首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract Isotopic analyses of organic carbon from the mid-Cretaceous sequence in Hokkaido, Japan, revealed a 2‰ positive excursion of δ13C values at the biostratigraphically defined Cenomanian/Turonian (C/T) boundary recognized in the Yezo Group. The planktonic foraminiferal Whiteinella archaeocretacea Zone, which is known to bracket the Cenomanian/Turonian boundary elsewhere in the world, was recognized in the Oyubari area of central Hokkaido based on the distribution of commonly occurring planktonic foraminifera. In the Tappu area of northwestern Hokkaido, where diagnostic planktonic foraminifera are rare but calcareous nannoplankton occur commonly, the interval coeval with the W. archaeocretacea Zone can also be established by recognizing the conjoined last appearance levels of Corollithion kennedyi and Axopodorhabdus albianus, both calcareous nannoplankton species. Carbon isotope profiles exhibit a similar pattern with comparable peaks and troughs occurring in the same stratigraphic position in the sequences. A prominent, positive 2‰ shift of δ13C values, here called ‘δ13C spike’ occurs in the middle of the W. archaeocretacea Zone in the Oyubari area and just above the conjoined last appearances of the two above-mentioned nannoplankton taxa in the Tappu area. The Cenomanian/Turonian boundary can be drawn just above the peak position of the spike in both sections. The Rock Eval analyses and biomarker analyses of organic carbon indicate that organic carbon subjected to our isotope analyses is of terrestrial origin. Therefore, the observed 2%o shift should reflect changes in the isotopic composition of the atmospheric CO2. A unique layer composed predominantly of sand-grain sized spumellarian Radiolaria is present immediately above the δ13C spike both in the Oyubari and Tappu areas, suggesting an increasing availability of both nutrients and silica in surface waters.  相似文献   

2.
Making Upper Cretaceous biostratigraphic correlations between the Northwest Pacific and Tethyan–Atlantic sections have been difficult because of rare frequencies of age-diagnostic macro- and microfossils in the sequences in the Northwest Pacific region. In order to correlate these sections precisely, an integrated planktic foraminiferal and bulk wood carbon-isotope stratigraphy from the upper Cenomanian to the lower Campanian succession (the middle–upper part of the Yezo Group) of Hokkaido, northern Japan is established with an average resolution of 50 k.y. The δ13C curves from bulk wood of the Yezo Group and from bulk carbonate of English Chalk show remarkably similar patterns of isotopic fluctuation, allowing the correlation of 22 carbon isotopic events between these sections. This high-resolution correlation greatly improves the previous micro- and macrofossil biostratigraphic schemes in the Northwest Pacific region, and reveals that global events, such as the oxygen depletion at the OAE 2 horizon, the constant decrease in pCO2 during the Late Cretaceous, and the eustatic sea-level falls in the late middle Turonian, Santonian/Campanian Boundary and early Campanian, are recorded in the Upper Cretaceous sequence of the Northwest Pacific.  相似文献   

3.
Ken  Sawada 《Island Arc》2006,15(4):517-536
Abstract Organic petrological observations of kerogen macerals and organic geochemical analyses of carbon isotopes of kerogen macerals and biomarkers were conducted on Neogene neritic sediments of the Takafu syncline area of central Japan. The Senmi, Sakainomiya and Lower Shigarami Formations in that area were deposited at the neritic provinces on the southern edge of the paleo‐Japan Sea during the Late Miocene to Early Pliocene. Sedimentary organic matter in these formations was almost terrigenous in origin. Changes in kerogen maceral compositions reflect sedimentological and tectonic histories evaluated in previous studies from sedimentary facies and paleontology. It was found that carbon isotope ratios (δ13C) of kerogen macerals increased from ?28‰ to ?25‰ from the Sakainomiya to the lower part of the Lower Shigarami Formations. The cause of that increase was presumably the expansion of C4 plants into southwest Japan. The timing was concordant with that of the expansion of C4 plant grasslands in East Asia. The oxicity (oxic to anoxic) conditions of sea bottoms evaluated from pristane/phytane ratios varied. Particularly, in the lower part of the Senmi Formation, layers in which no steroid biomarkers could be detected were found, and had presumably formed under oxic conditions when strong biodegradation had occurred. Concentrations of regular (C27–C29) steranes and dinosteranes were higher in the Sakainomiya and Lower Shigarami Formations. This indicates that dinoflagellates‐dominant primary productions were higher at those stages. In addition, concentrations of diatomaceous biomarkers such as C26 norsterane increased from the Lower Shigarami Formation, thus adding diatoms to the major producers. Furthermore, similar associations between the increases of δ13C values of kerogen macerals and concentrations of diatomaceous biomarkers were observed in the Takafu syncline area. Thus, the expansion of C4 plants was possibly associated with the high production of diatom in the shallow‐marine areas of the paleo‐Japan Sea during the Neogene Period.  相似文献   

