首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 2-bay, 6-storey model test reinforced concrete frame (scale l:5) subjected to sequential earthquakes of increasing magnitude is considered in this paper. The frame was designed with a weak storey, in which the columns are weakened by using thinner and weaker reinforcement bars. The aim of the work is to study the global response to a damaging strong motion earthquake event of such buildings. Special emphasis is put on examining to what extent damage in the weak storey can be identified from global response measurements during an earthquake where the structure survives, and what level of excitation is necessary in order to identify the weak storey. Furthermore, emphasis is put on examining how and where damage develops in the structure and especially how the weak storey accumulates damage. Besides the damage in each storey the structure is identified by a static load at the top storey while measuring the horizontal displacement of the stories and also visual inspection is performed. From the investigations it is found that the reason for failure in the weak storey is that the absolute value of the stiffness deteriorates to a critical value where large plastic deformations occur and the storey is not capable of transferring the shear forces from the storeys above so failure is unavoidable.  相似文献   

2.
高强混凝土剪力墙地震损伤模型分析   总被引:4,自引:0,他引:4  
在分析比较现有钢筋混凝土结构的地震损伤模型的基础上,根据高强混凝土剪力墙的滞回曲线特性及刚度退化规律,采用能量耗散系数和最大变位处的卸载刚度的退化为破坏参数,提出了适用于高强混凝土剪力墙构件的双参数地震损伤模型。依据已有的高强混凝土剪力墙构件试验研究结果,对损伤模型进行非线性回归分析,确定了相应的地震损伤模型参数,提出了高强混凝土剪力墙各性能水平的损伤指数以及相应于三水准抗震设防的损伤指数允许值。分析结果表明,按本文所提出的损伤模型计算得到的剪力墙构件最终破坏时对应的损伤指数,其平均值在合理范围内,标准差较小;损伤指数计算值对应的损伤程度基本符合试验结果,计算结果离散程度较低。  相似文献   

3.
For the purpose of estimating the earthquake response, particularly the story drift demand, of reinforced concrete (R/C) buildings with proportional hysteretic dampers, an equivalent single‐degree‐of‐freedom (SDOF) system model is proposed. Especially in the inelastic range, the hysteretic behavior of an R/C main frame strongly differs from that of hysteretic dampers due to strength and stiffness degradation in R/C members. Thus, the proposed model, unlike commonly used single‐spring SDOF system models, differentiates the restoring force characteristics of R/C main frame and hysteretic dampers to explicitly take into account the hysteretic behavior of dampers. To confirm the validity of the proposed model, earthquake responses of a series of frame models and their corresponding equivalent SDOF system models were compared. 5‐ and 10‐story frame models were studied as representative of low‐ and mid‐rise building structures, and different mechanical properties of dampers—yield strength and yield deformation—were included to observe their influence on the effectiveness of the proposed model. The results of the analyses demonstrated a good correspondence between estimated story drift demands using the proposed SDOF system model and those of frame models. Moreover, the proposed model: (i) led to better estimates than those given by a single‐spring SDOF system model, (ii) was capable of estimating the input energy demand and (iii) was capable of estimating the total hysteretic energy and the participation of dampers into the total hysteretic energy dissipation, in most cases. Results, therefore, suggest that the proposed model can be useful in structural design practice. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
This paper presents the correlation of the results of a new model for the dynamic analysis of reinforced concrete (RC) frames with the experimental time history of a two storey RC frame shaking-table specimen. The frame member model consists of separate subelements that describe the deformations due to flexure, shear and bond slip in RC structural elements. The subelements are combined by superposition of flexibility matrices to form the frame element. A non-linear solution method which accounts for the unbalance of internal forces between different subelements during a given load increment is used with the model. The ability of the proposed model to describe the dynamic response of frame structures under earthquake excitations is evaluated by comparing the analytical results with experimental evidence from a two-storey, one bay reinforced concrete frame tested on the shaking-table. The model parameters for the shaking-table specimen are derived from available experimental evidence and first principles of reinforced concrete. The effect of reinforcing bar slip on the local and global dynamic response of the test structure is assessed. © 1997 John Wiley & Sons, Ltd.  相似文献   

5.
地震作用后钢筋混凝土框架结构恢复性模拟研究   总被引:1,自引:1,他引:0       下载免费PDF全文
陈竣  罗凡 《地震工程学报》2019,41(3):568-573
钢筋混凝土框架结构在地震冲击后,其刚体退化特性复杂,存在模拟时结果失真明显的问题。为此,在考虑刚度退化规律的基础上进行分析模拟,研究地震冲击下钢筋混凝土框架结构的恢复性。提取地震作用下钢筋混凝土框架结构滞回曲线,通过有限元分析获取不同的特征点,形成恢复力模型的骨架曲线;依据恢复力模型骨架曲线和刚度退化规律,构建滞回曲线,模拟地震作用后钢筋混凝土框架结构恢复过程。在模拟的钢筋混凝土框架结构恢复实验中,层间位移结果低于5 mm、层间绝对加速度和柱底抬升结果的误差均低于0.1 mm;模拟得到结构的弯矩缝隙都能够实现闭合,钢筋混凝土结构未出现屈服现象,说明模拟的结果较好。  相似文献   

6.
The objective of this study is to investigate the effect of masonry infills on the seismic performance of low‐rise reinforced concrete (RC) frames with non‐seismic detailing. For this purpose, a 2‐bay 3‐storey masonry‐infilled RC frame was selected and a 1 : 5 scale model was constructed according to the Korean practice of non‐seismic detailing and the similitude law. Then, a series of earthquake simulation tests and a pushover test were performed on this model. When the results of these tests are compared with those in the case of the bare frame, it can be recognized that the masonry infills contribute to the large increase in the stiffness and strength of the global structure whereas they also accompany the increase of earthquake inertia forces. The failure mode of the masonry‐infilled frame was that of shear failure due to the bed‐joint sliding of the masonry infills while that of the bare frame appeared to be the soft‐storey plastic mechanism at the first storey. However, it is judged that the masonry infills can be beneficial to the seismic performance of the structure since the amount of the increase in strength appears to be greater than that in the induced earthquake inertia forces while the deformation capacity of the global structure remains almost the same regardless of the presence of the masonry infills. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

