard Deviation of Gray Levels (SDGL) as a first order texture feature and the second order texture variables based on Gray Level Co-occurrence Matrix (GLCM) were calculated for the pixels that corresponds to field plots. The results of the correlation analysis indicate that the forest structural parameters are significantly correlated with the image texture features. The highest correlation coefficients were calculated for the relationships between the SDDBH and the contrast of red band (r = 0.75, p < 0.01), the BA and the entropy of blue band (r = 0.73, p < 0.01), and the GC and the contrast of blue band (r = 0.71, p < 0.01). Each forest structural parameter was modeled as a function of texture measures derived from the satellite image using stepwise multi linear regression analyses. The determination coefficient (R2) and root mean square error (RMSE) values of the best fitting models, respectively, are 0.38 and 109.56 ha−1 for the NT; 0.54 and 1.79 m2 ha−1 for the BA; 0.42 and 27.18 m3 ha−1 for the SV; 0.23 and 0.16 for the CEI; 0.32 and 0.05 for the DDI; 0.25 and 0.06 for the CI; 0.50 and 0.05 for the GC; and 0.67 and 0.70 for the SDDBH. The leave-one-out cross-validation technique was applied for validation of the best-fitted models (R2 > 0.50). In conclusion, cross-validated statistics confirmed that the structural parameters including the BA, SDDBH, and GC can be predicted and mapped with a reasonable accuracy using the texture features extracted from the spectral bands of WorldView-2 image.  相似文献   

2.
Sagebrush ecosystems of the western US provide important habitat for several ungulate and vertebrate species. As a consequence of energy development, these ecosystems in Wyoming have been subjected to a variety of anthropogenic disturbances. Land managers require methodology that will allow them to consistently catalog sagebrush ecosystems and evaluate potential impact of proposed anthropogenic activities. This study addresses the utility of remotely sensed and ancillary geospatial data to estimate sagebrush cover using ordinal logistic regression. We demonstrate statistically significant prediction of ordinal sagebrush cover categories using spectral (χ2 = 113; p < 0.0001) and transformed indices (χ2 = 117; p < 0.0001). Both Landsat spectral bands (c-value = 0.88) and transformed indices (c-value = 0.89) can distinguish sites with closed, moderate and open cover sagebrush cover categories from no cover. The techniques described in this study can be used for estimating categories of sagebrush cover in arid ecosystems.  相似文献   

3.
Soil erosion rates in alpine regions are related to high spatial variability complicating assessment of risk and damages. A crucial parameter triggering soil erosion that can be derived from satellite imagery is fractional vegetation cover (FVC). The objective of this study is to assess the applicability of normalized differenced vegetation index (NDVI), linear spectral unmixing (LSU) and mixture tuned matched filtering (MTMF) in estimating abundance of vegetation cover in alpine terrain. To account for the small scale heterogeneity of the alpine landscape we used high resolved multispectral QuickBird imagery (pixel resolution = 2.4 m) of a site in the Urseren Valley, Central Swiss Alps (67 km2). A supervised land-cover classification was applied (total accuracy 93.3%) prior to the analysis in order to stratify the image. The regression between ground truth FVC assessment and NDVI as well as MTMF-derived vegetation abundance was significant (r2 = 0.64, r2 = 0.71, respectively). Best results were achieved for LSU (r2 = 0.85). For both spectral unmixing approaches failed to estimate bare soil abundance (r2 = 0.39 for LSU, r2 = 0.28 for MTMF) due to the high spectral variability of bare soil at the study site and the low spectral resolution of the QuickBird imagery. The LSU-derived FVC map successfully identified erosion features (e.g. landslides) and areas prone to soil erosion. FVC represents an important but often neglected parameter for soil erosion risk assessment in alpine grasslands.  相似文献   

4.
Gross primary production (GPP) is a parameter of significant importance for carbon cycle and climate change research. Remote sensing combined with other climate and meteorological data offers a convenient tool for large scale GPP estimation. This paper presents a study of GPP estimation using three methods with in situ measurements of canopy reflectance, LAI, and the photosynthetically active radiation (PAR). First, because LAI is considered as an indicator of the factor of absorbed PAR (fAPAR), it provides reasonable estimates of GPP for all types of wheat with coefficient of determination R2 of 0.7353. The second method uses four kinds of vegetation indices (VIs) to estimate GPP because these indices are suggested to be reliable candidates in the estimation of light use efficiency (LUE). Good determination coefficients were acquired in estimating GPP with R2 ranging from the lowest of 0.7604 for NDVI to the highest of 0.8505 for EVI. A new method was proposed for the estimation of GPP following the Monteith logic, which considering GPP as a product of VI × VI × PAR. Results indicated that this method can provide the best estimates of GPP as determination coefficient R2 increased largely compared to the other two methods. EVI × EVI × PAR was demonstrated to be the most suitable for the estimation of GPP with the highest R2 of 0.9207, which was about 10% larger as compared to GPP estimated from the single EVI. These results will be helpful for the development of new models of GPP estimation with all remote sensing inputs.  相似文献   