4.
Immediately before the extinction of the end‐Guadalupian (Middle Permian; ca 260 Ma), a significant change to the global carbon cycle occurred in the superocean Panthalassa, as indicated by a prominent positive δ13C excursion called the Kamura event. However, the causes of this event and its connection to the major extinction of marine invertebrates remain unclear. To understand the mutual relationships between these changes, we analyzed the sulfur isotope ratio of the carbonate‐associated sulfate (CAS) and HCl‐insoluble residue, as well as the carbon isotope ratio of bulk organic matter, for the Middle‐Upper Permian carbonates of an accreted mid‐oceanic paleo‐atoll complex from Japan, where the Kamura event was first documented. We detected the following unique aspects of the stable carbon and sulfur isotope records. First, the extremely high δ13C values of carbonate (δ13Ccarb) over +5 ‰ during the Capitanian (late Guadalupian) were associated with large isotopic differences between carbonate and organic matter (Δ13C = δ13Ccarb ? δ13Corg). We infer that the Capitanian Kamura event reflected an unusually large amount of dissolved organic matter in the expanded oxygen minimum zone at mid‐depth. Second, the δ34S values of CAS (δ34SCAS) were inversely correlated with the δ13Ccarb values during the Capitanian to early Wuchiapingian (early Late Permian) interval. The Capitanian trend may have appeared under increased oceanic sulfate conditions, which were accelerated by intense volcanic outgassing. Bacterial sulfate reduction with increased sulfate concentrations in seawater may have stimulated the production of pyrite that may have incorporated iron in pre‐existing iron hydroxide/oxide. This stimulated phosphorus release, which enhanced organic matter production and resulted in high δ13Ccarb. Low δ34SCAS values under high sulfate concentrations were maintained and the continuous supply of sulfate cannot by explained only by the volcanic eruption of the Emeishan Trap, which has been proposed as a cause of the extinction. The Wuchiapingian δ34SCAS–δ13Ccarb correlation, likely related to low sulfate concentration, may have been caused by the removal of oceanic sulfate through the massive evaporite deposition.  相似文献   

5.
This study aimed to understand changes in the biogeochemical processing of organic matter (OM) in response to multiple stressors (e.g., littoral area expansion, wastewater input, and hydrological regulation) in East Dongting Lake (Central China) over the past 60 years, using analyses of total organic carbon (TOC), total nitrogen (TN), C/N ratios, δ13C, δ15N, and diatoms from 2 sediment cores collected from the littoral and central parts of the lake. OM mainly originated from phytoplankton and C3 plant‐derived soil OM based on the ranges of C/N ratios (from 7 to 11) and δ13C (between ?27‰ and ?23‰). Littoral area expansion due to siltation caused an increasing influx of terrestrial soil OM in the 1980s and the 1990s, subsequently lowering δ13C values and rising C/N ratios in both sediment cores. Meanwhile, higher δ15N was linked to a high influx of isotopically heavy nitrate from urban and agricultural wastewaters. After 2000, slight decreases in TOC and TN in the littoral area were attributable to reducing inputs of external OM, likely linked to declining sediment influx from the upper reaches resulting from the Three Gorges Dam impoundment. Contrasting increases in TOC, TN, and C/N ratios in the central part indicated a high influx of terrestrial soil OM due to the declining distance from the shoreline with littoral area expansion. Declining δ15N values after 2000 indicated an increase in N2‐fixing cyanobacteria with eutrophication. Changes in diatom assemblages in both the littoral and central zones reflected nutrient enrichment and hydrological alterations. These results indicate that littoral expansion, declining riverine influx, and anthropogenic nutrient inputs are potential driving forces for the biogeochemical processing of OM in floodplain lakes. This study provides sedimentary biogeochemical clues for tracking past limnological conditions of floodplain lakes that are subjected to increasing disturbances from hydrological regulation and eutrophication.  相似文献   

