首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SeaBeam multibeam bathymetry obtained during cruise SO-69 of research vessel (R/V) Sonne defines the segmentation and structure of ∼ 300 km of the Mariana back-arc spreading center south of the Pagan fracture zone at 17°33'N. Eight ridge segments, ranging from 14 to 64 km in length, are displaced as much as 2.7–14.5 km by both right- (predominantly) and left-lateral offsets and transform faults. An axial ridge commonly occupies the middle portion of the rift valley and rises from 200 to 700 m above the adjacent sea floor, in places shoaling to a water depth of 3200 m. An exception is the 60-km-long segment between 16°58' and 17°33'N where single peaks only a few tens of meters high punctuate the rift axis. Photographic evidence and rock samples reveal the presence of mostly pillow lavas outcropping on the axial ridges or peaks whereas the deeper parts of the rift valley floor (max. depth 4900 m) are heavily to totally sedimented. Abundant talus ramps along fault scarps testify to ongoing disruption of the crust. Lozenge-shaped collapse structures are covered by layers of sediment up to tens of centimeters thick on the rift valley floor. The presence of discrete volcanic ridges in the southern Mariana back-arc spreading region suggests that emplacement of oceanic crust at this slow spreading center occurs by `multi-site' injection of magma. Along-axis variations in length, crestal depth, and size of the axial ridges can be best explained by different stages in the cyclicity of magma supply along-axis.  相似文献   

2.
Analysis of published data on sea floor spreading for the different oceans demonstrates a close correlation between interruptions of spreading at sea and compressive periods on land and between periods of spreading activity and periods of “no compression” of the orogenic regions. The evolution of both orogenic and oceanic areas appears to be rhythmic. The model is generalized to a dynamic model for the Earth's crust in which periods of global compression and extension follow alternately. Such a model fits better the geological evidences from orogenic regions than the present model for sea floor spreading which postulates an expansion in the mid ocean ridges and a compression along the continental margins underthrusted by oceanic crust.  相似文献   

3.
A qualitative examination of oceanic magnetic anomalies suggests that their amplitudes increase with the spreading rate of the ocean floor. This suggestion has been investigated quantitatively by inversion of the anomalies. A variance matching technique has been used to calculate the average magnetisation of the crust with crustal thickness held constant or to calculate the thickness with the magnetisation fixed. In spite of variations in the computed intensities of magnetisation and thickness when compared to spreading rates the results show an over-all increase in the intensities with the rate of spreading. The mechanisms responsible for this could include greater irregularity in distribution of magnetic polarities within the crust at slow spreading ridges, greater intensity of magnetisation in crust produced at fast spreading due to initial chemical properties or enhanced hydrothermal alteration, and a dependence of crustal thickness on spreading rate.  相似文献   

4.
Miocene submarine basanite pillows, lava lobes, megapillows and sheet lavas in the Stanley Peninsula, northwestern Tasmania, Australia, are well-preserved in three dimensions. The pillows have ropy wrinkles, transverse wrinkles, symmetrical wrinkles, contraction cracks and three types of spreading cracks on their surfaces, and concentric and radial joints in the interior. The lava lobes have ropy wrinkles and contraction cracks on their surfaces. The megapillows are cylindrical with a smoothly curved upper surface and steep sides, and are characterized by distinct radial columnar joints in the interior. They are connected to pillows that propagate radially from its basal margin. The sheet lavas are tabular and have vertical columnar joints in the interior. The largest sheet lava shows a remarkable gradation from a lower 5-m-thick pillow facies to an upper massive facies. The pillows, lava lobes, megapillows and sheet lavas are inferred to have been emplaced completely below sea level but in a shallow marine environment. Their morphological features suggest that the pillows grew by episodic rupture of a near-solid crust and emergence of hot lava, whereas the lava lobes propagated by continuous stretching of the outer skin at the flow front. The megapillows and sheet lavas were master feeder channels by which molten lava was conveyed to the advancing pillows. The sheet lavas propagated by repeated processes of pillow formation and overriding by an upper massive part. Alternating pillow and massive facies commonly found in ocean-floor drill cores and exposed in cross-section in many subaqueous volcanic successions may have formed by propagation of pillows from the basal margins of advancing sheet lavas.  相似文献   