5.
Cholera has been a public health burden in Ghana since the early 1970s. Between 1999 and 2005, a total of 25,636 cases and 620 deaths were officially reported to the WHO. In one of the worst affected urban cities, fecal contamination of surface water is extremely high, and the disease is reported to be prevalent among inhabitants living in close proximity to surface water bodies. Surface runoff from dump sites is a major source of fecal and bacterial contamination of rivers and streams in the study area. This study aims to determine (a) the impacts of surface water contamination on cholera infection and (b) detect and map arbitrary shaped clusters of cholera. A Geographic Information System (GIS) based spatial analysis is used to delineate potential reservoirs of the cholera vibrios; possibly contaminated by surface runoff from open space refuse dumps. Statistical modeling using OLS model reveals a significant negative association between (a) cholera prevalence and proximity to all the potential cholera reservoirs (R2 = 0.18, p < 0.001) and (b) cholera prevalence and proximity to upstream potential cholera reservoirs (R2 = 0.25, p < 0.001). The inclusion of spatial autoregressive coefficients in the OLS model reveals the dependency of the spatial distribution of cholera prevalence on the spatial neighbors of the communities. A flexible scan statistic identifies a most likely cluster with a higher relative risk (RR = 2.04, p < 0.01) compared with the cluster detected by circular scan statistic (RR = 1.60, p < 0.01). We conclude that surface water pollution through runoff from waste dump sites play a significant role in cholera infection.  相似文献   

6.
Locally computed statistics of image texture and a case-based reasoning (CBR) system were evaluated for mapping of forest attributes. Cluster analysis was preferred to regression models, as a pre-selection method of features. The best stand-based accuracy using satellite sensor images was 74.64 m−3 ha−1 (36%) RMSE for stand volume, 1.98 m−3 ha−1 a−1 (49%) for annual increase in stand volume, where κ = 0.23 for stand growth classes and κ = 0.41 for dominant tree species in stands. The top pixel-based accuracy using orthophotos was 76.54 m−3 ha−1 (41%) RMSE for stand volume, 1.87 m−3 ha−1 a−1 (44%) for annual increase in stand volume, where κ = 0.24 for stand growth classes and κ = 0.38 for dominant tree species in stands. Mean saturation in 30 m radius was the most useful feature when orthophotos were used, and standard deviation of Landsat ETM 6.2 values in 80 m radius was the best when satellite sensor images were used. The most valuable feature components (radii, channels and local statistics) for orthophotos were: 30 m kernel radius, lightness and the mean of pixel values; for satellite sensor images: 80 m kernel radius, near-infrared channel (ETM 4) and the mean of pixel values. Locally computed statistics.  相似文献   

7.
As a preparatory study for future hyperspectral missions that can measure canopy chemistry, we introduce a novel approach to investigate whether multi-angle Moderate Resolution Imaging Spectroradiometer (MODIS) data can be used to generate a preliminary database with long-term estimates of chlorophyll. MODIS monthly chlorophyll estimates between 2000 and 2015, derived from a fully coupled canopy reflectance model (ProSAIL), were inspected for consistency with eddy covariance fluxes, tower-based hyperspectral images and chlorophyll measurements. MODIS chlorophyll estimates from the inverse model showed strong seasonal variations across two flux-tower sites in central and eastern Amazon. Marked increases in chlorophyll concentrations were observed during the early dry season. Remotely sensed chlorophyll concentrations were correlated to field measurements (r2 = 0.73 and r2 = 0.98) but the data deviated from the 1:1 line with root mean square errors (RMSE) ranging from 0.355 μg cm−2 (Tapajós tower) to 0.470 μg cm−2 (Manaus tower). The chlorophyll estimates were consistent with flux tower measurements of photosynthetically active radiation (PAR) and net ecosystem productivity (NEP). We also applied ProSAIL to mono-angle hyperspectral observations from a camera installed on a tower to scale modeled chlorophyll pigments to MODIS observations (r2 = 0.73). Chlorophyll pigment concentrations (ChlA+B) were correlated to changes in the amount of young and mature leaf area per month (0.59   r2  0.64). Increases in MODIS observed ChlA+B were preceded by increased PAR during the dry season (0.61  r2   0.62) and followed by changes in net carbon uptake. We conclude that, at these two sites, changes in LAI, coupled with changes in leaf chlorophyll, are comparable with seasonality of plant productivity. Our results allowed the preliminary development of a 15-year time series of chlorophyll estimates over the Amazon to support canopy chemistry studies using future hyperspectral sensors.  相似文献   

