首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 964 毫秒
1.
In a companion paper (this volume), the authors propose a methodology for assessing ash fall hazard on a regional scale. In this study, the methodology is applied to the Asia-Pacific region, determining the hazard from 190 volcanoes to over one million square kilometre of urban area. Ash fall hazard is quantified for each square kilometre grid cell of urban area in terms of the annual exceedance probability (AEP), and its inverse, the average recurrence interval (ARI), for ash falls exceeding 1, 10 and 100?mm. A surrogate risk variable, the Population-Weighted Hazard Score: the product of AEP and population density, approximates the relative risk for each grid cell. Within the Asia-Pacific region, urban areas in Indonesia are found to have the highest levels of hazard and risk, while Australia has the lowest. A clear demarcation emerges between the hazard in countries close to and farther from major subduction plate boundaries, with the latter having ARIs at least 2 orders of magnitude longer for the same thickness thresholds. Countries with no volcanoes, such as North Korea and Malaysia, also face ash falls from volcanoes in neighbouring countries. Ash falls exceeding 1?mm are expected to affect more than one million people living in urban areas within the study region; in Indonesia, Japan and the Philippines, this situation could occur with ARIs less than 40?years.  相似文献   

2.
Quantifying the potential ash fall hazards from re-awakening volcanoes is a topic of great interest. While methods for calculating the probability of eruptions, and for numerical simulation of tephra dispersal and fallout exist, event records at most volcanoes that re-awaken sporadically on decadal to millennial cycles are inadequate to develop rigorous forecasts of occurrence, much less eruptive volume. Here we demonstrate a method by which eruption records from radiocarbon-dated sediment cores can be used to derive forecasting models for ash fall impacts on electrical infrastructure. Our method is illustrated by an example from the Taranaki region of New Zealand. Radiocarbon dates, expressed as years before present (B.P.), are used to define an age-depth model, classifying eruption ages (with associated errors) for a circa 1500–10 500 year B.P. record at Mt. Taranaki (New Zealand). In addition, data describing the youngest 1500 years of eruption activity is obtained from directly dated proximal deposits. Absence of trend and apparent independence in eruption intervals is consistent with a renewal model using a mix of Weibulls distributions, which was used to generate probabilistic forecasts of eruption recurrence. After establishing that interval length and tephra thickness were independent in the record, a thickness–volume relationship (from [Rhoades, D.A., Dowrick, D.J., Wilson, C.J.N., 2002. Volcanic hazard in New Zealand: Scaling and attenuation relations for tephra fall deposits from Taupo volcano. Nat. Hazards, 26:147–174]) was inverted to provide a frequency–volume relationship for eruptions. Monte Carlo simulation of the thickness–volume relationship was then used to produce probable ash fall thicknesses at any chosen site. Several critical electrical infrastructure sites in the Taranaki Region were analysed. This region, being the only gas and condensate-producing area in New Zealand, is of national economic importance, with activities in and around the area depending on uninterrupted power supplies. Forecasts of critical ash thicknesses (1 mm wet and 2 mm dry) that may cause short-circuiting, surges or power shutdowns in substations show that the annual probabilities of serious impact are between ~ 0.5% and 27% over a 50 year period. It was also found that while large eruptions with high ash plumes tend to affect “expected” areas in relation to prevailing winds, the direction impacts of small ash falls are far less predictable. In the Taranaki case study, areas out of normal downwind directions, but close to the volcano, have probabilities of impact for critical thicknesses of 1–2 mm of around half to 60% of those in downwind directions and therefore should not be overlooked in hazard analysis. Through this method we are able to definitively show that the potential ash fall hazard to electrical infrastructure in this area is low in comparison to other natural threats, and provide a quantitative measure for use in risk analysis and budget prioritisation for hazard mitigation measures.  相似文献   

3.
We describe two small scoria cone volcanoes, Hidden Cone and Little Black Peak (ages between ~320–390 ka), in the Southwestern Nevada Volcanic Field and discuss their eruption mechanisms and inferences about their plumbing systems. Cone-forming pyroclastic deposits are consistent with eruptive styles ranging from Strombolian to violent Strombolian, and lavas emanated from near the bases of the cones. The volcanoes are monogenetic (rather than polycyclic, as allowed by previous geomorphic interpretations). Vents at each volcano appear to coincide with pre-existing normal faults, consistent with observations at older, deeply eroded volcanoes in the region. The existence of these two volcanoes on a topographically high area (particularly Hidden Cone) provides evidence for short feeder dike lengths (~500 m at the surface). We infer that this short length reflects the small length scale of the mantle source region that was tapped to feed each volcano. Editorial responsibility: J Stix  相似文献   

