首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The interpretation of the physico-chemical processes in clouds is facilitated by segregating in situ cloud elements from their carrier gas and small particles (interstitial aerosol). Thus, the present study focuses on the quantitative phase segregation of interstitial air from cloud phase by two complementary samplers with microphysical on-line analysis of the separated phases. An improved counterflow virtual impactor (CVI) was developed for the collection and subsequent evaporation of the condensed phase, releasing dissolved gaseous material and residual particles. This sampler operates in the size range of few micrometers up to 50 μm in cloud element diameter and is matched by an interstitial Round Jet Impactor sampling the gas phase with interstitial particles. Calibrations of both samplers verified the calculated cut sizes D50 of 4, 5, and 6 μm and quantified the slope of the collection efficiency curves. Until this study no direct CVI measurements of the residual particle sizes far below the diameter of 0.1 μm were available. For the first time a CVI was connected to a Differential Mobility Particle Sizer (DMPS) scanning between 25 nm and 850 nm, thus, including the entire Aitken mode in the residual size analysis. Cloud studies on the Puy de Dôme, France, revealed residual particle sizes including Aitken mode (diameter D<100 nm) and accumulation mode (D>100 nm). A major feature of the CVI data is expressed by the fact that despite incomplete incorporation of accumulation mode particles in cloud elements there are contributions of particles with diameters smaller than 0.1 μm to the number of residual particles. Cloud entrainment from height levels above the maximum supersaturation as wells as the size-dependent chemical composition of the aerosol population most likely produced the S-shaped size-dependent partitioning of residual particles. Compared to earlier studies the 50% partitioning diameters dropped significantly below 100 nm to roughly 70 nm.  相似文献   

2.
The relationships between the physical and chemical properties of mixed-phase clouds were investigated at Storm Peak Laboratory (3220m MSL) located near the continental divide in northwestern Colorado. Interstitial aerosol particles, cloud droplets and snow crystals were concurrently collected when the laboratory was enveloped by a precipitating cloud. All samples were analyzed for trace elements, soluble anions, electrical conductivity and acidity.The results show average trace constituent concentration ratios of cloud water to snow water range from 0.4 to 26. All but six of the 32 elements and ions measured had ratios greater than one. This result suggests a chemical species dependency of in-cloud aerosol particle scavenging processes. Evidence of a decrease of in-cloud aerosol particle scavenging efficiency by snow due to increases in aerosol concentration is also presented.Differences between the chemical composition of cloud water and snow water are manifested most strongly when snow crystals grow by vapor deposition. In-cloud scavenging efficiencies by snow crystals for most aerosol particle chemical species are dependent on the growth of the snow crystals by accretion of cloud droplets. This chemical fractionation of the atmospheric aerosol by snow crystal formation and growth should be most active where narrow, continental cloud droplet size distributions and low liquid water contents are prevalent, enhancing the probability of snow crystal growth by diffusion.  相似文献   

3.
2016年11月13日在北京地区上空存在持续稳定的层状云天气背景下,利用飞机开展气溶胶粒径谱、化学组成、云滴谱等参量的垂直观测,研究该个例云底气溶胶的活化能力。结果表明:探测期间北京地区为轻度污染天气,地面气溶胶浓度(0.11~3 μm)达到4600 cm-3。云层高度为800~1200 m,云底气溶胶数浓度相对于近地面大幅度降低,有效粒径显著增大(0.3~0.6 μm)。同时,近地面气溶胶中疏水性的一次有机气溶胶贡献显著,而云底气溶胶中一次有机气溶胶的贡献大幅降低,无机组分和二次有机气溶胶的贡献明显增大,造成吸湿性参数κ由0.25(地面)增大至0.32(云底)。云中气溶胶和云滴的谱分布衔接较好,且两者的数浓度之和与云底气溶胶浓度一致,可分别代表未活化和已活化的粒子。基于云底气溶胶粒径谱和吸湿性参数计算得到不同过饱和比下云凝结核的活化率,通过与云中观测结果对比,反推得到云底过饱和度约为0.048%。  相似文献   