6.
Revealing of the sources and distributions of sedimentary organic matter in the East China Sea (ECS) is important for understanding its carbon cycle, which has significant temporal and spatial variability due to the influences of recent climate changes and anthropogenic activities. In this study, we report the contents of both terrestrial and marine biomarkers including ∑C27+C29+C31n-alkanes (38.6-580 ng/g), C37 alkenones (5.6-124.6 ng/g), brassicasterol (98-913 ng/g) and dinosterol (125-1521 ng/g) from the surface sediments in the Changjiang River Estuary (CRE) and shelf areas of the ECS. Several indices based on biomarker contents and ratios are calculated to assess the spatial distributions of both terrestrial and marine organic matter in the ECS surface sediments, and these results are compared with organic matter distribution patterns revealed by the δ13C (−20.1‰ to −22.7‰) and C/N ratio (5-7.5) of total organic matter. The contents of terrestrial biomarkers in the ECS surface sediments decrease seaward, controlled mostly by Changjiang River (CR) inputs and surface currents; while higher contents of the two marine biomarkers (brassicasterol and dinosterol) occur in upwelling areas outside the CRE and in the Zhejiang-Fujian coastal zone, controlled mostly by marine productivity. Four proxies, fTerr(δ13C) (the fraction of terrestrial organic matter in TOC estimated by TOC δ13C), odd-alkanes (∑C27+C29+C31n-alkanes), 1/Pmar-aq ((C23+C25+C29+C31)/(C23+C25) n-alkanes) and TMBR (terrestrial and marine biomarker ratio) (C27+C29+C31n-alkanes)/((C27+C29+C31) n-alkanes+(brassicasterol+dinosterol+alkenones)), reveal a consistent pattern showing the relative contribution of terrestrial organic matter (TOM) is higher in the CRE and along the Zhejiang-Fujian coastline, controlled mostly by CR inputs and currents, but the TOM contribution decreases seaward, as the influences of the CR discharge decrease.  相似文献   

