首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Abstract The Solund‐Stavfjord ophiolite complex (SSOC) in western Norway represents a remnant of the Late Ordovician oceanic lithosphere, which developed in an intermediate‐ to fast‐spreading Caledonian back‐arc basin. The internal architecture and magmatic features of its crustal component suggest that the SSOC has a complex, multistage sea floor spreading history in a supra‐subduction zone environment. The youngest crustal section associated with the propagating rift tectonics consists of a relatively complete ophiolite pseudostratigraphy, including basaltic volcanic rocks, a transition zone between the sheeted dyke complex and the extrusive sequence, sheeted dykes, and high‐level isotropic gabbros. Large‐scale variations in major and trace element distributions indicate significant remobilization far beyond that which would result from magmatic processes, as a result of the hydrothermal alteration of crustal rocks. Whereas K2O is strongly enriched in volcanic rocks of the extrusive sequence, Cu and Zn show the largest enrichment in the dyke complex near the dyke–volcanic transition zone or within this transition zone. The δ18O values of the whole‐rock samples show a general depletion structurally downwards in the ophiolite, with the largest and smallest variations observed in volcanic rocks and the transition zone, respectively. δ18O values of epidote–quartz mineral pairs indicate 260–290°C for volcanic rocks, 420°C for the transition zone, 280–345°C for the sheeted dyke complex and 290–475°C for the gabbros. The 87Sr/86Sr isotope ratios show the widest range and highest values in the extrusive rocks (0.70316–0.70495), and generally the lowest values and the narrowest range in the sheeted dyke complex (0.70338–0.70377). The minimum water/rock ratios calculated show the largest variations in volcanic rocks and gabbros (approximately 0–14), and generally the lowest values and range in the sheeted dyke complex (approximately 1–3). The δD values of epidote (?1 to ?12‰), together with the δ18O calculated for Ordovician seawater, are similar to those of present‐day seawater. Volcanic rocks experienced both cold and warm water circulation, resulting in the observed K2O‐enrichment and the largest scatter in the δ18O values. As a result of metal leaching in the hot reaction zone above a magma chamber, Zn is strongly depleted in the gabbros but enriched in the sheeted dyke complex because of precipitation from upwelling of discharged hydrothermal fluids. The present study demonstrates that the near intact effect of ocean floor hydrothermal activity is preserved in the upper part of the SSOC crust, despite the influence of regional lower greenschist facies metamorphism.  相似文献   

2.
Oxygen and carbon isotopic analyses were carried out for some typical submarine volcanic products (a lava flow, a pillow fragment and four hyaloclastite breccias) from the northwestern zone of the Mt. Iblei volcanic complex, eastern Sicily. The δ18O value of the perental basaltic magma (6.0 ± 0.2‰), estimated from the analyses of some fresh unaltered glassy samples of various type, lies in the values range of primary basalts. Appreciably higher δ18O values, probably due to low-temperature exchanges with sea water, have been found for lava samples and the interior of the pillow fragment. The δ18O and δ13C of the calcites of the groundmass of the hyaloclastite samples, ranging from 30.59 to 33.65 and from ?2.99 to 0.46‰ respectively, are typical of low-temperature marine carbonates. Because calcite is one of the last minerals to form. these results suggest that the hyaloclastites studied formed entirely in a submarine environment. The18O/16O ratios recorded in the silicate portions of the matrices of the hyaloclasites (δ18O=13.99 to 16.61) are interpreted as the result of halmyrolytic processes occurring at temperatures somewhat higher than that of the sea floor.  相似文献   

3.
CO2-rich inclusions recovered from “popping” and related tholeiitic rocks from the Mid-Atlantic Ridge have δ13C values of ?7.6 ± 0.5%. relative to PDB. δ13C values of total carbon in the same rocks range from ?12 to ?13.7‰. These values are discussed in the light of the known δ13C variations in rocks of deep-seated origin. The ?7.6‰ value is interpreted as a reasonable estimate of the primary value of δ13C of deep-seated carbon in the ridge area.  相似文献   