4.
The Aerodyne aerosol mass spectrometer (Q-AMS) was coupled with a counterflow virtual impactor (CVI) for the first time to measure cloud droplet residuals of warm tropospheric clouds on Mt. Åreskutan in central Sweden in July 2003. Operating the CVI in different operational modes generated mass concentration and species-resolved mass distribution data for non-refractory species of the ambient, interstitial, and residual aerosol. The ambient aerosol measurements revealed that the aerosol at the site was mainly influenced by long-range transport and regional photochemical generation of nitrate and organic aerosol components. Four different major air masses were identified for the time interval of the experiment. While two air masses that approached the site from northeastern Europe via Finland showed very similar aerosol composition, the other two air masses from polar regions and the British Islands had a significantly different composition. During cloud events the larger aerosol particles were found to be activated into cloud droplets. On a mass basis the activation cut-off diameter was approximately 150 nm for nitrate and organics dominated particles and 200 nm for sulfate dominated particles. Generally nitrate and organics were found to be activated into cloud droplets with higher efficiency than sulfate. While a significant fraction of the nitrate in ambient particles was organic nitrates or nitrogen-containing organic species, the nitrate found in the cloud droplet residuals was mainly ammonium nitrate. After passage of clouds the ambient aerosol size distribution had shifted to smaller particle sizes due to the predominantly activation of larger aerosol particles without a significant change in the relative composition of the ambient aerosol.  相似文献   

5.
During February 1997, one of the 2 observational periods of CIME ( c loud i ce m ountain e xperiment), a joint field experiment funded by the European Commission, took place on the summit of the Puy de Dōme in the centre of France. During this experiment the droplet spectra were measured with an FSSP and the aerosol particles in the drops and in the interstitial particle phase were measured with a counterflow virtual impactor and a round jet impactor inside a windtunnel. Very low aerosol particle and drop concentrations were observed and particles as small as 25 nm in diameter were found to activate. Two datasets obtained on 15 February and 17 February were used to study the activation of the small Aitken‐mode particles and the spectral form of the droplet spectrum and the scavenging fraction. Numerous sensitivity studies were performed investigating the rôle of the number density and chemical composition of the aerosol particles. The rôle of mixing inside the orographic cloud was studied by using a new technique. It considers the fact that the air arriving on the summit of the Puy de Dôme is a mixture of air of different origins. Thus, it weighs the results of a spectral scavenging model (DESCAM or EXMIX) calculated along a number of individual trajectories. The weighing function is derived from tracer and trajectory studies with a 3‐dimensional mesoscale model. The model was able to reproduce the activation of aerosol particles as small as 25 nm. It was caused by the low aerosol particle number concentrations. In general, we can conclude that the variability found in the sensitivity tests of the dynamical and chemical factors allows to reproduce the shape of the observed results. As too many free parameters exit at the moment we cannot quantify the contribution of each factor studied to the observed scavenging fraction, however, it seems that dynamics dominates.  相似文献   

6.
During June and July 2003 the Sources and Origins of Atmospheric Cloud Droplets experiment (SOACED) was carried out on a mountain-top site in central Sweden. The main objective of the experiment was to characterise the microphysical and chemical properties of cloud droplet residuals and interstitial aerosol particles in continental clouds and to understand the processes controlling cloud properties at this location.Interstitial and residual aerosol size distributions, cloud liquid water content and species- and size-resolved aerosol mass concentrations are the main variables employed to address questions pertaining to the cloud droplet number concentration and scavenging efficiency during a stratocumulus cloud event observed on July 28, 2003. In this cloud event, about 56% of the aerosol mass was associated with organic species, whilst SO4 accounted for 23% and NH4 for 14%. NO3 and Cl made up about 7% of the total mass.The partitioning of the aerosol particles between cloud droplets and interstitial air has been studied in terms of their microphysical properties. The scavenging efficiency, defined as the fraction of particles activated into cloud elements compared to the total amount of particles, was investigated as a function of size. The scavenging efficiency curves displayed different shapes during the cloud event, from an S-shaped curve, with low scavenging efficiency in the Aitken mode and larger scavenging efficiency in the accumulation mode, to more unusual shapes where Aitken-mode particles were either solely activated or activated in addition to accumulation-mode particles.This study suggests that alterations of the aerosol chemical composition occurred during the measurement period, changing the hygroscopic nature of the CCN and decreasing their activation diameter. It is also hypothesized that entrainment of drier air aloft may have introduced inhomogeneities in the supersaturation field and modified the S-shaped scavenging curves.  相似文献   