7.
Globally, dissolved inorganic carbon (DIC) accounts for more than half the annual flux of carbon exported from terrestrial ecosystems via rivers. Here, we assess the relative influences of biogeochemical and hydrological processes on DIC fluxes exported from a tropical river catchment characterized by distinct land cover, climate and geology transition from the wet tropical mountains to the low‐lying savanna plains. Processes controlling changes in river DIC were investigated using dissolved organic carbon, particulate organic carbon and DIC concentrations and stable isotope ratios of DIC (δ13CDIC) at two time scales: seasonal and diel. The recently developed Isotopic Continuous Dissolved Inorganic Carbon Analyser was used to measure diel DIC concentration and δ13CDIC changes at a 15‐min temporal resolution. Results highlight the predominance of biologically mediated processes (photosynthesis and respiration) controlling diel changes in DIC. These resulted in DIC concentrations varying between 3.55 and 3.82 mg/l and δ13CDIC values ranging from ?19.7 ± 0.31‰ to ?17.1 ± 0.08‰. In contrast, at the seasonal scale, we observed wet season DIC variations predominantly from mixing processes and dry season DIC variations due to both mixing processes and biological processes. The observed wet season increases in DIC concentrations (by 6.81 mg/l) and δ13CDIC values of river water (by 5.4‰) largely result from proportional increases in subsurface inflows from the savanna plains (C4 vegetation) region relative to inflows from the rainforest (C3 vegetation) highlands. The high DIC river load during the wet season resulted in the transfer of 97% of the annual river carbon load. Therefore, in this gaining river, there are significant seasonal variations in both the hydrological and carbon cycles, and there is evidence of substantial coupling between the carbon cycles of the terrestrial and the fluvial environments. Recent identification of a substantial carbon sink in the savannas of northern Australia during wetter years in the recent past does not take into account the possibility of a substantial, rapid, lateral flux of carbon to rivers and back to the atmosphere. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
The Ediacaran Yangtze platform in South China, which represents depositional settings ranging from coastal to basinal, provides valuable information for understanding climate changes and animal evolution during the Ediacaran Period. Although the shallower settings have been investigated, research on the basinal sections has been limited. This has hampered efforts to establish stratigraphic correlations and understand the oceanographic setting of the Yangtze platform. In this paper, the chemostratigraphy of a basinal section at Fengtan, Hunan Province, is reported based on analyses of stable carbon isotope profiles in carbonates (δ13Ccarb), organic matter (δ13Corg), total organic carbon, 87Sr/86Sr ratios, and Mn, Rb, and Sr concentrations. The basinal section of the Doushantuo Formation, which is represented at Fengtan, provides data supporting regional correlations and oceanography. Three intervals in the Doushantuo Formation are correlated with the Three Gorges: (i) a negative δ13Ccarb anomaly with stable δ13Corg values and altered 87Sr/86Sr ratios in the lower section can be correlated to the boundary between Doushantuo Members 2 and 3 (Interval A); (ii) a relatively high δ13Ccarb anomaly with unaltered 87Sr/86Sr ratios (up to 0.7086) in the middle section corresponding to the lower part of Doushantuo Member 3 (Interval B); and (iii) a negative δ13Ccarb anomaly with lowered δ values in the upper section can be correlated to the long interval of negative δ13Ccarb (Interval C). The Gaskiers glaciation is likely represented in Interval A, and Interval C corresponds to the Shuram excursion reported for other Ediacaran localities. Our correlations confirm the depth gradient of δ13Ccarb in the Yangtze platform and imply that reductive conditions prevailed in the basinal section from the Early to Middle Ediacaran. Under such conditions, anaerobic degradation of organic carbon or methane perturbed the inorganic carbon isotopic compositions and was at least partly responsible for the depth gradient of δ13Ccarb.  相似文献   

9.
Closely spaced samples (285 in number) of varved sediments from the Upper Permian in Delaware Basin, Texas, have been analyzed for δ13Ccarb, δ13Corg, δ18Ocarb, Corg, Ccarb, and calcite/dolomite. δ13C records a dramatic rise from ?2.8 to +5.7‰ in only 4400 years, detected in three sections across the basin, extrapolating smoothly through a 600-year interruption by a local (west side of the basin) fresh-water inflow evidenced by low δ18O. This continuity and low Corg within the basin, both indicate that the excess net deposition of Corg, necessary to generate the rise in δ13C, took place in the ocean external to the Delaware Basin. Correlation with similar records from the Zechstein Basin suggest that the event was world-wide, although this poses obvious difficulties for the carbon cycle. The rate of rise of δ13C, and its sustained high level, must imply conversions of oxidized carbon to reduced carbon that are very large depending on which reservoirs were involved.  相似文献   

