首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Abstract Carbon isotope fluctuations of sedimentary organic matter along the two geological traverses in the Yezo Group, Hokkaido, northern Japan, elucidate a detailed chemostratigraphy for the Cenomanian Stage on the northwestern Pacific margin. Visual characterization of the kerogen from mudstone samples shows that the major constituents of sedimentary organic matter originated as terrestrial higher plants. The atomic hydrogen/carbon ratios of the kerogen suggest that the original δ13C values of terrestrial organic matter (TOM) have not been affected significantly by thermal diagenesis. The patterns in two δ13CTOM curves are similar and independent of changes in lithology and total organic carbon contents, which suggests that TOM was mixed sufficiently before the deposition in the Yezo forearc basin for the δ13C composition having been homogenized. In addition, this implies that the Hokkaido δ13CTOM profiles represent the averaged temporal δ13C variations of terrestrial higher‐plant vegetation in the hinterlands of northeast Asia during Cenomanian time. Three shorter‐term (ca. 0.1 my duration) positive‐and‐negative δ13CTOM fluctuations of ∼1‰ are present in the Lower to Middle Cenomanian interval in the Yezo Group. On the basis of the age‐diagnostic taxa (ammonoids, inoceramids and planktic foraminifers), these discrete δ13CTOM events are interpreted to be correlated with those in the δ13C curves of pelagic carbonates from European basins. The correlation of δ13C events between the European and Yezo Group sections suggests that the shorter‐term δ13C fluctuations in Cenomanian ocean‐atmosphere carbon reservoirs are useful for global chemostratigraphic correlation of marine strata. In particular, the correlation of δ13C fluctuations of the so‐called ‘Mid‐Cenomanian event’ (MCE) implies: (i) the δ13C variations of global carbon reservoir during the MCE are precisely recorded in the δ13CTOM records; and (ii) the MCE δ13CTOM event is an efficient chronostratigraphic index for the Lower/Middle Cenomanian boundary of the Mid‐Cretaceous sequences.  相似文献   

2.
Machiko  Tamaki  Yasuto  Itoh 《Island Arc》2008,17(2):270-284
Abstract   Paleomagnetic studies provide constraints on the geometric configuration of the eastern Eurasian margin on geological time scales. Characteristic remanent magnetization components were isolated from eight sites by progressive demagnetization executed on samples from 25 sites in the Oyubari area, central Hokkaido where the Late Cretaceous Yezo Group is distributed. After tilt-correction, all sites show normal polarity site-mean directions, and well-clustered directions pass a positive fold test and a correlation test. Planktonic foraminifera indicate an age range of Cenomanian to Turonian, and the studied section is correlated to the geomagnetic polarity chron C34n. Reliable formation-mean directions that have been corrected for post-depositional shallowing (D = 7.5°, I = 65.9°, α95 = 6.6°) are characterized by inclination data indicative of no significant latitudinal translation since the Late Cretaceous. Central Hokkaido has, therefore, been situated adjacent to easternmost Mongolia including Sikhote Alin around the present latitude since the Late Cretaceous. Declination data require significant differential rotation between Hokkaido and the eastern Asian margin, which may be indicative of rearrangement of crustal blocks along the continental margin.  相似文献   

3.
Carbon and oxygen isotopic determinations have been made of 29 species of Recent Indian Ocean planktonic foraminifera. Fourteen core-top samples were used and as many as 18 species were chosen from a single core-top sample. The δ13C of the foraminifera was compared with that of total dissolved CO2 (ΣCO2) and of calcite precipitated in isotopic equilibrium with ΣCO2. The foraminiferal calcite is always at least 1.2‰ less than the value estimated for equilibrium calcite. This carbon isotopic disequilibrium suggests the partial utilization of13C-depleted metabolic CO2. The calcite tests of several species, however, have δ13C values which are similar to the δ13C of ΣCO2 in seawater. This relationship suggests that important paleohydrographic information may be obtained from carbon isotope records based on analyses of several foraminiferal species from single deep-sea sediment samples.  相似文献   