4.
The expanding use of horizontal drilling and hydraulic fracturing technology to produce oil and gas from tight rock formations has increased public concern about potential impacts on the environment, especially on shallow drinking water aquifers. In eastern Kentucky, horizontal drilling and hydraulic fracturing have been used to develop the Berea Sandstone and the Rogersville Shale. To assess baseline groundwater chemistry and evaluate methane detected in groundwater overlying the Berea and Rogersville plays, we sampled 51 water wells and analyzed the samples for concentrations of major cations and anions, metals, dissolved methane, and other light hydrocarbon gases. In addition, the stable carbon and hydrogen isotopic composition of methane (δ13C‐CH4 and δ2H‐CH4) was analyzed for samples with methane concentration exceeding 1 mg/L. Our study indicates that methane is a relatively common constituent in shallow groundwater in eastern Kentucky, where methane was detected in 78% of the sampled wells (40 of 51 wells) with 51% of wells (26 of 51 wells) exhibiting methane concentrations above 1 mg/L. The δ13C‐CH4 and δ2H‐CH4 ranged from ?84.0‰ to ?58.3‰ and from ?246.5‰ to ?146.0‰, respectively. Isotopic analysis indicated that dissolved methane was primarily microbial in origin formed through CO2 reduction pathway. Results from this study provide a first assessment of methane in the shallow aquifers in the Berea and Rogersville play areas and can be used as a reference to evaluate potential impacts of future horizontal drilling and hydraulic fracturing activities on groundwater quality in the region.  相似文献   

5.
This paper focuses on the chemical and isotopic features of dissolved gases (CH4 and CO2) from four meromictic lakes hosted in volcanic systems of Central–Southern Italy: Lake Albano (Alban Hills), Lake Averno (Phlegrean Fields), and Monticchio Grande and Piccolo lakes (Mt. Vulture). Deep waters in these lakes are characterized by the presence of a significant reservoir of extra-atmospheric dissolved gases mainly consisting of CH4 and CO2. The δ13C-CH4 and δD-CH4 values of dissolved gas samples from the maximum depths of the investigated lakes (from ?66.8 to ?55.6?‰ V-PDB and from ?279 to ?195?‰ V-SMOW, respectively) suggest that CH4 is mainly produced by microbial activity. The δ13C-CO2 values of Lake Grande, Lake Piccolo, and Lake Albano (ranging from ?5.8 to ?0.4?‰ V-PDB) indicate a significant CO2 contribution from sublacustrine vents originating from (1) mantle degassing and (2) thermometamorphic reactions involving limestone, i.e., the same CO2 source feeding the regional thermal and cold CO2-rich fluid emissions. In contrast, the relatively low δ13C-CO2 values (from ?13.4 to ?8.2?‰ V-PDB) of Lake Averno indicate a prevalent organic CO2. Chemical and isotopic compositions of dissolved CO2 and CH4 at different depths are mainly depending on (1) CO2 inputs from external sources (hydrothermal and/or anthropogenic); (2) CO2–CH4 isotopic exchange; and (3) methanogenic and methanotrophic activity. In the epilimnion, vertical water mixing, free oxygen availability, and photosynthesis cause the dramatic decrease of both CO2 and CH4 concentrations. In the hypolimnion, where the δ13C-CO2 values progressively increase with depth and the δ13C-CH4 values show an opposite trend, biogenic CO2 production from CH4 using different electron donor species, such as sulfate, tend to counteract the methanogenesis process whose efficiency achieves its climax at the water–bottom sediment interface. Theoretical values, calculated on the basis of δ13C-CO2 values, and measured δ13CTDIC values are not consistent, indicating that CO2 and the main carbon-bearing ion species (HCO3 ?) are not in isotopic equilibrium, likely due to the fast kinetics of biochemical processes involving both CO2 and CH4. This study demonstrates that the vertical patterns of the CO2/CH4 ratio and of δ13C-CO2 and δ13C-CH4 are to be regarded as promising tools to detect perturbations, related to different causes, such as changes in the CO2 input from sublacustrine springs, that may affect aerobic and anaerobic layers of meromictic volcanic lakes.  相似文献   