7.
Aerosols affect precipitation by modifying cloud properties such as cloud droplet number concentration (CDNC). Aerosol effects on CDNC depend on aerosol properties such as number concentration, size spectrum, and chemical composition. This study focuses on the effects of aerosol chemical composition on CDNC and, thereby, precipitation in a mesoscale cloud ensemble (MCE) driven by deep convective clouds. The MCE was observed during the 1997 department of energy's Atmospheric Radiation Measurement (ARM) summer experiment. Double-moment microphysics with explicit nucleation parameterization, able to take into account those three properties of aerosols, is used to investigate the effects of aerosol chemical composition on CDNC and precipitation. The effects of aerosol chemical compositions are investigated for both soluble and insoluble substances in aerosol particles. The effects of soluble substances are examined by varying mass fractions of two representative soluble components of aerosols in the continental air mass: sulfate and organics. The increase in organics with decreasing sulfate lowers critical supersaturation (Sc) and leads to higher CDNC. Higher CDNC results in smaller autoconversion of cloud liquid to rain. This provides more abundant cloud liquid as a source of evaporative cooling, leading to more intense downdrafts, low-level convergence, and updrafts. The resultant stronger updrafts produce more condensation and thus precipitation, as compared to the case of 100% sulfate aerosols. The conventional assumption of sulfate aerosol as a surrogate for the whole aerosol mass can be inapplicable for the case with the strong sources of organics. The less precipitation is simulated when an insoluble substance replaces organics as compared to when it replaces sulfate. When the effects of organics on the surface tension of droplet and solution term in the Köhler curve are deactivated by the insoluble substance, Sc is raised more than when the effects of sulfate on the solution term are deactivated by the insoluble substance. This leads to lower CDNC and, thus, larger autoconversion of cloud liquid to rain, providing less abundant cloud liquid as a source of evaporative cooling. The resultant less evaporative cooling produces less intense downdrafts, weaker low-level convergence, updrafts, condensation and, thereby, less precipitation in the case where organics is replaced by the insoluble substance than in the case where sulfate is replaced by the insoluble substance. The variation of precipitation caused by the change in the mass fraction between the soluble and insoluble substances is larger than that caused by the change in the mass fraction between the soluble substances.  相似文献   

8.
A difference in partitioning between cloud droplets and interstitial air for two chemical species (elemental carbon and sulphur) with different expected behaviour in nucleation scavenging was observed in clouds at Mt. Kleiner Feldberg (825 m asl), near Frankfurt, Germany. The fraction of sulphur incorporated in cloud droplets was always higher than the fraction of elemental carbon. This difference in partitioning has also been observed in fog but under different pollution conditions in the Po Valley, Italy. Both these studies were based on bulk samples. In the present study at Kleiner Feldberg, impactor samples of the particles in the interstitial air and the cloud droplet residuals were taken and a single particle analysis was done on the samples. It was found that, for a given particle size, the majority of particles forming cloud droplets were soluble and that insoluble particles preferentially remained in the interstitial air.  相似文献   

9.
《Atmospheric Research》1988,22(1):15-25
Some non-volatile materials dissolved in water drops will, upon evaporation of the water, produce a hollow shell of the material. Though known for years in the chemical engineering literature, this fact was not appreciated by those working with the marine sea-salt aerosol. Our laboratory experiments show that a majority of seawater drops in free fall in air with a relative humidity less than about 60% evaporate, become salt-saturated, and change phase to produce hollow sea-salt particles. Some hollow salt particles have been found in marine air, though further investigation is required to show the extent of this phenomenon.Expressions have been derived from which both the size of the original drop of seawater and its salt supersaturation at the time of phase change can be calculated from the inner and outer radii of the salt shell. If hollow particles are common in the marine aerosol, then instruments that measure particle size cannot be used to obtain particle mass.  相似文献   

10.
Summary Atmospheric CCN-humidity spectra (describing the CCN-number concentration as function of supersaturation) are derived as the integral over given particle size distributions. In that concept the finite boundary, representing the limiting activated particle size, results from the critical values of the Köhler-curve. As utilization of this general outcome different representative aerosol size distributions of the power law type as well as the log-normal type are chosen for case studies which are compared to empirical results. The dependency on temperature of the limiting activated particle size is shown to provide a non-negligible influence on the number of activated particles.With 3 Figures  相似文献   