4.
A model for the numerical simulation of tephra fall deposits   总被引:4,自引:2,他引:4  
A simple semianalytical model to simulate ash dispersion and deposition produced by sustained Plinian and sub-Plinian eruption columns based on the 2D advection–dispersion equation was applied. The eruption column acts as a vertical line source with a given mass distribution and neglects the complex dynamics within the eruption column. Thus, the use of the model is limited to areas far from the vent where the dynamics of the eruption column play a minor role. Vertical wind and diffusion components are considered negligible with respect to the horizontal ones. The dispersion and deposition of particles in the model is only governed by gravitational settling, horizontal eddy diffusion, and wind advection. The model accounts for different types and size classes of a user-defined number of particle classes and changing settling velocity with altitude. In as much as wind profiles are considered constant on the entire domain, the model validity is limited to medium-range distances (about 30–200 km away from the source).The model was used to reconstruct the tephra fall deposit from the documented Plinian eruption of Mt. Vesuvius, Italy, in 79 A.D. In this case, the model was able to broadly reproduce the characteristic medium-range tephra deposit. The results support the validity of the model, which has the advantage of being simple and fast to compute. It has the potential to serve as a simple tool for predicting the distribution of ash fall of hypothetical or real eruptions of a given magnitude and a given wind profile. Using a statistical set of frequent wind profiles, it also was used to construct air fall hazard maps of the most likely affected areas around active volcanoes where a large eruption is expected to occur.  相似文献   

5.
Volcanic ash fallout represents a serious threat to people living near active volcanoes because it can produce several undesirable effects such as collapse of roofs by ash loading, respiratory sickness, air traffic disruption, or damage to agriculture. The assessment of such volcanic risk is therefore an issue of vital importance for public safety and its mitigation often requires to evaluate the temporal evolution of the phenomenon through reliable computational models.We develop an Eulerian model, named FALL3D, for the transport and deposition of volcanic ashes. The model is based on the advection–diffusion–sedimentation equation with a turbulent diffusion given by the gradient transport theory, a wind field obtained from a meteorological limited area model (LAM) and the source term derived from by buoyant plume theory. It can be used to forecast either ash concentration in the atmosphere or ash loading on the ground. Model inputs are topography, meteorological data given by a LAM, mass eruption rate, and a particle settling velocity distribution. A test application to the July 2001 Etna eruption is presented.  相似文献   

6.
Volcanic ash fallout subsequent to a possible renewal of the Vesuvius activity represents a serious threat to the highly urbanized area around the volcano. In order to assess the relative hazard we consider three different possible scenarios such as those following Plinian, Sub-Plinian, and violent Strombolian eruptions. Reference eruptions for each scenario are similar to the 79 AD (Pompeii), the 1631 AD (or 472 AD) and the 1944 AD Vesuvius events, respectively. Fallout deposits for the first two scenarios are modeled using HAZMAP, a model based on a semi-analytical solution of the 2D advection–diffusion–sedimentation equation. In contrast, fallout following a violent Strombolian event is modeled by means of FALL3D, a numerical model based on the solution of the full 3D advection–diffusion–sedimentation equation which is valid also within the atmospheric boundary layer. Inputs for models are total erupted mass, eruption column height, bulk grain-size, bulk component distribution, and a statistical set of wind profiles obtained by the NCEP/NCAR re-analysis. We computed ground load probability maps for different ash loadings. In the case of a Sub-Plinian scenario, the most representative tephra loading maps in 16 cardinal directions were also calculated. The probability maps obtained for the different scenarios are aimed to give support to the risk mitigation strategies.  相似文献   