6.
The stable isotopic composition of dissolved inorganic carbon (δ13C‐DIC) was investigated as a potential tracer of streamflow generation processes at the Sleepers River Research Watershed, Vermont, USA. Downstream sampling showed δ13C‐DIC increased between 3–5‰ from the stream source to the outlet weir approximately 0·5 km downstream, concomitant with increasing pH and decreasing PCO2. An increase in δ13C‐DIC of 2·4 ± 0·1‰ per log unit decrease of excess PCO2 (stream PCO2 normalized to atmospheric PCO2) was observed from downstream transect data collected during snowmelt. Isotopic fractionation of DIC due to CO2 outgassing rather than exchange with atmospheric CO2 may be the primary cause of increased δ13C‐DIC values downstream when PCO2 of surface freshwater exceeds twice the atmospheric CO2 concentration. Although CO2 outgassing caused a general increase in stream δ13C‐DIC values, points of localized groundwater seepage into the stream were identified by decreases in δ13C‐DIC and increases in DIC concentration of the stream water superimposed upon the general downstream trend. In addition, comparison between snowmelt, early spring and summer seasons showed that DIC is flushed from shallow groundwater flowpaths during snowmelt and is replaced by a greater proportion of DIC derived from soil CO2 during the early spring growing season. Thus, in spite of effects from CO2 outgassing, δ13C of DIC can be a useful indicator of groundwater additions to headwater streams and a tracer of carbon dynamics in catchments. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
Immediately before the extinction of the end‐Guadalupian (Middle Permian; ca 260 Ma), a significant change to the global carbon cycle occurred in the superocean Panthalassa, as indicated by a prominent positive δ13C excursion called the Kamura event. However, the causes of this event and its connection to the major extinction of marine invertebrates remain unclear. To understand the mutual relationships between these changes, we analyzed the sulfur isotope ratio of the carbonate‐associated sulfate (CAS) and HCl‐insoluble residue, as well as the carbon isotope ratio of bulk organic matter, for the Middle‐Upper Permian carbonates of an accreted mid‐oceanic paleo‐atoll complex from Japan, where the Kamura event was first documented. We detected the following unique aspects of the stable carbon and sulfur isotope records. First, the extremely high δ13C values of carbonate (δ13Ccarb) over +5 ‰ during the Capitanian (late Guadalupian) were associated with large isotopic differences between carbonate and organic matter (Δ13C = δ13Ccarb ? δ13Corg). We infer that the Capitanian Kamura event reflected an unusually large amount of dissolved organic matter in the expanded oxygen minimum zone at mid‐depth. Second, the δ34S values of CAS (δ34SCAS) were inversely correlated with the δ13Ccarb values during the Capitanian to early Wuchiapingian (early Late Permian) interval. The Capitanian trend may have appeared under increased oceanic sulfate conditions, which were accelerated by intense volcanic outgassing. Bacterial sulfate reduction with increased sulfate concentrations in seawater may have stimulated the production of pyrite that may have incorporated iron in pre‐existing iron hydroxide/oxide. This stimulated phosphorus release, which enhanced organic matter production and resulted in high δ13Ccarb. Low δ34SCAS values under high sulfate concentrations were maintained and the continuous supply of sulfate cannot by explained only by the volcanic eruption of the Emeishan Trap, which has been proposed as a cause of the extinction. The Wuchiapingian δ34SCAS–δ13Ccarb correlation, likely related to low sulfate concentration, may have been caused by the removal of oceanic sulfate through the massive evaporite deposition.  相似文献   