11.
A closure study of sub-micrometer aerosol particle hygroscopic behaviour   总被引:2,自引:0,他引:2  
The hygroscopic properties of sub-micrometer aerosol particles were studied in connection with a ground-based cloud experiment at Great Dun Fell, in northern England in 1995. Hygroscopic diameter growth factors were measured with a Tandem Differential Mobility Analyser (TDMA) for dry particle diameters between 35 and 265 nm at one of the sites upwind of the orographic cloud. An external mixture consisting of three groups of particles, each with different hygroscopic properties, was observed. These particle groups were denoted less-hygroscopic, more-hygroscopic and sea spray particles and had average diameter growth factors of 1.11–1.15, 1.38–1.69 and 2.08–2.21 respectively when taken from a dry state to a relative humidity of 90%. Average growth factors increased with dry particle size. A bimodal hygroscopic behaviour was observed for 74–87% of the cases depending on particle size. Parallel measurements of dry sub-micrometer particle number size distributions were performed with a Differential Mobility Particle Sizer (DMPS). The inorganic ion aerosol composition was determined by means of ion chromatography analysis of samples collected with Berner-type low pressure cascade impactors at ambient conditions. The number of ions collected on each impactor stage was predicted from the size distribution and hygroscopic growth data by means of a model of hygroscopic behaviour assuming that only the inorganic substances interacted with the ambient water vapour. The predicted ion number concentration was compared with the actual number of all positive and negative ions collected on the various impactor stages. For the impactor stage which collected particles with aerodynamic diameters between 0.17–0.53 μm at ambient relative humidity, and for which all pertinent data was available for the hygroscopic closure study, the predicted ion concentrations agreed with the measured values within the combined measurement and model uncertainties for all cases but one. For this impactor sampling occasion, the predicted ion concentration was significantly higher than the measured. The air mass in which this sample was taken had undergone extensive photochemical activity which had probably produced hygroscopically active material other than inorganic ions, such as organic oxygenated substances.  相似文献   

12.
Precipitation scavenging of aerosol particles is an important removal process in the atmosphere that can change aerosol physical and optical properties. This paper analyzes the changes in aerosol physical and optical properties before and after four rain events using in situ observations of mass concentration, number concentration, particle size distribution, scattering and absorption coefficients of aerosols in June and July 2013 at the Xianghe comprehensive atmospheric observation station in China. The results show the effect of rain scavenging is related to the rain intensity and duration, the wind speed and direction. During the rain events, the temporal variation of aerosol number concentration was consistent with the variation in mass concentration, but their size-resolved scavenging ratios were different. After the rain events, the increase in aerosol mass concentration began with an increase in particles with diameter 0.8 μm [measured using an aerodynamic particle sizer(APS)], and fine particles with diameter 0.1 μm [measured using a scanning mobility particle sizer(SMPS)]. Rainfall was most efficient at removing particles with diameter ~0.6 μm and greater than 3.5 μm. The changes in peak values of the particle number distribution(measured using the SMPS) before and after the rain events reflect the strong scavenging effect on particles within the 100–120 nm size range. The variation patterns of aerosol scattering and absorption coefficients before and after the rain events were similar, but their scavenging ratios differed, which may have been related to the aerosol particle size distribution and chemical composition.  相似文献   

13.
Research flights in November 1990 over the central parts of the United States, Wyoming and Colorado, were aimed to the investigation of the properties and microstructure of cirrus clouds (mainly cirrocumulus lenticularis). Among the other parameters measured on board the NCAR Saberliner were the concentration and size distribution of submicron particles and, in some cases, the particle deliquescence. For coarse insoluble particles found inside and outside of cloud elements, size distributions and morphology information were obtained by evaluating inertial impactor samples with an optical microscope and scanning electron microscope. In addition, the coarse particle composition was determined by x-ray energy spectrum analysis. The following conclusions from these measurements are:The large and coarse particle size distribution can be roughly simulated by a log-normal function with the modus around r=0.5 μm. Particle concentrations are very variable between several tenths and several particles per cm3. Particle volume distribution features a distinct maximum around 0.75 μm without a broad plateau which was observed in the case of sampling at lower altitude. Aerosol composition heterogeneity at cirrus cloud level is well documented by the evaluation of the fine particle sampling taken with the UMR sampling system. This heterogeneity can be partly explained by the interaction between aerosol and cloud elements, which is documented by the measured particle size distribution curves inside and outside of cloud elements. Assuming that particle deliquescence is caused by H2SO4 and/or by (NH4)2SO4, particle soluble mass fractions were found to be around 30% in the first case and about 40% in the second. The most frequently occurring elements in large and coarse particles at cirrus cloud level were Si, Cl, Ba, S, Ca and C.  相似文献   