8.
Accurate estimation of ecosystem carbon fluxes is crucial for understanding the feedbacks between the terrestrial biosphere and the atmosphere and for making climate-policy decisions. A statistical model is developed to estimate the gross primary production (GPP) of coniferous forests of northeastern USA using remotely sensed (RS) radiation (land surface temperature and near-infra red albedo) and ecosystem variables (enhanced vegetation index and global vegetation moisture index) acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. This GPP model (called R-GPP-Coni), based only on remotely sensed data, was first calibrated with GPP estimates derived from the eddy covariance flux tower of the Howland forest main tower site and then successfully transferred and validated at three other coniferous sites: the Howland forest west tower site, Duke pine forest and North Carolina loblolly pine site, which demonstrate its transferability to other coniferous ecoregions of northeastern USA. The proposed model captured the seasonal dynamics of the observed 8-day GPP successfully by explaining 84–94% of the observed variations with a root mean squared error (RMSE) ranging from 1.10 to 1.64 g C/m2/day over the 4 study sites and outperformed the primary RS-based GPP algorithm of MODIS.  相似文献   

9.
Geological point processes can be used to model point patterns occurring frequently in a wide variety of geoscience fields, including the study of mineral deposits, oil producing wells, earthquakes, and landslides. Characterization of the spatial distribution of GPP has implications for understanding the properties of the underlying geological processes and events. Three examples of GPP dealing with (1) metallic mineral deposits, (2) oil producing wells, and (3) aftershocks of the Wenchuan earthquake (on 12 May 2008, magnitude 8.0) are presented to illustrate that (1) the spatial distribution of geological point processes generally shows clustering implying rejection of the Poisson model because L(r) > LPois(r); (2) the clustering statistics of the underlying geological processes are fractal; and (3) the size distribution of geological point processes is scale invariant. These results indicate existence of a fundamental law concerning the fractal nature of the point distributions generated by geological point processes.  相似文献   

10.
In Africa, food security early warning systems use satellite-derived data concerning crop conditions and agricultural production. Such systems can be improved if they are provided with a more reliable estimation of the cultivated area at national scale. This paper evaluates the potential of using time series from the MODerate resolution Imaging Spectroradiometer MOD13Q1 (16-day composite of normalized difference vegetation index at 250 m resolution) to extract cultivated areas in the fragmented rural landscapes of Mali. To this end, we first stratified Southern Mali into 13 rural landscapes based on the spatio-temporal variability of NDVI and textural indices, using an object-oriented classification scheme.The accuracy of the resulting map (MODIScrop) and how it compares with existing coarse-resolution global land products (GLC2000 Africa, GLOBCOVER, MODIS V05 and ECOCLIMAP-II), was then assessed against six crop/non-crop maps derived from SPOT 2.5 m resolution images used as references. For crop areal coverage, the MODIScrop cultivated map was successful in assessing the overall cultivated area at five out of the six validation sites (less than 6% of the absolute difference), while in terms of crop spatial distribution, the producer accuracy was between 33.1% and 80.8%. This accuracy was linearly correlated with the mean patch size index calculated on the SPOT crop maps (r2 = 0.8). Using the Pareto boundary as an accuracy assessment method at the study sites, we showed that (i) 20-40% of the classification crop error was due to the spatial resolution of the MODIS sensor (250 m), and that (ii) compared to MODIS V05, which otherwise performed better than the other existing products, MODIScrop generally minimized omission-commission errors. A spatial validation of the different products was carried out using SPOT image classifications as reference. In the corresponding error matrices, the fraction of correctly classified pixels for our product was 70%, compared to 58% for MODIS V05, while it ranged between 40% and 51% for the GLC2000, the ECOCLIMAP-II and the GLOBCOVER.  相似文献   