8.
Dissolved inorganic carbon isotope (δ13CDIC) is an important tool to reveal the carbon cycle in lake systems. However, there are only few studies focusing on the spatial variation of δ13CDIC of closed lakes. Here we analyze the characteristics of δ13CDIC of 24 sampled lakes (mainly closed lakes) across the Qiangtang Plateau (QTP) and identify the driving factors for its spatial variation. The δ13CDIC value of these observed lakes varies in the range of ? 15·0 to 3·2‰, with an average value of ? 1·2‰. The δ13CDIC value of closed lakes is close to the atmospheric isotopic equilibrium value, much higher than that in rivers and freshwater lakes reported before. The high δ13CDIC value of closed lakes is mainly attributed to the significant contribution of carbonate weathering in the catchment and the evasion of dissolved CO2 induced by the strong evaporation of lake water. The δ13CDIC value of closed lakes has a logarithmic correlation with water chemistry (TDS, DIC and pCO2), also suggesting that the evapo‐concentration of lake water can influence the δ13CDIC value. The δ13CDIC value shows two opposite logarithmic correlations with lake size depending on the δ13CDIC range. This study suggests that the δ13C in carbonates in lacustrine sediments can be taken as an indicator of lake volume variation in closed lakes on QTP. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
We measured the concentrations of dissolved inorganic carbon (DIC) and major ions and the stable carbon isotope ratios of DIC (δ13CDIC) in two creeks discharging from carbonate‐rich sulphide‐containing mine tailings piles. Our aim was to assess downstream carbon evolution of the tailings discharge as it interacted with the atmosphere. The discharge had pH of 6.5–8.1 and was saturated with respect to carbonates. Over the reach of one creek, the DIC concentrations decreased by 1.1 mmol C/l and δ13CDIC increased by ~4.0‰ 200 m from the seep source. The decrease in the DIC concentrations was concomitant with decreases in the partial pressure of CO2(aq) because of the loss of excess CO2(aq) from the discharge. The corresponding enrichment in the δ13CDIC is because of kinetic isotope fractionation accompanying the loss of CO2(g). Over the reach of the other creek, there was no significant decrease in the DIC concentrations or notable changes in the δ13CDIC. The insignificant change in the DIC concentrations and the δ13CDIC is because the first water sample was collected 160 m away from the discharge seep, not accessible during this research. In this case, most of the excess CO2(aq) was lost before our first sampling station. Our results indicate that neutral discharges from tailings piles quickly lose excess CO2(aq) to the atmosphere and the DIC becomes enrich in 13C. We suggest that a significant amount of carbon cycling in neutral discharges from tailings piles occur close to the locations where the discharge seeps to the surface. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
The coastal confined aquifer in the Gulf of Urabá (Colombia) is an important water source for the banana agro‐industry as well as for urban and rural communities. However, the main processes controlling recharge and mixing in the aquifer are still poorly understood. Hydrochemical analyses and stable isotope monitoring were conducted to (a) determine groundwater recharge origin, mean groundwater age, and the main processes governing groundwater chemistry and the potential mixing of marine water and the influence of diffusive processes from the two surrounding aquitard layers. Hydrochemical data indicate that the main processes affecting the dissolved chemical composition include cation exchange, dissolution of carbonated and CO2, and silicate weathering. δ18O and δ2H compositions combined with 14C data highlight the differences in climatic conditions between the recharge zone and the confined section of the aquifer, which is close to the Atlantic Ocean. Groundwater samples with 14C ages from recent to 28,300 years BP show a depleted isotopic trend ranging from ?6.43‰ to ?9.14‰ in δ18O and from ?43.2‰ to ?65.7‰ in δ2H. The most depleted δ18O and δ2H compositions suggest a cooler recharge climate than the current conditions (corresponding to the last glacial period of the late Pleistocene). Depleted δ13C values in the total dissolved inorganic carbon indicate the existence of organic material oxidation processes within the geologic formation. These results can be used or transferred to enhance groundwater modelling efforts in other confined coastal aquifers of South America where scarcity of long‐term monitoring data limits water resources planification under a changing climate.  相似文献   