5.
Ascertaining the emplacement mechanism of oceanic basaltic lavas is important in understanding how ocean floor topography is produced and oceanic plates evolve, particularly during the early stages of crustal development of a supra-subduction zone. A detailed study of the volcanic stratigraphy at International Ocean Discovery Program (IODP) Site U1438 in the Amami Sankaku Basin, west of the Kyushu–Palau Ridge, has revealed the development of lava accretion and ridge topography on the Philippine Sea plate at about 49 Ma. Igneous basement rocks penetrated at Site U1438 are the uppermost 150 m of ~6 km-thick oceanic crust, and comprise, in a downhole direction, sheet flows (12.6 m), lobate sheet flows (61.3 m), pillow lavas (50.7 m), and thin sheet flows (25.3 m). The lowermost sheet flows are intercalated with layers of limestone and epiclastic tuff. Lithofacies analysis reveals that the lowermost sheet flows, limestone, and tuff formed on an axial rise, the pillow lavas were emplaced on a ridge slope, and the lobate sheet flows formed off ridge on an abyssal plain. The lithofacies of the basement basalt corresponds to the upper portions of fast-spreading oceanic crust, suggesting that subduction initiation was associated with intermediate to fast rates of seafloor spreading. The surface sheet flows are olivine–clinopyroxene-phyric basalt and differ from the lower basalt flows that contain phenocrysts of olivine and plagioclase, with or without clinopyroxene. The depleted chrome-spinel composition and olivine–clinopyroxene phenocryst assemblage in the surface sheet flows suggests a slight contribution of water for magma generation not present for the lower basalt flows. Considering the lithological difference between the backarc and forearc oceanic crust in the Izu–Bonin–Mariana arc, with sheet flow dominant in the former, seafloor spreading occurred faster in the later stage of subduction initiation.  相似文献   

6.
Indications of a narrow region of high magnetization within the central magnetic anomaly on some mid-ocean ridges are found on near-bottom and sea surface magnetic profiles. This zone, which probably represents the most recent extrusions onto the ocean floor, is similar to the narrow region of high magnetization found on the Mid-Atlantic Ridge at 45°N with a suite of dredge samples. This narrow region is probably the result of the initial high magnetization of pillow basalts when they are extruded onto the ocean floor and the subsequent rapid oxidation of the outer variolitic zone of the pillows. The large-amplitude, short-wavelength (<15 km) magnetic anomaly found within the central anomaly over both slow- and fast-spreading ridges is produced by this narrow magnetization high. This magnetic anomaly can be used to locate the region of most recent extrusions on most ridges. The absence of this short-wavelength anomaly on some ridges may reflect the episodicity with which basalts are extruded onto the ocean floor.  相似文献   

7.
The well-preserved extrusive sequence of the Solund-Stavfjord Ophiolite Complex (SSOC) in the West Norwegian Caledonides enables reconstruction of the uppermost oceanic crust that developed in a marginal basin. Basaltic sheet flows, pillow lavas and volcanic breccias are the main components of the extrusive sequence and show stratigraphic and structural evidence for a cyclic development. The first stage in a volcanic cycle is characterized by high extrusion rates yielding sheet flows, commonly with the thickest flow units at the base. Sequences of sheet flows can be correlated laterally for at least 6.5 km. Pillow lavas succeed the sheet flows later in a volcanic cycle with progressively smaller pillows forming at decreasing extrusion rates. Volcanic breccias occur towards the end of a volcanic cycle, but may also occur at lower stratigraphie levels. They are made generally of pillow breccias and hyaloclastites. The extrusive sequence of the SSOC oceanic crust was constructed through seven volcanic cycles that resulted in stratigraphic units with thicknesses ranging from 40 to 225 m. This architecture is comparable to sequences in in situ oceanic crust developed along slow- to intermediate-spreading ridges.  相似文献   