4.
Ocean Drilling Program Leg 199 Site 1220 provides a continuous sedimentary section across the Paleocene/Eocene (P/E) transition in the carbonate‐bearing sediments on 56–57 Ma oceanic crust. The large negative δ13C shift in seawater is likely due to the disintegration of methane hydrate, which is expected to be rapidly changed to carbon dioxide in the atmosphere and well‐oxygenated seawater, leading to a reduction in deep‐sea pH. A pH decrease was very likely responsible for the emergence of agglutinated foraminiferal fauna as calcareous fauna was eliminated by acidification at the P/E transition at Site 1220. The absence of the more resistant calcareous benthic foraminifera and the presence of the planktonic foraminifera at Site 1220 is interesting and unique, which indicates that calcareous benthic foraminifera suffered greatly from living on the seafloor. Box model calculation demonstrates that, assuming the same mean alkalinity as today, pCO2 must increase from 280 ppm to about 410 ppm for the calcite undersaturation in the deep ocean and for the oversaturation in the surface ocean during the P/E transition. The calculated increased pCO2 coincides with paleo‐botanical evidence. The current global emission rate (~7.3 peta (1015) gC/y) of anthropogenic carbon input is approximately 30 times of the estimate at the P/E transition. The results at the P/E transition give an implication that the deep sea benthic fauna will be threatened in future in combination with ocean acidification, increased sea surface temperature and more stratified surface water.  相似文献   

5.
New high resolution carbon isotope stratigraphies from two basinal pelagic carbonate successions in northern Germany (Halle and Oerlinghausen, Münsterland Cretaceous Basin) resolve late Cenomanian to early Mid-Turonian carbon cycle variations at timescales of less than 100 kyr. Beside the major carbon isotope excursion of the late Cenomanian oceanic anoxic event (OAE 2), 11 small-scale distinct features are precisely resolved in the δ13C carbonate curve and related to boreal macrofossil zonations. The small-scale carbon isotope events correspond to secular δ13C carbonate variations identified previously in the English Chalk. The boreal high-resolution δ13C carbonate curve shows a detailed coincidence with two Tethyan δ13C curves from Italy, what demonstrates the interregional significance of the δ13C dates and allows their correlation within error limits of ± 40 kyr. Furthermore, the new δ13C curve enables the calibration of boreal and tethyan macro- and microfossil zonations. Accordingly, the Tethyan calcareous nannoplankton boundary NC13/NC14 corresponds to the boreal FO of C. woollgari, the index taxon for the Lower-Middle Turonian boundary. The cyclic appearance and the temporal spacing of the small-scale carbon isotope events suggest that orbital forcing exerted control on surface water productivity and organic matter preservation at the sea floor.  相似文献   

6.
ABSTRACT

This study aims to differentiate the potential recharge areas and flow mechanisms in the North-eastern Basin, Palestine. The results differentiate the recharge into three main groups. The first is related to springs and some of the deep wells close to the Anabta Anticline, through the Upper Aquifer (Turonian) formation, with depleted δ18O and δ2H. The second is through the Upper Cenomanian formation surrounding the Rujeib Monocline in the southeast, where the lineament of the Faria Fault plays an important role, with relatively enriched δ13CDIC values of about ?4‰ (VPDB). The third is the Jenin Sub-series, which shows higher δ13CDIC values, with enriched δ18O and δ2H and more saline content. The deep wells from the Nablus area in the south of the basin indicate low δ13CDIC values due to their proximity to freshwater infiltrating faults. The deep wells located to the northwest of the basin have δ13CDIC values from ?8 to ?9‰ (VPDB), with enriched δ18O signatures, indicating slow recharge through thick soil.  相似文献   