11.
Marble has a great potential to understand a history of various geological events occurring during tectonic processes. In order to decode metamorphic–metasomatic records on C–O isotope compositions of marble at mid-crustal conditions, we conducted a C–O–Sr isotope study on upper amphibolite-facies marbles and a carbonate–silicate rock from the Hida Belt, which was once a part of the crustal basement of the East Asian continental margin. Carbon and oxygen isotope analyses of calcite from marbles (Kamioka area) and a carbonate–silicate rock (Wadagawa area) show a large variation of δ13C [VPDB] and δ18O [VSMOW] values (from −4.4 to +4.2 ‰ and +1.6 to +20.8 ‰, respectively). The low δ13C values of calcites from the carbonate–silicate rock (from −4.4 to −2.9 ‰) can be explained by decarbonation (CO2 releasing) reactions; carbon–oxygen isotope modeling suggests that a decrease of δ13C strongly depends on the amount of silicate reacting with carbonates. The occurrence of metamorphic clinopyroxene in marbles indicates that all samples have been affected by decarbonation reactions. All δ18O values of calcites are remarkably lower than the marine-carbonate values. The large δ18O variation can be explained by the isotope exchange via interactions between marble, external fluids, and/or silicates. Remarkably low δ18O values of marbles that are lower than mantle value (~+5 ‰) suggest the interaction with meteoric water at a later stage. Sr isotope ratios (87Sr/86Sr = 0.707255–0.708220) might be close to their protolith values. One zircon associated with wollastonite in a marble thin-section yields a U–Pb age of 222 ± 3 Ma, which represents the timing of the recrystallization of marble, triggered by H2O-rich fluid infiltration at a relatively high-temperature condition. Our isotope study implies that the upper amphibolite-facies condition, like the Hida Belt, might be appropriate to cause decarbonation reactions which can modify original isotope compositions of marble if carbonates react with silicates.  相似文献   

12.
Calculated univariant equilibria and oxygen isotope compositions of silicates and carbonates support the proposal that the “Mottled Zone Event” is a low-pressure (1–25 atm), high-temperature (200° < T < 1300°C) metamorphism of calcareous siliceous sediments in which the thermal energy is provided by combustion of organic matter. δ18O of silicates decreases systematically with increasing metamorphic grade from averages of 18.1‰ in protolith shales, to 16.6‰ in grossular-diopside-zeolite rocks, 15.6‰ in wollastonite and anorthite-diopside-gehlenite-grossular fels, 14.1‰ in spurrite-brownmillerite marbles and 11.7‰ in the highest-grade larnite-gehlenite-brownmillerite assemblages. Decarbonation is the principal mechanism influencing the oxygen isotope compositions. The progressive decrease of δ18O in silicates can be modelled as a Rayleigh distillation of CO2 approximately 16‰ enriched in 18O relative to whole rock assemblages i.e., of initial isotopic composition 8.5‰ heavier than the parent carbonates. The mineral assemblage of one sample with an unusual granoblastic texture is in apparent isotopic equilibrium at a temperature of 540°C.  相似文献   

13.
Increasing groundwater salinity and depletion of the aquifers are major concerns in the UAE. Isotopes of oxygen, hydrogen, and carbon concentrations in groundwater were used to estimate evaporation loss using the isotopes of oxygen and hydrogen, and using a carbon isotope to trace inorganic carbon cycling in two main aquifers in the eastern part of the United Arab Emirates. The δD‐δ18O of groundwater samples plotted on a line given by: δD = 4 δ18O + 4 ·4 (r2 = 0·4). In comparison, the local meteoric water line (LMWL) has been defined by the line: δD = 8 δ18O + 15. In order to better understand the system investigated, samples were separated into two groups based on the δD‐δ18O relationship. These are (1) samples that plot above the LMWL (δD = 6·1 δ18O + 12·4, r2 = 0·8) and which are located predominantly in the north of the study area, and (2) samples that plot below the LMWL (δD = 5·6 δ18O + 6·2, r2 = 0·8) and which are mostly distributed in the south. Slopes for both the groups are similar and lower than that for LMWL indicating potential evaporation of recharging water. However, the y‐intercept, which differs between the two groups, suggests evaporation of return flow and evapotranspiration in the unsaturated zone to be more significant in the south. This is attributed to intense agricultural activities in the region. Samples from the eastern Gravel Plain aquifer have δ13C and dissolved inorganic carbon (DIC) values in the range from ? 10 to 17‰, and 12–100 mg C/l, respectively, while the range for those from the Ophiolite aquifer is from ? 11 to ? 16.4‰, and 16–114 mg C/l respectively. This suggests the control of C‐3 and C‐4 plants on DIC formation, an observation supported by the range δ13C of soil organic matter (from ? 18·5 to ? 22·1‰.) Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
Hydrocarbon compositions and δ13C values for methane of fourteen natural seep gases and four underwater vents in the northwestern Gulf of Mexico are reported. The C1/(C2 + C3) ratios of the seep gas samples ranged from 68 to greater than 1000, whereas δPDB13C values varied from ?39.9 to ?65.5‰. Compositions suggest that eleven of the natural gas seeps are produced by microbial degradation whereas the remaining three have a significant thermocatalytically produced component. Contradictions in the inferences drawn from molecular and isotopic compositions make strict interpretation of the origins of a few of the samples impossible.  相似文献   