7.
通过对2016年全球活动火山监测信息的统计,2016年共有96座火山记录到喷发活动,主要分布在环太平洋俯冲带及印度板块与欧亚板块碰撞边界上。火山预警等级共有4个,可以标识火山的危险程度,本文根据火山每个预警等级在全年52次监测信息报道中的出现次数,将96座活动火山按危险程度划为4类,并对每类的火山活动作出了详细描述。2016年的火山喷发也造成了人员伤亡和财产损失,印度尼西亚是受火山灾害影响最严重的国家。此外,根据火山灰柱海拔高度的整理及近年活动火山数量的调查,推测2016年的火山活动仅会使火山附近区域的天气受到影响,应不会引起全球性的气候异常。   相似文献   

8.
We have documented 80 tephra beds dating from ca. 9.5 to >50 ka, contained within continuously deposited palaeolake sediments from Onepoto Basin, a volcanic explosion crater in Auckland, New Zealand. The known sources for distal (>190 km from vent) tephra include the rhyolitic Taupo Volcanic Centre (4) and Okataina Volcanic Centre (14), and the andesitic Taranaki volcano (40) and Tongariro Volcanic Centre (3). The record provides evidence for four new events between ca. 50 and 28 ka (Mangaone Subgroup) suggesting Okataina was more active than previously known. The tephra record also greatly extends the known northern dispersal of other Mangaone Subgroup tephra. Ten rhyolitic tephra pre-date the Rotoehu eruption (>ca. 50 ka), and some are chemically dissimilar to post-50 ka rhyolites. Some of these older tephra were produced by large-magnitude events; however, their source remains uncertain. Eight tephra from the local basaltic Auckland Volcanic Field (AVF) are also identified. Interpolation of sedimentation rates allow us to estimate the timing of 12 major explosive eruptions from Taranaki volcano in the 27.5-9.5-ka period. In addition, 28 older events are recognised. The tephra are trachytic to rhyolitic in composition. All have high K2O contents (>3 wt%), and there are no temporal trends. This contrasts with the proximal lava record that shows a trend of increasing K2O with time. By combining the Onepoto tephra record with that of the previously documented Pukaki crater, 15 AVF basaltic fall events are constrained at: 34.6, 30.9, 29.6, 29.6, 25.7, 25.2, 24.2, 23.8, 19.4, 19.4, 15.8 and 14.5 ka, and three pre-50 ka events. This provides some of the best age constraints for the AVF, and the only reliable data for hazard recurrence calculations. The minimum event frequency of both distal and local fall events can be estimated, and demonstrates the Auckland City region is frequently impacted by ash fall from many volcanoes.  相似文献   

9.
Volcanic eruptions produce ash clouds, which are a major hazard to population centers and the aviation community. Within the North Pacific (NOPAC) region, there have been numerous volcanic ash clouds that have reached aviation routes. Others have closed airports and traveled for thousands of kilometers. Being able to detect these ash clouds and then provide an assessment of their potential movement is essential for hazard assessment and mitigation. Remote sensing satellite data, through the reverse absorption or split window method, is used to detect these volcanic ash clouds, with a negative signal produced from spectrally semi-transparent ash clouds. Single channel satellite is used to detect the early eruption spectrally opaque ash clouds. Volcanic Ash Transport and Dispersion (VATD) models are used to provide a forecast of the ash clouds' future location. The Alaska Volcano Observatory (AVO) remote sensing ash detection system automatically analyzes satellite data of volcanic ash clouds, detecting new ash clouds and also providing alerts, both email and text, to those with AVO. However, there are also non-volcanic related features across the NOPAC region that can produce a negative signal. These can complicate alerts and warning of impending ash clouds. Discussions and examples are shown of these non-volcanic features and some analysis is provided on how these features can be discriminated from volcanic ash clouds. Finally, there is discussion on how information of the ash cloud such as location, particle size and concentrations, could be used as VATD model initialization. These model forecasts could then provide an improved assessment of the clouds' future movement.  相似文献   