14.
Daily measurements of atmospheric aerosol characteristics were carried out in Dolgoprudny (Moscow region) in June–August 2010. The particle concentrations at 11 size gradations within the range of 0.01–10 μm and the concentrations of cloud condensation nuclei active at water vapor supersaturation of 0.2–1% were determined. It is shown that the long anticyclonic conditions and the burning of forests and peat bogs resulted in the increase in total aerosol concentration in surface air by more than 1.5 times and in concentrations of particles with the diameter of 0.1–1 μm and > 1 μm by 5 and 10 times, respectively. The fire smoke mainly consisted of the particles with the size of 0.1–3 μm. The particles with the size of more than 5 μm were not observed. The recurrent visibility decrease up to hundreds of meters was caused by the increase in the concentration of particles with the diameter of more than 0.32μm in the air. During the smoke blanketing, the concentration of active condensation nuclei in aerosol increased almost by 20 times that created an opportunity for watering of aerosol particles and formation of the acid smog.  相似文献   

15.
The effect of clouds on aerosol growth in the rural atmosphere   总被引:1,自引:0,他引:1  
Measurements of accumulation mode aerosol in the atmospheric boundary layer under cloudy and cloud-free conditions, and in the lower free troposphere under cloud-free conditions, were conducted over the rural northwest of England. Normalised size distributions in the cloud-free boundary layer (CFBL) and the cloud-free free troposphere (CFFT) exhibited almost identical spectral similarities with both size distributions possessing a concentration peak mode-radius of ≈0.05 μm or less. By comparison, aerosol distributions observed in cloudy air exhibited a distinctive log-normal distribution with mode-radii occurring at ≈0.1 μm concomitant with a local minimum at ≈0.05 μm. The consistent and noticeable difference in spectral features observed between cloudy and cloud-free conditions suggest that a greater amount of gas-to-particle conversion occurs on cloudy days, presumably through in-cloud aqueous phase oxidation processes, leading to larger sized accumulation mode particles. Apart from the distinct difference between cloudy and cloud-free aerosol spectra on cloudy days, aerosol concentration and mass were observed to be significantly enhanced above that of the ambient background in the vicinity of clouds. Volatility analysis during one case of cloud processing indicated an increase in the relative contribution of aerosol mass volatile at temperatures characteristic of sulphuric acid, along with a smaller fraction of more volatile material (possibly nitric acid and/or organic aerosol). Growth-law analysis of possible growth mechanisms point to aqueous phase oxidation of aerosol precursors in cloud droplets as being the only feasible mechanism capable of producing the observed growth. The effect of cloud processing is to alter the cloud condensation nuclei (CCN) supersaturation spectrum in a manner which increases the availability of CCN at lower cloud supersaturations.  相似文献   

16.
The partitioning of aerosol particles between cloud droplets and interstitial air by number and volume was determined both in terms of an integral value and as a function of size for clouds on Mt. Kleiner Feldberg (825 m asl), in the Taunus Mountains north-west of Frankfurt am Main, Germany. Differences in the integral values and the size dependent partitioning between two periods during the campaign were observed. Higher number and volume concentrations of aerosol particles in the accumulation mode were observed during Period II compared to Period I. In Period I on average 87±11% (±one standard deviation) and 73±7% of the accumulation mode volume and number were incorporated into cloud droplets. For Period II the corresponding fractions were 42±6% and 12±2% in one cloud event and 64±4% and 18±2% in another cloud event. The size dependent partitioning as a function of time was studied in Period II and found to have little variation. The major processes influencing the partitioning were found to be nucleation scavenging and entrainment.  相似文献   