11.
The research evaluated the information content of spectral reflectance (laboratory and airborne data) for the estimation of needle chlorophyll (CAB) and nitrogen (CN) concentration in Norway spruce (Picea abies L. Karst.) needles. To identify reliable predictive models different types of spectral transformations were systematically compared regarding the accuracy of prediction. The results of the cross-validated analysis showed that CAB can be well estimated from laboratory and canopy reflectance data. The best predictive model to estimate CAB was achieved from laboratory spectra using continuum-removal transformed data (R2cv = 0.83 and a relative RMSEcv of 8.1%, n = 78) and from hyperspectral HyMap data using band-depth normalised spectra (R2cv = 0.90, relative RMSEcv = 2.8%, n = 13). Concerning the nitrogen concentration, we observed somewhat weaker relations, with however still acceptable accuracies (at canopy level: R2cv = 0.57, relative RMSEcv = 4.6%). The wavebands selected in the regression models to estimate CAB were typically located in the red edge region and near the green reflectance peak. For CN, additional wavebands related to a known protein absorption feature at 2350 nm were selected. The portion of selected wavebands attributable to known absorption features strongly depends on the type of spectral transformation applied. A method called “water removal” (WR) produced for canopy spectra the largest percentage of wavebands directly or indirectly related to known absorption features. The derived chlorophyll and nitrogen maps may support the detection and the monitoring of environmental stressors and are also important inputs to many bio-geochemical process models.  相似文献   

12.
Burnings, which cause major changes to the environment, can be effectively monitored via satellite data, regarding both the identification of active fires and the estimation of burned areas. Among the many orbital sensors suitable for mapping burned areas on global and regional scales, the moderate resolution imaging spectroradiometer (MODIS), on board the Terra and Aqua platforms, has been the most widely utilized. In this study, the performance of the MODIS MCD45A1 burned area product was thoroughly evaluated in the Brazilian savanna, the second largest biome in South America and a global biodiversity hotspot, characterized by a conspicuous climatic seasonality and the systematic occurrence of natural and anthropogenic fires. Overall, September MCD45A1 polygons (2000–2012) compared well to the Landsat-based reference mapping (r2 = 0.92) and were closely accompanied, on a monthly basis, by MOD14 and MYD14 hotspots (r2 = 0.89), although large omissions errors, linked to landscape patterns, structures, and overall conditions depicted in each reference image, were observed. In spite of its spatial and temporal limitations, the MCD45A1 product proved instrumental for mapping and understanding fire behavior and impacts on the Cerrado landscapes.  相似文献   

13.
Defoliation is a key parameter of forest health and is associated with reduced productivity and tree mortality. Assessing the health of forests requires regular observations over large areas. Satellite remote sensing provides a cost-effective alternative to traditional ground-based assessment of forest health, but assessing defoliation can be difficult due to mixed pixels where vegetation cover is low or fragmented. In this study we apply a novel spectral unmixing technique, referred to as weighted Multiple Endmember Spectral Mixture Analysis (wMESMA), to Landsat 5-TM and EO-1 Hyperion data acquired over a Eucalyptus globulus (Labill.) plantation in southern Australia. This technique combines an iterative mixture analysis cycle allowing endmembers to vary on a per pixel basis (MESMA) and a weighting algorithm that prioritizes wavebands based on their robustness against endmember variability. Spectral mixture analysis provides an estimate of the physically interpretable canopy cover, which is not necessarily correlated with defoliation in mixed-aged plantations due to natural variation in canopy cover as stands age. There is considerable variability in the degree of defoliation as well as in stand age among sites and in this study we found that results were significantly improved by the inclusion of an age correction algorithm for both the multi-spectral (R2no age correction = 0.55 vs R2age correction = 0.73 for Landsat) and hyperspectral (R2no age correction = 0.12 vs R2age correction = 0.50 for Hyperion) image data. The improved accuracy obtained from Landsat compared to the Hyperion data illustrates the potential of applying SMA techniques for analysis of multi-spectral datasets such as MODIS and SPOT-VEGETATION.  相似文献   