10.
Long-term multi-hazard assessment for El Misti volcano (Peru)   总被引:1,自引:1,他引:0  
We propose a long-term probabilistic multi-hazard assessment for El Misti Volcano, a composite cone located <20 km from Arequipa. The second largest Peruvian city is a rapidly expanding economic centre and is classified by UNESCO as World Heritage. We apply the Bayesian Event Tree code for Volcanic Hazard (BET_VH) to produce probabilistic hazard maps for the predominant volcanic phenomena that may affect c.900,000 people living around the volcano. The methodology accounts for the natural variability displayed by volcanoes in their eruptive behaviour, such as different types/sizes of eruptions and possible vent locations. For this purpose, we treat probabilistically several model runs for some of the main hazardous phenomena (lahars, pyroclastic density currents (PDCs), tephra fall and ballistic ejecta) and data from past eruptions at El Misti (tephra fall, PDCs and lahars) and at other volcanoes (PDCs). The hazard maps, although neglecting possible interactions among phenomena or cascade effects, have been produced with a homogeneous method and refer to a common time window of 1 year. The probability maps reveal that only the north and east suburbs of Arequipa are exposed to all volcanic threats except for ballistic ejecta, which are limited to the uninhabited but touristic summit cone. The probability for pyroclastic density currents reaching recently expanding urban areas and the city along ravines is around 0.05 %/year, similar to the probability obtained for roof-critical tephra loading during the rainy season. Lahars represent by far the most probable threat (around 10 %/year) because at least four radial drainage channels can convey them approximately 20 km away from the volcano across the entire city area in heavy rain episodes, even without eruption. The Río Chili Valley represents the major concern to city safety owing to the probable cascading effect of combined threats: PDCs and rockslides, dammed lake break-outs and subsequent lahars or floods. Although this study does not intend to replace the current El Misti hazard map, the quantitative results of this probabilistic multi-hazard assessment can be incorporated into a multi-risk analysis, to support decision makers in any future improvement of the current hazard evaluation, such as further land-use planning and possible emergency management.  相似文献   

11.
Improved prediction and tracking of volcanic ash clouds   总被引:3,自引:1,他引:2  
During the past 30 years, more than 100 airplanes have inadvertently flown through clouds of volcanic ash from erupting volcanoes. Such encounters have caused millions of dollars in damage to the aircraft and have endangered the lives of tens of thousands of passengers. In a few severe cases, total engine failure resulted when ash was ingested into turbines and coating turbine blades. These incidents have prompted the establishment of cooperative efforts by the International Civil Aviation Organization and the volcanological community to provide rapid notification of eruptive activity, and to monitor and forecast the trajectories of ash clouds so that they can be avoided by air traffic. Ash-cloud properties such as plume height, ash concentration, and three-dimensional ash distribution have been monitored through non-conventional remote sensing techniques that are under active development. Forecasting the trajectories of ash clouds has required the development of volcanic ash transport and dispersion models that can calculate the path of an ash cloud over the scale of a continent or a hemisphere. Volcanological inputs to these models, such as plume height, mass eruption rate, eruption duration, ash distribution with altitude, and grain-size distribution, must be assigned in real time during an event, often with limited observations. Databases and protocols are currently being developed that allow for rapid assignment of such source parameters. In this paper, we summarize how an interdisciplinary working group on eruption source parameters has been instigating research to improve upon the current understanding of volcanic ash cloud characterization and predictions. Improved predictions of ash cloud movement and air fall will aid in making better hazard assessments for aviation and for public health and air quality.  相似文献   

12.
The majority of continental arc volcanoes go through decades or centuries of inactivity, thus, communities become inured to their threat. Here we demonstrate a method to quantify hazard from sporadically active volcanoes and to develop probabilistic eruption forecasts. We compiled an eruption-event record for the last c. 9,500 years at Mt Taranaki, New Zealand through detailed radiocarbon dating of recent deposits and a sediment core from a nearby lake. This is the highest-precision record ever collected from the volcano, but it still probably underestimates the frequency of eruptions, which will only be better approximated by adding data from more sediment core sites in different tephra-dispersal directions. A mixture of Weibull distributions provided the best fit to the inter-event period data for the 123 events. Depending on which date is accepted for the last event, the mixture-of-Weibulls model probability is at least 0.37–0.48 for a new eruption from Mt Taranaki in the next 50 years. A polymodal distribution of inter-event periods indicates that a range of nested processes control eruption recurrence at this type of arc volcano. These could possibly be related by further statistical analysis to intrinsic factors such as step-wise processes of magma rise, assembly and storage.  相似文献   