7.
Making Upper Cretaceous biostratigraphic correlations between the Northwest Pacific and Tethyan–Atlantic sections have been difficult because of rare frequencies of age-diagnostic macro- and microfossils in the sequences in the Northwest Pacific region. In order to correlate these sections precisely, an integrated planktic foraminiferal and bulk wood carbon-isotope stratigraphy from the upper Cenomanian to the lower Campanian succession (the middle–upper part of the Yezo Group) of Hokkaido, northern Japan is established with an average resolution of 50 k.y. The δ13C curves from bulk wood of the Yezo Group and from bulk carbonate of English Chalk show remarkably similar patterns of isotopic fluctuation, allowing the correlation of 22 carbon isotopic events between these sections. This high-resolution correlation greatly improves the previous micro- and macrofossil biostratigraphic schemes in the Northwest Pacific region, and reveals that global events, such as the oxygen depletion at the OAE 2 horizon, the constant decrease in pCO2 during the Late Cretaceous, and the eustatic sea-level falls in the late middle Turonian, Santonian/Campanian Boundary and early Campanian, are recorded in the Upper Cretaceous sequence of the Northwest Pacific.  相似文献   

8.
Benthic foraminiferal oxygen and carbon isotopic records from Southern Ocean sediment cores show that during the last glacial period, the South Atlantic sector of the deep Southern Ocean filled to roughly 2500 m with water uniformly low in δ13C, resulting in the appearance of a strong mid-depth nutricline similar to those observed in glacial northern oceans. Concomitantly, deep water isotopic gradients developed between the Pacific and Atlantic sectors of the Southern Ocean; the δ13C of benthic foraminifera in Pacific sediments remained significantly higher than those in the Atlantic during the glacial episode. These two observations help to define the extent of what has become known as the ‘Southern Ocean low δ13C problem’. One explanation for this glacial distribution of δ13C calls upon surface productivity overprints or changes in the microhabitat of benthic foraminifera to lower glacial age δ13C values. We show here, however, that glacial-interglacial δ13C shifts are similarly large everywhere in the deep South Atlantic, regardless of productivity regime or sedimentary environment. Furthermore, the degree of isotopic decoupling between the Atlantic and Pacific basins is proportional to the magnitude of δ13C change in the Atlantic on all time scales. Thus, we conclude that the profoundly altered distribution of δ13C in the glacial Southern Ocean is most likely the result of deep ocean circulation changes. While the characteristics of the Southern Ocean δ13C records clearly point to reduced North Atlantic Deep Water input during glacial periods, the basinal differences suggest that the mode of Southern Ocean deep water formation must have been altered as well.  相似文献   

9.
The results of a calcareous nannofossil biostratigraphic investigation of the North Fork Cottonwood Creek section of the Budden Canyon Formation (BCF; Hauterivian–Turonian) in northern California are summarized using the Boreal – cosmopolitan Boreal Nannofossil Biostratigraphy (BC) – Upper Cretaceous Nannofossil Biostratigraphy (UC) nannofossil zonal schemes of Bown et al. and Burnett et al. Sixteen intervals, ranging from the BC15 to UC8 zones, were established in the section. Combined biostratigraphic and magnetostratigraphic studies suggest a Hauterivian to mid‐Turonian age for the studied sequence. The Hauterivian–Barremian, Barremian–Aptian, Aptian–Albian, Albian–Cenomanian, and Cenomanian–Turonian stage boundaries were delineated near the top of the Ogo Member, below the Huling Sandstone Member, within the upper Chickabally Member, in the upper portion of the Bald Hills Member and within the Gas Point Member, respectively. Unconformities probably exist at the base of the Huling Sandstone Member and the upper part of the upper Chickabally Member. The nannofossil assemblage in the North Fork Cottonwood Creek suggests that the study area was under the influence of cold‐water conditions during the Barremian to Lower Aptian interval, shifting to tropical/warm‐water conditions during the Albian to Turonian interval as a result of the mid‐Cretaceous global warming. Although oceanic anoxic events have not yet been reported in the BCF, preliminary total organic carbon, along with nannofossil data, suggest the presence of the global Cenomanian–Turonian boundary oceanic anoxic event 2.  相似文献   