15.
Exceptionally well-preserved pillow lavas and inter-pillow hyaloclastites from the Barberton Greenstone Belt in South Africa contain textural, geochemical, and isotopic biomarkers indicative of microbially mediated alteration of basaltic glass in the Archean. The textures are micrometer-scale tubular structures interpreted to have originally formed during microbial etching of glass along fractures. Textures of similar size, morphology, and distribution have been attributed to microbial activity and are commonly observed in the glassy margins of pillow lavas from in situ oceanic crust and young ophiolites. The tubes from the Barberton Greenstone Belt were preserved by precipitation of fine-grained titanite during greenschist facies metamorphism associated with seafloor hydrothermal alteration. The presence of organic carbon along the margins of the tubes and low δ13C values of bulk-rock carbonate in formerly glassy samples support a biogenic origin for the tubes. Overprinting relationships of secondary minerals observed in thin section indicate the tubular structures are pre-metamorphic. Overlapping metamorphic and igneous crystallization ages thus imply the microbes colonized these rocks 3.4–3.5 Ga. Although, the search for traces of early life on Earth has recently intensified, research has largely been confined to sedimentary rocks. Subaqueous volcanic rocks represent a new geological setting in the search for early life that may preserve a largely unexplored Archean biomass.  相似文献   

16.
Three carbon components are evident in eleven analyzed mid-oceanic basalts: carbon on sample surfaces (resembling adsorbed gases, organic matter, or other non-magmatic carbon species acquired by the glasses subsequent to their eruption), mantle carbon dioxide in vesicles, and mantle carbon dissolved in the glasses. The combustion technique employed recovered only reduced sulfur, all of which appears to be indigenous to the glasses. The dissolved carbon concentration (measured in vesicle-free glass) increases with the eruption depth of the spreading ridge, and is consistent with earlier data which show that magma carbon solubility increases with pressure. The total glass carbon content (dissolved plus vesicular carbon) may be controlled by the depth of the shallowest ridge magma chamber. Carbon isotopic fractionation accompanies magma degassing; vesicle CO2 is about 3.8‰ enriched in 13C, relative to dissolved carbon. Despite this fractionation, δ13CPDB values for all spreading ridge glasses lie within the range ?5.6 and ?7.5, and the δ13CPDB of mantle carbon likely lies between ?5 and ?7. The carbon abundances and δ13CPDB values of Kilauea East Rift glasses apparently are influenced by the differentiation and movement of magma within that Hawaiian volcano. Using 3He and carbon data for submarine hydrothermal fluids, the present-day mid-oceanic ridge mantle carbon flux is estimated very roughly to be about 1.0 × 1013 g C/yr. Such a flux requires 8 Gyr to accumulate the earth's present crustal carbon inventory.  相似文献   