10.
We present a time series of carbon and oxygen stable isotope records of the last 30?000 14C years throughout the last glacial-postglacial cycle from western Qinghai-Xizhang (Tibet) Plateau. A 20-m core drilled in the south basin of Zabuye Salt Lake was analyzed for inorganic and organic carbon and total sulfur contents, δ13C and δ18O values of carbonates. Our results indicate that climatic changes have led to a drastic negative shift of stable isotope ratios at the transition between the Last Full Glacial and the postglacial phase during Later Pleistocene times (∼16.2 kyr BP), and a rapid positive shift at the transition from Pleistocene to Holocene (∼10.6 kyr BP). The first shift is marked by the drop of δ18Ocarb values of about 10‰ (from +2 to −8‰) and δ13Ccarb values of about 3‰ (from 5 to 2‰). The second shift which occurred at the transition from Pleistocene to Holocene was of similar magnitude but in the opposite direction. Isotope data, combined with total organic and inorganic carbon contents and the lithological composition of the core, suggest this lake was an alluvial pre-lake environment prior to ca. 28 14C kyr BP. During ca. 28-16.2 14C kyr BP, Zabuye Lake was likely a moderately deep lake with limited outflow. The cool and arid glacial climate led the lake level to drop drastically. Extended residence time overwhelmed the lower temperature and caused a steady increase of δ13Ccarb and δ18Ocarb values and total inorganic carbon content in the sediments. During ca. 16.2-10.6 14C kyr BP, this lake probably overflowed and received abundant recharge from melting glaciers when the deglaciation was in its full speed. A spike of markedly enhanced δ13Ccarb and δ18Ocarb is seen at ∼11.5 kyr BP, probably due to the isotopic effects left behind by the short but severe Younger Dryas (YD) event. After ca. 10.6 14C kyr BP, Zabuye Lake probably closed its surface outflow, due to strong desiccation and drastic climate warming. The Early and Middle Holocene were characterized by unstable climatic conditions with alternating warmer/cooler episodes as indicated by the severe fluctuations of total organic carbon, δ13C and δ18O values. A hypersaline salt lake environment was finally formed at Zabuye after ∼5 14C kyr BP when the mirabilite and halite concentrations steadily increased and became the dominant minerals in the sediments. Severe imbalance of inflow/outflow resulted in the drastic increase of total sulfur, δ13Ccarb and δ18Ocarb values and dominance of halite in the lake since ca. 3.8 kyr BP to present.  相似文献   

11.
We investigated the provenance of organic matter in the inner fjord area of northern Patagonia, Chile (~44–47°S), by studying the elemental (organic carbon, total nitrogen), isotopic (δ13C, δ15N), and biomarker (n-alkanoic acids from vascular plant waxes) composition of surface sediments as well as local marine and terrestrial organic matter. Average end-member values of N/C, δ13C, and δ15N from organic matter were 0.127±0.010, ?19.8±0.3‰, and 9.9±0.5‰ for autochthonous (marine) sources and 0.040±0.018, ?29.3±2.1‰, and 0.2±3.0‰ for allochthonous (terrestrial) sources. Using a mixing equation based on these two end-members, we calculated the relative contribution of marine and terrestrial organic carbon from the open ocean to the heads of fjords close to river outlets. The input of marine-derived organic carbon varied widely and accounted for 13–96% (average 61%) of the organic carbon pool of surface sediments. Integrated regional calculations for the inner fjord system of northern Patagonia covered in this study, which encompasses an area of ~4280 km2, suggest that carbon accumulation may account for between 2.3 and 7.8×104 ton C yr?1. This represents a storage capacity of marine-derived carbon between 1.8 and 6.2×104 ton yr?1, which corresponds to an assimilation rate of CO2 by marine photosynthesis between 0.06 and 0.23×106 ton yr?1. This rate suggests that the entire fjord system of Patagonia, which covers an area of ~240,000 km2, may represent a potentially important region for the global burial of marine organic matter and the sequestration of atmospheric CO2.  相似文献   