8.
The persistent near-orthogonal pattern formed by oceanic ridges and transform faults defies explanation in terms of rigid plates because it probably depends on the energy associated with deformation. For passive spreading, it is likely that the ridges and transforms adjust to a configuration offering minimum resistance to plate separation. This leads to a simple geometric model which yields conditions for the occurrence of transform faults and an aid to interpretation of structural patterns in the sea floor. Under reasonable assumptions, it is much more difficult for diverging plates to spread a kilometer of ridge than to slip a kilometer of transform fault, and the patterns observed at spreading centers might extend to lithospheric depths. Under these conditions, the resisting force at spreading centers could play a significant role in the dynamics of plate-tectonic systems.  相似文献   

9.
Two Miocene basaltic andesite pillowed sills in the Shimane Peninsula, SW Japan, were intruded into wet marine sediments, plastically deforming them. The pillows are elongated, constricted, interconnected and relatively closely packed. Individual pillows have a poorly to moderately vesiculated, somewhat crystalline rind thinner than a few centimeters and a moderately to well vesiculated, more crystalline core; contraction cracks and spreading cracks are poorly developed. The pillows in the sills morphologically resemble pillow lava flows, and during sill intrusion, the magma bifurcated into pillow lobes in a manner similar to pillow lavas. Formation of pillows in sill probably occurs when the magma is intruded into wet sediments and protrudes fingers by the instability of the magma-sediment interface with little turbulence of magma flow.  相似文献   

10.
Abstract We review the carbon‐isotope data for finely disseminated carbonates from bioaltered, glassy pillow rims of basaltic lava flows from in situ slow‐ and intermediate‐spreading oceanic crust of the central Atlantic Ocean (CAO) and the Costa Rica Rift (CRR). The δ13C values of the bioaltered glassy samples from the CAO show a large range, between ?17 and +3‰ (Vienna Peedee belemnite standard), whereas those from the CRR define a much narrower range, between ?17‰ and ?7‰. This variation can be interpreted as the product of different microbial metabolisms during microbial alteration of the glass. In the present study, the generally low δ13C values (less than ?7‰) are attributed to carbonate precipitated from microbially produced CO2 during oxidation of organic matter. Positive δ13C values >0‰ likely result from lithotrophic utilization of CO2 by methanogenic Archaea that produce CH4 from H2 and CO2. High production of H2 at the slow‐spreading CAO crust may be a consequence of fault‐bounded, high‐level serpentinized peridotites near or on the sea floor, in contrast to the CRR crust, which exhibits a layer‐cake pseudostratigraphy with much less faulting and supposedly less H2 production. A comparison of the δ13C data from glassy pillow margins in two ophiolites interpreted to have formed at different spreading rates supports this interpretation. The Jurassic Mirdita ophiolite complex in Albania shows a structural architecture similar to that of the slow‐spreading CAO crust, with a similar range in δ13C values of biogenic carbonates. The Late Ordvician Solund–Stavfjord ophiolite complex in western Norway exhibits structural and geochemical evidence for evolution at an intermediate‐spreading mid‐ocean ridge and displays δ13C signatures in biogenic carbonates similar to those of the CRR. Based on the results of this comparative study, it is tentatively concluded that the spreading rate‐dependent tectonic evolution of oceanic lithosphere has a significant control on the evolution of microbial life and hence on the δ13C biosignatures preserved in disseminated biogenic carbonates in glassy, bioaltered lavas.  相似文献   