17.
18.
In this paper, we use carbon isotopes in the dissolved load of rivers from the Lesser Antilles volcanic arc (Guadeloupe, Martinique and Dominica islands) to constrain the source of the carbon dioxide (CO2) involved in the neutralization reactions during water–rock interactions. The δ13C data span a large range of variations, from –19‰ to –5 · 2‰ for DIC (dissolved inorganic carbon) concentrations ranging from 11 μM to 2000 μM. Coupled with major element concentrations, carbon isotopic ratios are interpreted as reflecting a mixture of magmatic CO2 (enriched in heavy carbon (δ13C ≈ –3 · 5‰) and biogenic CO2 produced in soils (enriched in light carbon (δ13C < –17‰)). Carbon isotopes show that, at the regional scale, 23 to 40% of CO2 consumed by weathering reactions is of magmatic origin and is transferred to the river system through aquifers under various thermal regimes. These numbers remain first‐order estimates as the major uncertainty in using carbon isotopes as a source tracer is that carbon isotopes can be fractionated by a number of processes, including soil and river degassing. Chemical weathering is clearly, at least, partly controlled by the input of magmatic CO2, either under hydrothermal (hot) or surficial (cold) weathering regimes. This study shows that the contribution of magmatic CO2 to chemical weathering is an additional parameter that could explain the high weathering rates of volcanic rocks. The study also shows that a significant part of the carbon degassed from the Earth's interior is not released as CO2 to the atmosphere, but as DIC to the ocean because it interacts with the groundwater system. This study calls for a better understanding of the contributions of deep carbon to the hydrosphere and its influence on the development of the Critical Zone. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
Abstract Carbon isotope fluctuations of sedimentary organic matter along the two geological traverses in the Yezo Group, Hokkaido, northern Japan, elucidate a detailed chemostratigraphy for the Cenomanian Stage on the northwestern Pacific margin. Visual characterization of the kerogen from mudstone samples shows that the major constituents of sedimentary organic matter originated as terrestrial higher plants. The atomic hydrogen/carbon ratios of the kerogen suggest that the original δ13C values of terrestrial organic matter (TOM) have not been affected significantly by thermal diagenesis. The patterns in two δ13CTOM curves are similar and independent of changes in lithology and total organic carbon contents, which suggests that TOM was mixed sufficiently before the deposition in the Yezo forearc basin for the δ13C composition having been homogenized. In addition, this implies that the Hokkaido δ13CTOM profiles represent the averaged temporal δ13C variations of terrestrial higher‐plant vegetation in the hinterlands of northeast Asia during Cenomanian time. Three shorter‐term (ca. 0.1 my duration) positive‐and‐negative δ13CTOM fluctuations of ∼1‰ are present in the Lower to Middle Cenomanian interval in the Yezo Group. On the basis of the age‐diagnostic taxa (ammonoids, inoceramids and planktic foraminifers), these discrete δ13CTOM events are interpreted to be correlated with those in the δ13C curves of pelagic carbonates from European basins. The correlation of δ13C events between the European and Yezo Group sections suggests that the shorter‐term δ13C fluctuations in Cenomanian ocean‐atmosphere carbon reservoirs are useful for global chemostratigraphic correlation of marine strata. In particular, the correlation of δ13C fluctuations of the so‐called ‘Mid‐Cenomanian event’ (MCE) implies: (i) the δ13C variations of global carbon reservoir during the MCE are precisely recorded in the δ13CTOM records; and (ii) the MCE δ13CTOM event is an efficient chronostratigraphic index for the Lower/Middle Cenomanian boundary of the Mid‐Cretaceous sequences.  相似文献   

20.
Carbon and oxygen isotopic determinations have been made of 29 species of Recent Indian Ocean planktonic foraminifera. Fourteen core-top samples were used and as many as 18 species were chosen from a single core-top sample. The δ13C of the foraminifera was compared with that of total dissolved CO2 (ΣCO2) and of calcite precipitated in isotopic equilibrium with ΣCO2. The foraminiferal calcite is always at least 1.2‰ less than the value estimated for equilibrium calcite. This carbon isotopic disequilibrium suggests the partial utilization of13C-depleted metabolic CO2. The calcite tests of several species, however, have δ13C values which are similar to the δ13C of ΣCO2 in seawater. This relationship suggests that important paleohydrographic information may be obtained from carbon isotope records based on analyses of several foraminiferal species from single deep-sea sediment samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号