10.
11.
The Holocene stalagmite FG01 collected at the Fukugaguchi Cave in Itoigawa, central Japan provides a unique high‐resolution record of the East Asian winter monsoon. Because of the climate conditions on the Japan Sea side of the Japanese islands, the volume of precipitation during the winter is strongly reflected in the stalagmite δ18O signal. Examination of the carbon isotopes and the Mg/Ca ratio of FG01 provided additional information on the Holocene climate in Itoigawa, which is characterized by two different modes separated at 6.4 ka. Dripwater composition and the correlation between the δ13C and Mg/Ca data of FG01 indicate the importance of prior calcite precipitation (PCP), a process that selectively eliminated 12C and calcium ions from infiltrating water from CO2 degassing and calcite precipitation. In an earlier period (10.0–6.4 ka), an increase in soil pCO2 associated with warming and wetting climate trends was a critical factor that enhanced PCP, and resulted in an increasing trend in the Mg/Ca and δ13C data and a negative correlation between the δ13C and δ18O profiles. A distinct peak in the δ13C age profile at 6.8 ka could be a response to an increase of approximately 10% in C4 plants in the recharge area. At 6.4 ka, the climate mode changed to another, and correlation between δ18O and δ13C became positive. In addition, a millennial‐scale variation in δ18O and pulsed changes in δ13C and Mg/Ca became distinct. Assuming that δ18O and PCP were controlled by moisture in the later period, the volume of precipitation was high during 6.0–5.2, 4.4–4.0, and 3.0–2.0 ka. In contrast, the driest interval in Itoigawa was during 0.2–0.4 ka, and broadly corresponds to the Little Ice Age.  相似文献   

12.
Ritsuo Nomura 《Island Arc》2021,30(1):e12421
The lower part of the Josoji Formation, Shimane Peninsula, contains clues for figuring out changes in deep-water characteristics during the opening of the Japan Sea. The foraminiferal assemblage includes early to middle Miocene biostratigraphic index taxa such as planktonic foraminiferal Globorotalia zealandica and Globorotaloides suteri. The occurrence of these two species, together with the absence of praeorbulinids, suggests that the lower part of the Josoji Formation is assigned to the top of planktonic foraminiferal Zone N7/M4 (16.39 Ma). The benthic foraminiferal assemblage, which is characterized by Cyclammina cancellata and Martinottiella communis, clearly suggests that the lower Josoji Formation was deposited at bathyal depths, and that it developed in association with the abrupt appearance of deep-sea calcareous forms. Such bathyal taxa are the main constituents of the Spirosigmoilinella compressa–Globobulimina auriculata Zone of the Josoji Formation and also of the Gyrodina–Gyroidinoides Zone at Ocean Drilling Program Site 797 in the Japan Sea. The base of these benthic foraminiferal zones can be correlated with the base of the nannofossil Sphenolithus heteromorphus Base Zone (= CNM6/CN3); thus, its estimated age is 17.65 Ma. This biostratigraphic information suggests that the lower Josoji Formation was deposited from shortly before 17.65–16.39 Ma in upper limit age. Evidence that fresh to brackish and shallow-water basins formed in the rifting interval of 20–18 Ma in the Japan Sea borderland suggests that the abrupt appearance of deep-sea calcareous foraminifera occurred about 1 my earlier in this area than in other sedimentary basins and suggests that a significant paleoceanographic change occurred in the proto-Japan Sea at 17.65 Ma.  相似文献   