12.
After the severest mass extinction event in the Phanerozoic, biotic recovery from the extinction at the Permian–Triassic boundary required approximately 5 my, which covers the entire Early Triassic. It is important to obtain information on the superocean Panthalassa, which occupied most of the world ocean, to explore paleoenvironmental changes during the Early Triassic at the global scale. In order to establish the continuous lithostratigraphy of pelagic sediments in Panthalassa during the Early Triassic, high‐resolution reconstruction of the Lower Triassic pelagic sequence in Japan was conducted for the first time based on detailed field mapping and lithostratigraphic correlation in the Inuyama area, central Japan. The reconstructed Early Triassic sequence is approximately 9.5 m thick, consists of five rock types, and is divided into eight lithological units. For the reconstructed continuous sequence, measurement of carbon isotopic composition of sedimentary organic matter (δ13Corg) was carried out. Stratigraphic variation of the δ13Corg value shows large‐amplitude fluctuations between ?34.4 and ?21.0‰ throughout the sequence. In order to establish a higher resolution age model for the reconstructed Lower Triassic pelagic sequence, we correlated δ13Corg records in the Inuyama area with high‐resolution isotopic profiles of carbonate carbon (δ13Ccarb) from shallow‐marine carbonate sequences in southern China based on the similarity in general variation patterns with age constraints by radiolarian and conodont biostratigraphy. The result provides a high‐resolution time scale for the pelagic sequence of Panthalassa during the Smithian and Spathian. The age model suggests a drastic increase in sedimentation rate during the late Smithian, which should have been caused by the increase in terrigenous input to this site.  相似文献   

13.
Dissolved organic carbon (DOC) originating in peatlands can be mineralized to carbon dioxide (CO2) and methane (CH4), two potent greenhouse gases. Knowledge of the dynamics of DOC export via run‐off is needed for a more robust quantification of C cycling in peatland ecosystems, a prerequisite for realistic predictions of future climate change. We studied dispersion pathways of DOC in a mountain‐top peat bog in the Czech Republic (Central Europe), using a dual isotope approach. Although δ13CDOC values made it possible to link exported DOC with its within‐bog source, δ18OH2O values of precipitation and run‐off helped to understand run‐off generation. Our 2‐year DOC–H2O isotope monitoring was complemented by a laboratory peat incubation study generating an experimental time series of δ13CDOC values. DOC concentrations in run‐off during high‐flow periods were 20–30 mg L?1. The top 2 cm of the peat profile, composed of decaying green moss, contained isotopically lighter C than deeper peat, and this isotopically light C was present in run‐off in high‐flow periods. In contrast, baseflow contained only 2–10 mg DOC L?1, and its more variable C isotope composition intermittently fingerprinted deeper peat. DOC in run‐off occasionally contained isotopically extremely light C whose source in solid peat substrate was not identified. Pre‐event water made up on average 60% of the water run‐off flux, whereas direct precipitation contributed 40%. Run‐off response to precipitation was relatively fast. A highly leached horizon was identified in shallow catotelm. This peat layer was likely affected by a lateral influx of precipitation. Within 36 days of laboratory incubation, isotopically heavy DOC that had been initially released from the peat was replaced by isotopically lighter DOC, whose δ13C values converged to the solid substrate and natural run‐off. We suggest that δ13C systematics can be useful in identification of vertically stratified within‐bog DOC sources for peatland run‐off.  相似文献   

14.
Dissolved inorganic carbon isotope (δ13CDIC) is an important tool to reveal the carbon cycle in lake systems. However, there are only few studies focusing on the spatial variation of δ13CDIC of closed lakes. Here we analyze the characteristics of δ13CDIC of 24 sampled lakes (mainly closed lakes) across the Qiangtang Plateau (QTP) and identify the driving factors for its spatial variation. The δ13CDIC value of these observed lakes varies in the range of ? 15·0 to 3·2‰, with an average value of ? 1·2‰. The δ13CDIC value of closed lakes is close to the atmospheric isotopic equilibrium value, much higher than that in rivers and freshwater lakes reported before. The high δ13CDIC value of closed lakes is mainly attributed to the significant contribution of carbonate weathering in the catchment and the evasion of dissolved CO2 induced by the strong evaporation of lake water. The δ13CDIC value of closed lakes has a logarithmic correlation with water chemistry (TDS, DIC and pCO2), also suggesting that the evapo‐concentration of lake water can influence the δ13CDIC value. The δ13CDIC value shows two opposite logarithmic correlations with lake size depending on the δ13CDIC range. This study suggests that the δ13C in carbonates in lacustrine sediments can be taken as an indicator of lake volume variation in closed lakes on QTP. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
ABSTRACT