14.
The Arctic is experiencing disproportionate warming relative to the global average, and the Arctic ecosystems are as a result undergoing considerable changes. Continued monitoring of ecosystem productivity and phenology across temporal and spatial scales is a central part of assessing the magnitude of these changes. This study investigates the ability to use automatic digital camera images (DCIs) as proxy data for gross primary production (GPP) in a complex low Arctic wetland site. Vegetation greenness computed from DCIs was found to correlate significantly (R2 = 0.62, p < 0.001) with a normalized difference vegetation index (NDVI) product derived from the WorldView-2 satellite. An object-based classification based on a bi-temporal image composite was used to classify the study area into heath, copse, fen, and bedrock. Temporal evolution of vegetation greenness was evaluated and modeled with double sigmoid functions for each plant community. GPP at light saturation modeled from eddy covariance (EC) flux measurements were found to correlate significantly with vegetation greenness for all plant communities in the studied year (i.e., 2010), and the highest correlation was found between modeled fen greenness and GPP (R2 = 0.85, p < 0.001). Finally, greenness computed within modeled EC footprints were used to evaluate the influence of individual plant communities on the flux measurements. The study concludes that digital cameras may be used as a cost-effective proxy for potential GPP in remote Arctic regions.  相似文献   

15.
16.
An approach for estimating soil moisture is presented and tested by using surface-temperature-based soil evaporation transfer coefficient (ha), a coefficient recently proposed through the equation ha = (Ts − Ta)/(Tsd − Ta), where Ts, Tsd, and Ta are land surface temperature (LST), reference soil (dry soil without evaporation) surface temperature, and air temperature respectively. Our analysis and controllable experiment indicated that ha closely related to soil moisture, and therefore, a relationship between field soil moisture and ha could be developed for soil moisture estimation. Field experiments were carried out to test the relationship between ha and soil moisture. Time series Aqua-MODIS images were acquired between 11 Sep. 2006 and 1 Nov. 2007. Then, MODIS derived ha and simultaneous measured soil moisture for different soil depths were used to establish the relations between the two variables. Results showed that there was a logarithmic relationship between soil moisture and ha (P < 0.01). These logarithmic models were further validated by introducing another ground-truth data gathered from 46 meteorological stations in Hebei Province. Good agreement was observed between the measured and estimated soil moisture with RMSE of 0.0374 cm3/cm3 and 0.0503 cm3/cm3 for surface energy balance method at two soil depths (10 cm and 20 cm), with RMSE of 0.0467 cm3/cm3 and 0.0581 cm3/cm3 for maximum temperature method at two soil depths. For vegetated surfaces, the ratio of ha and NDVI suggested to be considered. The proposed approach has a great potential for soil moisture and drought evaluation by remote sensing.  相似文献   

17.
Detailed knowledge of vegetation structure is required for accurate modelling of terrestrial ecosystems, but direct measurements of the three dimensional distribution of canopy elements, for instance from LiDAR, are not widely available. We investigate the potential for modelling vegetation roughness, a key parameter for climatological models, from directional scattering of visible and near-infrared (NIR) reflectance acquired from NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS). We compare our estimates across different tropical forest types to independent measures obtained from: (1) airborne laser scanning (ALS), (2) spaceborne Geoscience Laser Altimeter System (GLAS)/ICESat, and (3) the spaceborne SeaWinds/QSCAT. Our results showed linear correlation between MODIS-derived anisotropy to ALS-derived entropy (r2 = 0.54, RMSE = 0.11), even in high biomass regions. Significant relationships were also obtained between MODIS-derived anisotropy and GLAS-derived entropy (0.52  r2  0.61; p < 0.05), with similar slopes and offsets found throughout the season, and RMSE between 0.26 and 0.30 (units of entropy). The relationships between the MODIS-derived anisotropy and backscattering measurements (σ0) from SeaWinds/QuikSCAT presented an r2 of 0.59 and a RMSE of 0.11. We conclude that multi-angular MODIS observations are suitable to extrapolate measures of canopy entropy across different forest types, providing additional estimates of vegetation structure in the Amazon.  相似文献   