13.
New data from three Tasman Sea cores support Keigwin's [1] observation that the δ13C of Pacific benthic foraminifera (and by inference bottom-water TCO2) decreased by 0.7‰ at about 6.5 Myr B.P. Simple box models are developed and used to test several hypotheses about the cause of the δ13C decrease. We favor the idea that the δ13C shift was due to a rapid change in TCO2 cycling within the oceans (such as would result from either a decrease in upwelling rate, or an increase in the fraction of PO43? reaching the deep oceans in particulate organic matter and a corresponding drop in the preformed PO43? concentration). The δ13C decrease across the shift might reflect either a global decrease in upwelling rate, or a different abyssal circulation pattern before the shift.  相似文献   

14.
13C/12C- and 18O/16O-signatures of Calcite Precipitations in Drainage Systems Measurements of drainage waters show two distinct processes of calcite precipitation: 1. reprecipitation of calcium carbonate previously dissolved in groundwaters and 2. absorption of atmospheric CO2 by alkaline solutions. Both processes may be distinguished by the stable isotopes of oxygen and carbon. Calcite precipitated from carbonate groundwater yields δ13C ≈ ?13%0 (PDB) and δ18O ≈ 24%0 (SMOW), whereas calcite produced by CO2-absorption shows δ13C ≈ ?25%0 (PDB) and δ18O ≈ 10%0 (SMOW).  相似文献   

15.
Biomarker analyses for evaluating maturity of organic matter and depositional environments such as redox conditions, were performed in sediments across the Cenomanian–Turonian boundary (CTB) in the Saku Formation of the Yezo Group distributed along the Shumarinai‐gawa River and the Omagari‐zawa River, both in the Tomamae area, Hokkaido, Japan. Maturity indicators using steranes and hopanes, show that organic matter in sediments from the Shumarinai‐gawa and Omagari‐zawa sections are of lower maturity than those from the Hakkin‐gawa section (Oyubari area). Moreover, the ββ hopane ratios clearly show that the maturity of the Shumarinai‐gawa samples is lower than that of the Omagari‐zawa samples. These variations in the maturity of organic matter presumably reflect the difference in their burial histories. The results for the pristane/phytane (Pr/Ph) ratios suggest that the Shumarinai‐gawa samples were deposited under dysoxic to anoxic environments across the CTB, while the depositional environments of the Omagari‐zawa samples were relatively oxic. By another paleoredox indicator using C35 homohopanoids including a homohopene index (HHenI), higher values are observed in the Shumarinai‐gawa section, particularly in the horizons of the preceding period and an early stage of the first negative shift phase and the latest oceanic anoxic event 2 (OAE2) interval. These results suggest that the Shumarinai‐gawa samples record dysoxic to anoxic environments across the CTB. In contrast, the signals for the C35 homohopanoid index values show a relatively oxic condition in the Omagari‐zawa section. The trends of stratigraphic variations in redox conditions are different from those in the OAE2 interval in the proto‐Atlantic and Tethys regions as reported previously. Hence, the redox variations in the Tomamae area were basically related to a local environmental setting rather than global anoxia. However, the prominent anoxic emphasis observed in the HHenI profile of the Shumarinai‐gawa section can be a distinctive, and possibly global, event in the North‐West Pacific just before the OAE2.  相似文献   