This study aims to differentiate the potential recharge areas and flow mechanisms in the North-eastern Basin, Palestine. The results differentiate the recharge into three main groups. The first is related to springs and some of the deep wells close to the Anabta Anticline, through the Upper Aquifer (Turonian) formation, with depleted δ18O and δ2H. The second is through the Upper Cenomanian formation surrounding the Rujeib Monocline in the southeast, where the lineament of the Faria Fault plays an important role, with relatively enriched δ13CDIC values of about ?4‰ (VPDB). The third is the Jenin Sub-series, which shows higher δ13CDIC values, with enriched δ18O and δ2H and more saline content. The deep wells from the Nablus area in the south of the basin indicate low δ13CDIC values due to their proximity to freshwater infiltrating faults. The deep wells located to the northwest of the basin have δ13CDIC values from ?8 to ?9‰ (VPDB), with enriched δ18O signatures, indicating slow recharge through thick soil.  相似文献   

16.
Stable isotopic signatures (δ13C and δ15N) and C/N ratios of suspended particulate organic matter (POM) were investigated from the surface water of Daya Bay during summer and winter of 2015. The relatively high δ13CPOM values suggested the input of 13C-depleted terrigenous organic matter was low in Daya Bay. There were significant correlations between δ13CPOM values and chlorophyll a concentrations both during summer and winter, suggesting the δ13CPOM values were mainly controlled by the phytoplankton biomass in the surface water. The distribution of δ15NPOM values was more complicated than that of δ13CPOM and displayed low values in the outer bay and the Dan'ao River estuary. 15N-depleted ammonia originating from industrial wastewater might have strongly influenced the water quality and stable isotopic signatures of POM near the Dan'ao River estuary. The δ13CPOM and δ15NPOM values strongly reflect the influences of anthropogenic activity and eutrophication in Daya Bay.  相似文献   

17.
New analyses reveal two intervals of distinctly lower δ13C values in the terrestrial organic matter of Permian–Triassic sequences in northern Xinjiang, China. The younger negative δ13Corg spike can be correlated to the conspicuous and sharp δ13C drops both in carbonate carbon and organic carbon near the Permian–Triassic event boundary (PTEB) in the marine section at Meishan. The geochemical correlation criteria are accompanied by a magnetic susceptibility pulse and higher abundances of distinctive, chain-like organic fossil remains of Reduviasporonites.The older negative δ13Corg spike originates within a latest Permian regression. Significant changes in organic geochemical proxies are recorded in the equivalent interval of the marine section at Meishan. These include relatively higher concentrations of total organic carbon, isorenieratane, C14–C30 aryl isoprenoids and lower ratios of pristane/phytane that, together, indicate the onset of anoxic, euxinic and restricted environments within the photic zone. The massive and widespread oxidation of buried organic matter that induced these euxinic conditions in the ocean would also result in increased concentrations of 13C-depleted atmospheric CO2. The latest Permian environmental stress marked by the older negative δ13Corg episode can be correlated with the distinct changeover of ostracod assemblages and the occurrences of morphological abnormalities of pollen grains. These observations imply that biogeochemical disturbance was manifested on the land at the end of the Permian and that terrestrial organisms responded to it before the main extinction of the marine fauna.  相似文献   