11.
12.
Models of spreading ocean ridges are derived by Bayesian gravity inversion with geophysical and geodynamic a priori information. The aim is to investigate the influence of spreading rate, plate dynamics and tectonic framework on crust and upper mantle structure by comparing the Mid Atlantic Ridge (MAR), the Indian Ocean Ridge (IND) and the East Pacific Rise (PAC). They differ in mean spreading rate, dynamic settings, as attached slabs, and plume interaction. Topography or bathymetry, gravity, isostasy, seismology and geology, etc. are averaged along the ridges and guide the construction of initial 2D models, including features as mean plumes, i.e. averaged along the ridge. This is a gross simplification, and the results are considered preliminary.Three model types are tested: (a) the temperature anomaly; (b) asthenospheric rise into thickening lithosphere; (c) a crustal root as had been anticipated before seafloor spreading was discovered. Additional model components are a mean plume, a non-compensated ridge uplift, an under-compensated asthenospheric rise, e.g. of partially molten material, and seismic velocity models for P and S waves. Model type (c), tends to permute to model type (b) from thick crust to thin axial lithosphere. Model type (a) renders ‘realistic’ values of the thermal expansivity, but is insufficient to fit the gravity data; partial melt may disturb the simple temperature effect. A combination of (a) and (b) is most adequate. Exclusive seismic velocity models of S or P waves do not lead to acceptable densities nor to adequate gravity fitting. The different ridges exhibit significant differences in the best models: ATL and IND show an axial mass excess fostering enhanced ridge push, and ATL, in addition, suggests a mean plume input, while PAC shows an axial mass deficit reducing ridge push, most probably due to dominance of slab pull in the force balance.Goodness of the gravity fit alone is no justifiable criterion for goodness of model, indeed minor modifications to each model within the uncertainties of the assumptions can make the fit arbitrarily good. Goodness of model is quantified exclusively by a priori information.  相似文献   

13.
IntroductionWhenpropagatingthroughananisotropicmedium,ashearwavesplitsintotwo(quasi)shearwaveswithdifferentpropagationspeedsandpolarizedorthogonally.Owingtotherecentdevel-opmentofseismicobservationsystem,detectionofshearwavessplittingwithverysmalldelaytimesbetweenfasterandslowershearwavesbecameavailableandprovidedpowerfulapproachfordetectionofcrustalanisotropy.Crampin(1978)emphasizedtheroleofalignedmicrocracksasacauseofcrustalanisotropyandpointedoutthatforverticallyalignedmicrocracksthedirecti…  相似文献   

14.
洋中脊速度结构是揭示大洋岩石圈演化过程的重要约束.为探讨不同扩张速率下洋中脊的洋壳速度结构特征,挑选了全球152处快速(全扩张速率 90mm·a-1)、慢速(全扩张速率20~50mm·a-1)和超慢速(全扩张速率20mm·a-1)扩张洋中脊和非洋中脊的洋壳1-D地震波速度结构剖面,通过筛选统计、求取平均值等方法对分类的洋壳1-D速度结构进行对比研究,获得了不同扩张速率下洋中脊洋壳速度结构差异以及洋中脊与非洋中脊洋壳速度结构差异的新认识:(1)快速、慢速和超慢速扩张洋中脊的平均正常洋壳厚度分别为6.4km、7.2km和5.3km,其中洋壳层2的厚度基本相似,洋壳厚度差异主要源自洋壳层3;其洋壳厚度变化范围分别为4.9~8.1km、4.6~8.7km和4.2~10.2km,随着洋中脊扩张速率减小,洋壳厚度的变化范围逐渐增大;(2)快速扩张洋中脊的洋壳速度大于慢速和超慢速,可能与快速扩张脊洋壳生成过程中深部高密度岩浆上涌比较充足有关;(3)非洋中脊(10Ma)的洋壳比洋中脊(10Ma)的洋壳厚~0.3km,表明洋壳厚度与洋壳年龄有一定的正相关性.  相似文献   