13.
By using BET_VH, we propose a quantitative probabilistic hazard assessment for base surge impact in Auckland, New Zealand. Base surges resulting from phreatomagmatic eruptions are among the most dangerous phenomena likely to be associated with the initial phase of a future eruption in the Auckland Volcanic Field. The assessment is done both in the long-term and in a specific short-term case study, i.e. the simulated pre-eruptive unrest episode during Exercise Ruaumoko, a national civil defence exercise. The most important factors to account for are the uncertainties in the vent location (expected for a volcanic field) and in the run-out distance of base surges. Here, we propose a statistical model of base surge run-out distance based on deposits from past eruptions in Auckland and in analogous volcanoes. We then combine our hazard assessment with an analysis of the costs and benefits of evacuating people (on a 1 × 1-km cell grid). In addition to stressing the practical importance of a cost-benefit analysis in creating a bridge between volcanologists and decision makers, our study highlights some important points. First, in the Exercise Ruaumoko application, the evacuation call seems to be required as soon as the unrest phase is clear; additionally, the evacuation area is much larger than what is recommended in the current contingency plan. Secondly, the evacuation area changes in size with time, due to a reduction in the uncertainty in the vent location and increase in the probability of eruption. It is the tradeoff between these two factors that dictates which cells must be evacuated, and when, thus determining the ultimate size and shape of the area to be evacuated.  相似文献   

14.
Ash produced by a volcanic eruption on Iceland can be hazardous for both the transatlantic flight paths and European airports and airspace. In order to begin to quantify the risk to aircraft, this study explored the probability of ash from a short explosive eruption of Hekla Volcano (63.98°N, 19.7°W) reaching European airspace. Transport, dispersion and deposition of the ash cloud from a three hour ‘explosive’ eruption with an initial plume height of 12 km was simulated using the Met Office's Numerical Atmospheric-dispersion Modelling Environment, NAME, the model used operationally by the London Volcanic Ash Advisory Centre. Eruptions were simulated over a six year period, from 2003 until 2008, and ash clouds were tracked for four days following each eruption.Results showed that a rapid spread of volcanic ash is possible, with all countries in Europe facing the possibility of an airborne ash concentration exceeding International Civil Aviation Organization (ICAO) limits within 24 h of an eruption. An additional high impact, low probability event which could occur is the southward spread of the ash cloud which would block transatlantic flights approaching and leaving Europe. Probabilities of significant concentrations of ash are highest to the east of Iceland, with probabilities exceeding 20% in most countries north of 50°N. Deposition probabilities were highest at Scottish and Scandinavian airports. There is some seasonal variability in the probabilities; ash is more likely to reach southern Europe in winter when the mean winds across the continent are northerly. Ash concentrations usually remain higher for longer during summer when the mean wind speeds are lower.  相似文献   

15.
A first probabilistic scenario-based hazard assessment for tephra fallout is presented for La Fossa volcano (Vulcano Island, Italy) and subsequently used to assess the impact on the built environment. Eruption scenarios are based upon the stratigraphy produced by the last 1000 years of activity at Vulcano and include long–lasting Vulcanian and sub-Plinian eruptions. A new method is proposed to quantify the evolution through time of the hazard associated with pulsatory Vulcanian eruptions lasting from weeks to years, and the increase in hazard related to typical rainfall events around Sicily is also accounted for. The impact assessment on the roofs is performed by combining a field characterization of the buildings with the composite European vulnerability curves for typical roofing stocks. Results show that a sub-Plinian eruption of VEI 2 is not likely to affect buildings, whereas a sub-Plinian eruption of VEI 3 results in 90 % of the building stock having a ≥12 % probability of collapse. The hazard related to long-lasting Vulcanian eruptions evolves through time, and our analysis shows that the town of Il Piano, located downwind of the preferential wind patterns, is likely to reach critical tephra accumulations for roof collapse 5–9 months after the onset of the eruption. If no cleaning measures are taken, half of the building stock has a probability >20 % of suffering roof collapse.  相似文献   

16.
本文应用美国国家气象局提供的1958—1997年全球大气精确的轨道参数和涠洲岛地区风速和风向等数据资料,模拟了火山喷发时空降碎屑的分布情况。结果表明,涠洲岛地区火山喷发形成的空降碎屑分布与喷发时的风速与风向有关,NNW方向的风可使空降碎屑影响到海南省北部地区,SSW方向风可使空降碎屑影响广西东南部和广东西南部的广大地区,1月和7月份喷发时主要影响涠洲岛及周边海域。  相似文献   