17.
《Atmospheric Research》2008,87(3-4):225-240
During June and July 2003 the Sources and Origins of Atmospheric Cloud Droplets experiment (SOACED) was carried out on a mountain-top site in central Sweden. The main objective of the experiment was to characterise the microphysical and chemical properties of cloud droplet residuals and interstitial aerosol particles in continental clouds and to understand the processes controlling cloud properties at this location.Interstitial and residual aerosol size distributions, cloud liquid water content and species- and size-resolved aerosol mass concentrations are the main variables employed to address questions pertaining to the cloud droplet number concentration and scavenging efficiency during a stratocumulus cloud event observed on July 28, 2003. In this cloud event, about 56% of the aerosol mass was associated with organic species, whilst SO4 accounted for 23% and NH4 for 14%. NO3 and Cl made up about 7% of the total mass.The partitioning of the aerosol particles between cloud droplets and interstitial air has been studied in terms of their microphysical properties. The scavenging efficiency, defined as the fraction of particles activated into cloud elements compared to the total amount of particles, was investigated as a function of size. The scavenging efficiency curves displayed different shapes during the cloud event, from an S-shaped curve, with low scavenging efficiency in the Aitken mode and larger scavenging efficiency in the accumulation mode, to more unusual shapes where Aitken-mode particles were either solely activated or activated in addition to accumulation-mode particles.This study suggests that alterations of the aerosol chemical composition occurred during the measurement period, changing the hygroscopic nature of the CCN and decreasing their activation diameter. It is also hypothesized that entrainment of drier air aloft may have introduced inhomogeneities in the supersaturation field and modified the S-shaped scavenging curves.  相似文献   

18.
Measurements in Alaska in sub-polar night conditions have indicated that the size distribution of atmospheric aerosols varies significantly and systematically depending upon the type of air mass. Atmospheric aerosol particles are small and numerous in warm Pacific marine air mass systems and large and sparse in cold, Arctic-derived air mass systems. In a previous paper this was hypothesized to be associated with the progressive loss of the smallest particles by attachment to cloud droplets under the driving influence of thermal Brownian motion. A theory involving two parameters, (mean particle radius), and n0 (aerosol number concentration) was developed to describe the process. In the previous paper, the relationship where ν is the Junge power law exponent (ν 3) was derived and has recently been confirmed to acceptable accuracy with the use of a simple experiment which employed diffusive separation. The diffusion experiment has also allowed us to estimate that the fraction of time, φ, that the aerosol-laden polar air masses coexist in the presence of cloud is 0.01 < φ < 0.1. The submicron aerosol particles in Arctic-derived air masses flowing into central Alaska are deduced to have residence times on the order of 10 days.  相似文献   

19.
Abstract This paper describes the effect of the presence of water-soluble organic compounds (WSOC) in aerosol particles on the aerosol critical supersaturation as defined by the Köhler theory and on cloud condensation nuclei (CCN) number concentration. Taking into account both the soluble mass increase and the surface tension depression due to WSOC, we calculated a substantial decrease of the aerosol critical supersaturation, which results in a large increase in CCN number concentration. CCN supersaturation spectra were computed for three different aerosol types: marine, rural and urban. The increase of CCN number concentration in the presence of WSOC (with respect to the case when only the inorganic aerosol compounds are considered) varies with aerosol type, with an increase up to 13% in the marine case, up to 97% in the rural case, and up to 110% in the urban case, for the supersaturation range typical of atmospheric conditions.  相似文献   

20.
一次秋季冷锋降水过程气溶胶与云粒子分布的飞机观测   总被引:2,自引:1,他引:1  
利用机载PMS(Particle Measuring Systems)测量系统,对2008年10月4—5日石家庄地区一次冷锋降水云系的3次气溶胶和云粒子探测资料进行了分析。结果表明,冷锋过境降水前后,气溶胶粒子分布差异较大。降水发生前,气溶胶粒子平均数浓度约为103cm-3,平均直径为0.95μm;气溶胶主要集中于3000m高度以下的对流层低层,云内气溶胶数浓度明显减少。降水发生后,气溶胶粒子平均数浓度约为102cm-3,比降水前约小1个量级,平均直径为1.28μm;气溶胶主要集中于1200m以下的近地面层,其数浓度随高度增加而降低。气溶胶粒子浓度在低层云区内水平变化较小,而在无云区和云下近地层水平起伏较大。云粒子平均浓度比气溶胶小1~2个量级。气溶胶粒子平均谱主要呈双峰型,而云粒子谱主要为单峰型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号