15.
穿透含裂隙、裂缝地壳8s视周期的SV波的理论地震图研究表明,当地壳平均裂隙密度高于0.01即横波各向异性高于1%时,非对称面内不同方位的SKS波均发生分裂;地震图中直接的记录显示是切向T分量上出现SKS波的振动,其振幅随地壳平均裂隙密度的增大而增强,甚至能与径向R分量上的振幅相当.局限于上地壳的强裂缝各向异性同样能引起SKS分裂.长周期SKS波分裂对地壳内裂隙、裂缝的分布缺乏分辨率.直立平行排列裂隙、裂缝使得SKS分裂T分量记录特征具有方位对称性,这来自于HTI介质中快、慢波偏振和到时差随方位变化的对称性;而倾斜裂隙、裂缝使得该方位对称性丧失.对实际观测SKS分裂的偏振解释需要考虑地壳裂隙各向异性,特别是断裂附近的强裂缝各向异性.  相似文献   

16.
All active midocean ridges show a uniform relationship between depth and age of the oceanic crust. Recently, it has been shown by numerical methods that convective flow in a Newtonian fluid will have a positive gravity anomaly and an upward surface deformation associated with an ascending limb. If there is thermal convection in the upper mantle, these calculations predict that there may be a correlation between free air gravity anomalies and differences from the uniform relationship between oceanic depth and age. To investigate such a correlation, we considered the crestal elevation and free air gravity anomaly over the crest of the midocean ridges. It has been suggested that the differences from the depth versus age relationship are related to spreading rate. Thus, we also considered a correlation between crestal elevation and changes in rate along the ridge axis.We found a positive correlation between free air gravity and differences in crestal depth of the midocean ridge system. We found no correlation between spreading rate and gravity and no uniform relationship which holds in all the oceans between spreading rate and observed crestal depths.The long wavelength gravity anomalies which are correlated with the differences in crestal depth cannot be supported by an 80 km thick lithosphere. Thus, they are considered evidence of flow within the aesthenosphere. Further, the correlation between gravity anomaly and differences in crestal depth has the same sign and gradient as predicted by the investigations of convection in a Newtonian fluid.  相似文献   

17.
DSDP Hole 504B is the deepest basement hole in the oceanic crust, penetrating through a 571.5 m pillow section, a 209 m lithologic transition zone, and 295 m into a sheeted dike complex. An oxygen isotopic profile through the upper crust at Site 504 is similar to that in many ophiolite complexes, where the extrusive section is enriched in18O relative to unaltered basalts, and the dike section is variably depleted and enriched. Basalts in the pillow section at Site 504 haveδ18O values generally ranging from +6.1 to +8.5‰ SMOW(mean= +7.0‰), although minor zeolite-rich samples range up to 12.7‰. Rocks depleted in18O appear abruptly at 624 m sub-basement in the lithologic transition from 100% pillows to 100% dikes, coinciding with the appearance of greenschist facies minerals in the rocks. Whole-rock values range to as low as +3.6‰, but the mean values for the lithologic transition zone and dike section are +5.8 and +5.4‰, respectively.

Oxygen and carbon isotopic data for secondary vein minerals combined with the whole rock data provide evidence for the former presence of two distinct circulation systems separated by a relatively sharp boundary at the top of the lithologic transition zone. The pillow section reacted with seawater at low temperatures (near 0°C up to a maximum of around 150°C) and relatively high water/rock mass ratios (10–100); water/rock ratios were greater and conditions were more oxidizing during submarine weathering of the uppermost 320 m than deeper in the pillow section. The transition zone and dikes were altered at much higher temperatures (up to about 350°C) and generally low water/rock mass ratios ( 1), and hydrothermal fluids probably contained mantle-derived CO2. Mixing of axial hydrothermal fluids upwelling through the dike section with cooler seawater circulating in the overlying pillow section resulted in a steep temperature gradient ( 2.5°C/m) across a 70 m interval at the top of the lithologic transition zone. Progressive reaction during axial hydrothermal metamorphism and later off-axis alteration led to the formation of albite- and Ca-zeolite-rich alteration halos around fractures. This enhanced the effects of cooling and18O enrichment of fluids, resulting in local increases inδ18O of rocks which had been previously depleted in18O during prior axial metamorphism.  相似文献   