16.
Stable isotopes in the water molecule (2H or D and 18O), carbon, and nitrogen are useful tracers and integrators of processes in plant ecohydrological systems across scales. Over the last few years, there has been growing interest in regional to continental scale synthesis of stable isotope data with a view to elucidating biogeochemical and ecohydrological patterns. Published datasets from the humid tropics, however, are limited. To be able to contribute to bridging the “data gap” in the humid tropics, here, we publish a relatively novel and unique suite of δ13C, δ15N, δ2H, and δ18O isotope data from three sites across a moisture gradient and contrasting land use in Puerto Rico. Plant tissue (xylem and leaf) samples from two species of mahogany (Swietenia macrophylla and Swietenia mahagoni) and soil samples down to 60 cm in the soil profile were collected in relatively “wet” (July 2012) and “dry” (February 2013) periods at two sites in northeastern (Luquillo) and southwestern (Susua) Puerto Rico. The same sampling suite is also being made available from a highly urbanized site in the capital San Juan. Leaf samples taken in July 2012 and February 2013 were analyzed for δ13C and δ15N; all xylem and bulk soil samples were analyzed for δ2H and δ18O. Soil samples taken in July 2012 were analyzed for δ13C and δ15N. Leaf δ15N and δ13C dataset showed patterns that are possibly associated with site differences. While spatial patterns were also apparent in soil δ15N and δ13C dataset, the positively linear δ15N –δ13C relationship tends to weaken with site moisture. Soil depth and site moisture patterns were also observed in the δ2H and δ18O datasets of bulk soil and xylem samples. The purpose of these datasets is to provide baseline information on soil–plant water (δ2H and δ18O, N = 319), δ13C (N = 272), and δ15N (N = 269) that may be useful in a wide range of research questions from ecohydrological relations to biogeochemical patterns in soils and vegetation.  相似文献   

17.
High resolution benthic foraminiferal stable isotopes (δ18O, δ13C) and molecular biomarkers in the sediments are used here to infer rapid climatic changes for the last 8200 years in the Ría de Muros (NW Iberian Margin). Benthic foraminiferal δ18O and δ13C potentially register migrations in the position of the hydrographic front formed between two different intermediate water masses: Eastern North Atlantic Central Water of subpolar origin (ENACWsp) and subtropical origin (ENACWst). The molecular biomarkers in the sediment show a strong coupling between continental organic matter inputs and negative δ13C values in benthic foraminifera. The rapid centennial and millennial events registered in these records have been compared with two well known North Atlantic Holocene records from the subtropical Atlantic sea surface temperatures (SST) anomalies off Cape Blanc, NW Africa and the subpolar Atlantic (Hematite Stained Grains percentage, subpolar North Atlantic). Comparison supports a strong link between high- and low-latitude climatic perturbations at centennial–millennial time scales during the Holocene. Spectral analyses also points to a pole-to-equator propagation of the so-called 1500 yr cycles. Our results demonstrate that during the Holocene, the NW Iberian Margin has undergone a series of rapid events which are likely triggered at high latitudes in the North Atlantic and are rapidly propagated towards lower latitudes. Conceivably, the propagation of these rapid climatic changes involves a shift in atmospheric and oceanic circulatory systems.  相似文献   

18.
We present a time series of carbon and oxygen stable isotope records of the last 30?000 14C years throughout the last glacial-postglacial cycle from western Qinghai-Xizhang (Tibet) Plateau. A 20-m core drilled in the south basin of Zabuye Salt Lake was analyzed for inorganic and organic carbon and total sulfur contents, δ13C and δ18O values of carbonates. Our results indicate that climatic changes have led to a drastic negative shift of stable isotope ratios at the transition between the Last Full Glacial and the postglacial phase during Later Pleistocene times (∼16.2 kyr BP), and a rapid positive shift at the transition from Pleistocene to Holocene (∼10.6 kyr BP). The first shift is marked by the drop of δ18Ocarb values of about 10‰ (from +2 to −8‰) and δ13Ccarb values of about 3‰ (from 5 to 2‰). The second shift which occurred at the transition from Pleistocene to Holocene was of similar magnitude but in the opposite direction. Isotope data, combined with total organic and inorganic carbon contents and the lithological composition of the core, suggest this lake was an alluvial pre-lake environment prior to ca. 28 14C kyr BP. During ca. 28-16.2 14C kyr BP, Zabuye Lake was likely a moderately deep lake with limited outflow. The cool and arid glacial climate led the lake level to drop drastically. Extended residence time overwhelmed the lower temperature and caused a steady increase of δ13Ccarb and δ18Ocarb values and total inorganic carbon content in the sediments. During ca. 16.2-10.6 14C kyr BP, this lake probably overflowed and received abundant recharge from melting glaciers when the deglaciation was in its full speed. A spike of markedly enhanced δ13Ccarb and δ18Ocarb is seen at ∼11.5 kyr BP, probably due to the isotopic effects left behind by the short but severe Younger Dryas (YD) event. After ca. 10.6 14C kyr BP, Zabuye Lake probably closed its surface outflow, due to strong desiccation and drastic climate warming. The Early and Middle Holocene were characterized by unstable climatic conditions with alternating warmer/cooler episodes as indicated by the severe fluctuations of total organic carbon, δ13C and δ18O values. A hypersaline salt lake environment was finally formed at Zabuye after ∼5 14C kyr BP when the mirabilite and halite concentrations steadily increased and became the dominant minerals in the sediments. Severe imbalance of inflow/outflow resulted in the drastic increase of total sulfur, δ13Ccarb and δ18Ocarb values and dominance of halite in the lake since ca. 3.8 kyr BP to present.  相似文献   