18.
Understanding spatial and temporal patterns of burned areas at regional scales, provides a long-term perspective of fire processes and its effects on ecosystems and vegetation recovery patterns, and it is a key factor to design prevention and post-fire restoration plans and strategies. Remote sensing has become the most widely used tool to detect fire affected areas over large tracts of land (e.g., ecosystem, regional and global levels). Standard satellite burned area and active fire products derived from the 500-m Moderate Resolution Imaging Spectroradiometer (MODIS) and the Satellite Pour l’Observation de la Terre (SPOT) are available to this end. However, prior research caution on the use of these global-scale products for regional and sub-regional applications. Consequently, we propose a novel semi-automated algorithm for identification and mapping of burned areas at regional scale. The semi-arid Monte shrublands, a biome covering 240,000 km2 in the western part of Argentina, and exposed to seasonal bushfires was selected as the test area. The algorithm uses a set of the normalized burned ratio index products derived from MODIS time series; using a two-phased cycle, it firstly detects potentially burned pixels while keeping a low commission error (false detection of burned areas), and subsequently labels them as seed patches. Region growing image segmentation algorithms are applied to the seed patches in the second-phase, to define the perimeter of fire affected areas while decreasing omission errors (missing real burned areas). Independently-derived Landsat ETM+ burned-area reference data was used for validation purposes. Additionally, the performance of the adaptive algorithm was assessed against standard global fire products derived from MODIS Aqua and Terra satellites, total burned area (MCD45A1), the active fire algorithm (MOD14); and the L3JRC SPOT VEGETATION 1 km GLOBCARBON products. The correlation between the size of burned areas detected by the global fire products and independently-derived Landsat reference data ranged from R2 = 0.01–0.28, while our algorithm performed showed a stronger correlation coefficient (R2 = 0.96). Our findings confirm prior research calling for caution when using the global fire products locally or regionally.  相似文献   

19.
Hyperspectral sensing can provide an effective means for fast and non-destructive estimation of leaf nitrogen (N) status in crop plants. The objectives of this study were to design a new method to extract hyperspectral spectrum information, to explore sensitive spectral bands, suitable bandwidth and best vegetation indices based on precise analysis of ground-based hyperspectral information, and to develop regression models for estimating leaf N accumulation per unit soil area (LNA, g N m−2) in winter wheat (Triticum aestivum L.). Three field experiments were conducted with different N rates and cultivar types in three consecutive growing seasons, and time-course measurements were taken on canopy hyperspectral reflectance and LNA under the various treatments. Then, normalized difference spectral indices (NDSI) and ratio spectral indices (RSI) based on the original spectrum and the first derivative spectrum were constructed within the range of 350–2500 nm, and their relationships with LNA were quantified. The results showed that both LNA and canopy hyperspectral reflectance in wheat changed with varied N rates, with consistent patterns across different cultivars and seasons. The sensitive spectral bands for LNA existed mainly within visible and near infrared regions. The best spectral indices for estimating LNA in wheat were found to be NDSI (R860, R720), RSI (R990, R720), NDSI (FD736, FD526) and RSI (FD725, FD516), and the regression models based on the above four spectral indices were formulated as Y = 26.34x1.887, Y = 5.095x − 6.040, Y = 0.609 e3.008x and Y = 0.388x1.260, respectively, with R2 greater than 0.81. Furthermore, expanding the bandwidth of NDSI (R860, R720) and RSI (R990, R720) from 1 nm to 100 nm at 1 nm interval produced the LNA monitoring models with similar performance within about 33 nm and 23 nm bandwidth, respectively, over which the statistical parameters of the models became less stable. From testing of the derived equations, the model for LNA estimation on NDSI (R860, R720), RSI (R990, R720), NDSI (FD736, FD526) and RSI (FD725, FD516) gave R2 over 0.79 with more satisfactory performance than previously reported models and physical models in wheat. It can be concluded that the present hyperspectral parameters of NDSI (R860, R720), RSI (R990, R720), NDSI (FD736, FD526) and RSI (FD725, FD516) can be reliably used for estimating LNA in winter wheat.  相似文献   

20.
The study evaluated the performance and suitability of AnnAGNPS model in assessing runoff, sediment loading and nutrient loading under Malaysian conditions. The watershed of River Kuala Tasik in Malaysia, a combination of two sub-watersheds, was selected as the area of study. The data for the year 2004 was used to calibrate the model and the data for the year 2005 was used for validation purposes. Several input parameters were computed using methods suggested by other researchers and studies carried out in Malaysia. The study shows that runoff was predicted well with an overall R2 value of 0.90 and E value of 0.70. Sediment loading was able to produce a moderate result of R2 = 0.66 and E = 0.49, nitrogen loading predictions were slightly better with R2 = 0.68 and E = 0.53, and phosphorus loading performance was slightly poor with an R2 = 0.63 and E = 0.33. The erosion map developed was in agreement with the erosion risk map produced by the Department of Agriculture, Malaysia. Rubber estates and urban areas were found to be the main contributors to soil erosion. The simulation results showed that AnnAGNPS has the potential to be used as a valuable tool for planning and management of watersheds under Malaysian conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号