17.
After 33 years of repose, one of the most active volcanoes of the Kurile island arc—Sarychev Peak on Matua Island in the Central Kuriles—erupted violently on June 11, 2009. The eruption lasted 9 days and stands among the largest of recent historical eruptions in the Kurile Island chain. Satellite monitoring of the eruption, using Moderate Resolution Imaging Spectroradiometer, Meteorological Agency Multifunctional Transport Satellite, and Advanced Very High Resolution Radiometer data, indicated at least 23 separate explosions between 11 and 16 June 2009. Eruptive clouds reached altitudes of generally 8–16 km above sea level (ASL) and in some cases up to 21 km asl. Clouds of volcanic ash and gas stretched to the north and northwest up to 1,500 km and to the southeast for more than 3,000 km. For the first time in recorded history, ash fall occurred on Sakhalin Island and in the northeast sector of the Khabarovsky Region, Russia. Based on satellite image analysis and reconnaissance field studies in the summer of 2009, the eruption produced explosive tephra deposits with an estimated bulk volume of 0.4 km3. The eruption is considered to have a Volcanic Explosivity Index of 4. Because the volcano is remote, there was minimal risk to people or infrastructure on the ground. Aviation transport, however, was significantly disrupted because of the proximity of air routes to the volcano.  相似文献   

18.
Volcanic ash causes multiple hazards. One hazard of increasing importance is the threat posed to civil aviation, which occurs over proximal to long-range distances. Ash fallout disrupts airport operations, while the presence of airborne ash at low altitudes near airports affects visibility and the safety of landing and take-off operations. Low concentrations of ash at airplane cruise levels are sufficient to force re-routing of in-flight aircrafts. Volcanic fallout deposits spanning large distances have been recognized from the Somma-Vesuvius volcano for several Holocene explosive eruptions. Here we develop hazard and isochron maps for distal ash fallout from the Somma-Vesuvius, as well as hazard maps for critical ash concentrations at relevant flight levels. Maps are computed by coupling a meteorological model with a fully numeric tephra dispersal model that can account for ash aggregation processes, which are relevant to the dispersion dynamics of fine ash. The simulations were carried out using supercomputing facilities, spanning on entire meteorological year that is statistically representative of the local meteorology during the last few decades. Seasonal influences are also analyzed. The eruptive scenario is based on a Subplinian I-type eruption, which is within the range of the maximum expected event for this volcano. Results allow us to quantify the impact that an event of this magnitude and intensity would have on the main airports and aerial corridors of the Central Mediterranean Area.  相似文献   

19.
Starting from the 1980's of last century, China has launched the national plan of constructing nuclear power plants along the coastline region in eastern China. Currently, in some of these candidate sites, nuclear facilities have been installed and are in operation, but some other nuclear power plants are still under construction or in site evaluation. In 2012 the Atomic Energy Commission issued the specific guide for volcanic hazards in site evaluation for nuclear installations(IAEA Safety Standards Series No. SSG-21), which was prepared under the IAEA's program for safety standards. It supplements and provides recommendations for meeting the requirements for nuclear installations established in the safety requirements publication on site evaluation for nuclear installations in relation to volcanic hazards. To satisfy the safety standards for volcanic hazard, we follow the IAEA SSG-21 guidelines and develop a simple and practical diffusion program in order to evaluate the potential volcanic hazard caused by tephra fallout from the explosive eruptions. In this practice, we carried out a case study of the active volcanoes in north Hainan Province so as to conduct the probabilistic analysis of the potential volcanic hazard in the surrounding region. The Quaternary volcanism in north Hainan Island, so-called Qiongbei volcanic field is characterized by multi periodic activity, in which the most recent eruption is dated at about 4 000a BP. According to IAEA SSG-21, a capable volcano is one for which both 1)a future eruption or related volcanic event is credible; and 2)such an event has the potential to produce phenomena that may affect a site. Therefore, the Qiongbei volcanic field is capable of producing hazardous phenomena that may reach the potential nuclear power plants around. The input parameters for the simulation of tephra fallout from the future eruption of the Qiongbei volcanic field, such as the size, density and shape of the tephra, the bulk volume and column height, the diffusion parameter P(z), wind direction and intensity, were obtained by field investigation and laboratory analysis. We carried out more than 10000 tephra fallout simulations using a statistical dataset of wind profiles which are obtained from China Meteorological Data Sharing Service System(CMDSSS). Tephra fallout hazard probability maps were constructed for tephra thickness threshold of 1cm. Our results show that the tephra produced by the future large-scale explosive eruption from the Qiongbei volcanic field can affect the area in a range about 250km away from the eruption center. In summary, the current key technical parameters related to volcanic activity and potential hazards in IAEA/SSG-21 guidelines, such as 10Ma volcanic life cycle and 1×10-7 volcanic disaster screening probability threshold, etc. are based on the volcanic activity characteristics in the volcanic island arc system. In consideration of the relatively low level of volcanic activity compared with volcanic island arc system due to the different tectonic background of volcanism in mainland China, the time scale of volcanic disaster assessment in IAEA SSG-21 guideline is relatively high for volcanoes in mainland China. We suggest that the study of "conceptual model" of volcanic activity should be strengthened in future work to prove that there is no credible potential for future eruptions, so that these volcanoes should be screened out at early stage instead of further evaluation by probabilistic model.  相似文献   