19.
Records of the past neodymium (Nd) isotope composition of the deep ocean can resolve ambiguities in the interpretation of other tracers. We present the first Nd isotope data for sedimentary benthic foraminifera. Comparison of the ?Nd of core-top foraminifera from a depth transect on the Cape Basin side of the Walvis Ridge to published seawater data, and to the modern dissolved SiO2–?Nd trend of the deep Atlantic, suggests that benthic foraminifera represent a reliable archive of the deep water Nd isotope composition. Neodymium isotope values of benthic foraminifera from ODP Site 1264A (Angola Basin side of the Walvis Ridge) from the last 8 Ma agree with Fe–Mn oxide coatings from the same samples and are also broadly consistent with existing fish teeth data for the deep South Atlantic, yielding confidence in the preservation of the marine Nd isotope signal in all these archives. The marine origin of the Nd in the coatings is confirmed by their marine Sr isotope values. These important results allow application of the technique to down-core samples.The new ?Nd datasets, along with ancillary Cd/Ca and Nd/Ca ratios from the same foraminiferal samples, are interpreted in the context of debates on the Neogene history of North Atlantic Deep Water (NADW) export to the South Atlantic. In general, the ?Nd and δ13C records are closely correlated over the past 4.5 Ma. The Nd isotope data suggest strong NADW export from 8 to 5 Ma, consistent with one interpretation of published δ13C gradients. Where the ?Nd record differs from the nutrient-based records, changes in the pre-formed δ13C or Cd/Ca of southern-derived deep water might account for the difference. Maximum NADW-export for the entire record is suggested by all proxies at 3.5–4 Ma. Chemical conditions from 3 to 1 Ma are totally different, showing, on average, the lowest NADW export of the record. Modern-day values again imply NADW export that is about as strong as at any stage over the past 8 Ma.  相似文献   

20.
Seven Miocene Pacific Ocean Deep Sea Drilling Project sites from four different water masses (planktonic foraminiferal biogeographic regions) have been correlated using 18 prominent carbon isotopic events defined in the benthic foraminiferal δ13C records in DSDP Site 289. The correlations are based on the assumption that there are global or at least Pacific-wide controls on the δ13C of deep-water HCO3?. Each of the individual δ13C records is correlated to Site 289 based on the shape of the curves in a manner analogous to that used to correlate sea-floor magnetic anomaly patterns.The results of this correlation experiment confirm that planktonic foraminiferal biostratigraphy and carbon isotopic stratigraphy are consistent within the tropical surface water mass and precise to ±100,000 years. Correlations between surface water masses suggest that the precision of foraminiferal biostratigraphy is on the average less than ±200,000 years due to the lack of cosmopolitan marker species and diachronism of species occurrences. Carbon isotope stratigraphy used in conjunction with biostratigraphy has the potential to provide an easily utilized, globally applicable, correlation tool (with an interregional precision of ±100,000 years or better) as more continuous and undisturbed deep-sea sections become available as a result of the Hydraulic Piston Coring Program.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号