18.
Comparison with the Red Sea and other regions suggests that a series of partly fault-bounded ridges and basins in the Hebridean and Irish Sea regions are related to tectonic uplift and collapse associated with Palacogene sea floor spreading in the North Atlantic. Three episodes of block faulting involving the formation of horsts and grabens are tentatively correlated with phases of Mesozoic and Tertiary ocean floor spreading.  相似文献   

19.
西南印度洋岩浆补给特征研究:来自洋壳厚度的证据   总被引:1,自引:0,他引:1       下载免费PDF全文
西南印度洋中脊为典型的超慢速扩张洋中脊,其岩浆补给具有不均匀分布的特征.洋壳厚度是洋中脊和热点岩浆补给的综合反映,因此反演洋壳厚度是研究大尺度洋中脊和洋盆岩浆补给过程的一种有效方法.本文通过对全球公开的自由空气重力异常、水深、沉积物厚度和洋壳年龄数据处理得到剩余地幔布格重力异常,并反演西南印度洋地区洋壳厚度,定量地分析了西南印度洋的洋壳厚度分布及其岩浆补给特征.研究发现,西南印度洋洋壳平均厚度7.5 km,但变化较大,标准差可达3.5 km,洋壳厚度的频率分布具有双峰式的混合偏态分布特征.通过分离双峰统计的结果,将西南印度洋洋壳厚度分为0~4.8 km的薄洋壳、4.8~9.8 km的正常洋壳和9.8~24 km的厚洋壳三种类型,洋中脊地区按洋壳厚度变化特征可划分为7个洋脊段.西南印度洋地区薄洋壳受转换断层控制明显,转换断层位移量越大,引起的洋壳减薄厚度越大,减薄范围与转换断层位移量不存在明显相关性.厚洋壳主要受控于该区众多的热点活动,其中布维热点、马里昂热点和克洛泽热点的影响范围分别约340 km,550 km和900 km.Andrew Bain转换断层北部外角形成厚的洋壳,具有与快速扩张洋中脊相似的转换断层厚洋壳特征.  相似文献   

20.
Pillow talk     
Three distinct types of pillows and pillow lava sequences with different modes of origin have been recognized in the extrusive sequences comprising the upper parts of ophiolite complexes that represent the mafic portion of the floor of an Early Cretaceous back-arc basin in southern Chile. One type of pillow formed by non-explosive submarine effusion. A second type formed by magmatic intrusion into pre-existing aquagene tuff formed by explosive eruption. The third type of pillow occurs within dikes, forming pillowed dikes, possibly as a result of vapor streaming within a cooling dike. Where studied in southern Chile, aquagene tuffs and intrusive pillows decrease and water-lain pillows increase in relative abundance from north to south. This variation corresponds with a north-to-south decrease in both the relative volume of extrusives to extensional dikes and the range and volume of differentiated rocks, suggesting a southward increase in rate of extension relative to rate of magma supply within the spreading ridges at which the ophiolites formed. In the northern part of the original basin where the rate of extension was small relative to the rate of magma supply, magma remained in magma chambers longer, resulting in a greater range and volume of differentiated rocks. The larger volume of more differentiated, cooler and more viscous magmas, in conjunction with the likelihood of more violent eruption of volatile-rich differentiates, may have been responsible for the large volume of aquagene tuff in the northern part of the original basin. These observations in southern Chile suggest that ophiolites which contain a great abundance of aquagene tuffs and intrusive pillow lavas formed in tectonic environments in which the rate of extension was small relative to the rate of magma supply (island arcs, embryonic marginal basins). Ophiolites with predominantly water-lain pillowed and massive lavas formed in tectonic environments in which the rate of extension was large relative to the rate of magma supply (mid-ocean ridges, mature back-arc basins). Thus geologic field data may supplement geochemical data as a tool in distinguishing the original igneous-tectonic environments in which ophiolites originate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号