20.
More than 40 late Cenozoic monogenetic volcanoes formed a volcanic belt striking NNW from Keluo, through Wudalianchi to Erkeshan in NE China. These volcanoes belong to a unified volcano system, namely Wudalianchi volcanic belt(WVB for short). Based on the volcanic evolution history and the nature of monogenetic volcanic system, we estimate that the volcanic system of WVB is still active and has the potential to erupt again. Hence, this paper studied the temporal-spatial distribution and volcanic eruption types to evaluate the possible eruption hazard types and areas of influence in the future. Volcanic field characteristics and K-Ar radiometric data suggest two episodes of volcanism in the WVB, the Pliocene to early Pleistocene volcanism(4.59~1.00MaBP)and the middle Pleistocene to Holocene volcanism(0.79Ma to now). The early episode volcanoes are distributed only in the north of WVB(mainly in Keluo volcanic field), featured by effusive eruption, and mainly formed monogenetic shield, whose base diameter is large and slope is gentle. However, the late episode eruptions occurred over the entire WVB. The explosive eruption in this stage formed numerous relatively intact scoria cones of explosive origin. Meanwhile the effusive eruption formed widely distributed lava flows. Both effusive eruption and explosive eruption are common in WVB. The effusive eruption formed monogenetic shields and lava flows. The resulting pahoehoe lava, aa lava and block lava appeared in WVB. There are three end-member types of explosive eruption driven by magmatic volatile. Violent Strombolian eruption has the highest degree of fragmentation and mass flux, characterized by eruption column. Strombolian eruption has the high degree of fragmentation, but low mass flux, featured by pulse eruption. Hawaiian eruption has low degree of fragmentation, but high in mass flux, generating large scoria cones. In addition, this paper for the first time found phreatomagmatic eruption in WVB, which formed tuff cone. Transitional eruptions are also common in WVB, which have certain characteristics among the end-member eruption types. Besides, certain volcanoes displayed multiple explosive eruption types during the whole eruption span. According to the volcanic temporal-spatial distribution and eruption characteristics in WVB, the potential volcanic hazards in future are constrained. It appears that the violent Strombolian and Strombolian eruption will not have significant impact on aviation safety in the vertical direction. In the radial direction, the ejected volcanic bomb can reach as far as 1km from the vents and the fallout tephra may disperse downwind over a distance ranging from 1~10km. The major hazard of Hawaiian eruption and effusive eruption comes from lava flow, and its migration distance may reach 3.0~13.5km for pahoehoe lava and 2.9~14.9km for aa lava. The base surge in phreatomagmatic eruption can reach a velocity of 200~400m/s, and the migration distance is around 10km. This is a big threat that people should pay more attention to and take precautions in advance. Besides, it is necessary to strengthen the real-time observation of the volcanoes in the WVB, especially those formed in the late episode as well as near the active fault.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号