18.
We measured the concentrations of dissolved inorganic carbon (DIC) and major ions and the stable carbon isotope ratios of DIC (δ13CDIC) in two creeks discharging from carbonate‐rich sulphide‐containing mine tailings piles. Our aim was to assess downstream carbon evolution of the tailings discharge as it interacted with the atmosphere. The discharge had pH of 6.5–8.1 and was saturated with respect to carbonates. Over the reach of one creek, the DIC concentrations decreased by 1.1 mmol C/l and δ13CDIC increased by ~4.0‰ 200 m from the seep source. The decrease in the DIC concentrations was concomitant with decreases in the partial pressure of CO2(aq) because of the loss of excess CO2(aq) from the discharge. The corresponding enrichment in the δ13CDIC is because of kinetic isotope fractionation accompanying the loss of CO2(g). Over the reach of the other creek, there was no significant decrease in the DIC concentrations or notable changes in the δ13CDIC. The insignificant change in the DIC concentrations and the δ13CDIC is because the first water sample was collected 160 m away from the discharge seep, not accessible during this research. In this case, most of the excess CO2(aq) was lost before our first sampling station. Our results indicate that neutral discharges from tailings piles quickly lose excess CO2(aq) to the atmosphere and the DIC becomes enrich in 13C. We suggest that a significant amount of carbon cycling in neutral discharges from tailings piles occur close to the locations where the discharge seeps to the surface. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Three carbon components are evident in eleven analyzed mid-oceanic basalts: carbon on sample surfaces (resembling adsorbed gases, organic matter, or other non-magmatic carbon species acquired by the glasses subsequent to their eruption), mantle carbon dioxide in vesicles, and mantle carbon dissolved in the glasses. The combustion technique employed recovered only reduced sulfur, all of which appears to be indigenous to the glasses. The dissolved carbon concentration (measured in vesicle-free glass) increases with the eruption depth of the spreading ridge, and is consistent with earlier data which show that magma carbon solubility increases with pressure. The total glass carbon content (dissolved plus vesicular carbon) may be controlled by the depth of the shallowest ridge magma chamber. Carbon isotopic fractionation accompanies magma degassing; vesicle CO2 is about 3.8‰ enriched in 13C, relative to dissolved carbon. Despite this fractionation, δ13CPDB values for all spreading ridge glasses lie within the range ?5.6 and ?7.5, and the δ13CPDB of mantle carbon likely lies between ?5 and ?7. The carbon abundances and δ13CPDB values of Kilauea East Rift glasses apparently are influenced by the differentiation and movement of magma within that Hawaiian volcano. Using 3He and carbon data for submarine hydrothermal fluids, the present-day mid-oceanic ridge mantle carbon flux is estimated very roughly to be about 1.0 × 1013 g C/yr. Such a flux requires 8 Gyr to accumulate the earth's present crustal carbon inventory.  相似文献   

20.
We evaluated changes in siliceous export production and the source of organic matter preserved in sediment core MD07-3109H recovered from the Gulf of Ancud, Chiloé Inner Sea (42°S, 72°W, water column depth: 328 m), southern Chile. We analyzed the abundance of siliceous microfossils (diatoms, silicoflagellates, sponge spicules, Chrysophyte cysts, phytoliths), geochemical proxies (weight percent silicon %SiOPAL, organic carbon, total nitrogen, C/N molar), and sediment stable isotopes (δ13Corg, δ15N). Chronology based on 210Pb and 14C provided an accumulated age of 144 years at the base of the core.Sediments of core MD07-3109H are predominantly marine in origin, averaging δ13Corg=–20.75‰±0.82, δ15N=8.7±0.35‰, and C/N=8.76±0.36. Marine diatoms compose 94% of the total assemblage of siliceous microfossils. Our record of productivity based on the mass accumulation rates of organic carbon, total nitrogen, SiOPAL, and total diatoms showed high values between 1863 and 1869 AD followed by a declining trend until 1921 AD, a transition period from 1921 to 1959 AD with fluctuating values, and a clear decreasing pattern from 1960 AD to the present. This marked reduction in productivity was associated with decreased precipitation and Puelo River streamflow (41°S), as well as a warmer and more stratified water column, especially since the 1980s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号