7.
王斌  吕斌  郑山锁 《地震工程学报》2019,41(5):1177-1185
为研究地震作用下损伤累积对型钢高强混凝土框架节点抗震性能的影响,基于5榀型钢高强混凝土框架节点低周反复加载试验结果,分析节点构件损伤累积过程及其对刚度和强度的影响。从材料自身损伤入手,通过引入刚度影响系数考虑循环荷载作用下混凝土的单边效应,对Faria-Oliver本构模型进行改进,进而建立适应于型钢混凝土结构的材料损伤累积本构模型。同时基于该模型采用ANSYS分析软件对地震作用下的型钢高强混凝土框架节点进行数值分析,并与试验结果进行对比分析。结果表明:采用本文建立的材料损伤累积本构模型能较好地反映地震作用下型钢高强混凝土框架节点的损伤特性。在此基础上,进一步分析构件轴压比、配箍率、配钢率等设计参数对型钢高强混凝土框架节点抗震性能的影响。研究成果可为该类结构构件的抗震设计提供理论和技术支撑。  相似文献   

8.
Cyclic loading tests were performed on three one‐storey steel frames and four three‐storey concrete‐filled tube (CFT) moment frames reinforced with a new type of earthquake‐resisting element consisting of a steel plate shear wall with vertical slits. In this shear wall system, the steel plate segments between the slits behave as a series of flexural links, which provide fairly ductile response without the need for heavy stiffening of the wall. The steel shear walls and the moment frames behaved in a ductile manner up to more than 4% drift without abrupt strength degradation or loss of axial resistance. Results of these tests and complementary analysis provide a basis for an equivalent brace model to be employed in commercially available frame analysis programs. Test and analytical results suggest that the horizontal force is carried by the bolts in the middle portion of the wall–frame connection, while the vertical forces coupled with the moment in the connection are resisted by the bolts in the edge portion of the connection, for which the friction bolts in the connection should be designed. When sufficient transverse stiffening is provided, full plastic strength and non‐degrading hysteretic behaviour can be achieved for this new type of shear wall. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
Passive energy dissipation devices are increasingly implemented in frame structures to improve their performance under seismic loading. Most guidelines for designing this type of system retain the requirements applicable to frames without dampers, and this hinders taking full advantage of the benefits of implementing dampers. Further, assessing the extent of damage suffered by the frame and by the dampers for different levels of seismic hazard is of paramount importance in the framework of performance‐based design. This paper presents an experimental investigation whose objectives are to provide empirical data on the response of reinforced concrete (RC) frames equipped with hysteretic dampers (dynamic response and damage) and to evaluate the need for the frame to form a strong column‐weak beam mechanism and dissipate large amounts of plastic strain energy. To this end, shake‐table tests were conducted on a 2/5‐scale RC frame with hysteretic dampers. The frame was designed only for gravitational loads. The dampers provided lateral strength and stiffness, respectively, three and 12 times greater than those of the frame. The test structure was subjected to a sequence of seismic simulations that represented different levels of seismic hazard. The RC frame showed a performance level of ‘immediate occupancy’, with maximum rotation demands below 20% of the ultimate capacity. The dampers dissipated most of the energy input by the earthquake. It is shown that combining hysteretic dampers with flexible reinforced concrete frames leads to structures with improved seismic performance and that requirements of conventional RC frames (without dampers) can be relieved. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
钢筋混凝土耗能支撑框架结构的震害预测   总被引:1,自引:0,他引:1  
首先介绍了一种新的震害预测方法——基于模糊概率的震害预测模型。在分析了钢筋混凝土框架结构抗震性能以及摩擦耗能支撑框架结构在地震作用下力学性能的基础上,提出用结构层间屈服强度系数、层间剪切位移角和地震损伤指数这三个指标作为其主要震害影响评价因子。同时,利用所提出的预测方法,建立了钢筋混凝土耗能支撑框架结构房屋的震害预测模型。  相似文献   

11.
This study presents a nonlinear modelling technique for reinforced concrete (RC) frames retrofitted with metallic yielding devices to predict the seismic response using a computer software OpenSees. The numerical model considers the axial–flexure interaction, shear force–displacement response and the bond-slip characteristics of the frame members. The predicted hysteretic response has been compared with the results of slow-cyclic testing. The validated numerical model is then used to predict the seismic response of a five-story RC frame with soft-story. Nonlinear cyclic pushover and dynamic analyses are conducted to investigate the effectiveness of the proposed retrofitting scheme in enhancing the lateral strength and energy dissipation potential and in controlling the premature failure of the study frame. Analysis results showed significant improvement in the seismic response of RC frames with soft-story using the proposed retrofitting technique.  相似文献   

12.
高强混凝土框架柱的地震损伤模型   总被引:3,自引:1,他引:2  
本文首先讨论了现有的几种地震损伤模型及其特点,然后计算出试验框架柱累积滞回耗能随加载循环水平的变化,分析和讨论了轴压比、箍筋形式、配箍率、纵向配筋率、混凝土强度等级以及剪跨比对累积滞回耗能的影响。根据现有的损伤模型,对试验框架柱的损伤指数进行了分析比较,给出了符合高强混凝土框架柱和普通混凝土框架柱的地震损伤模型。根据损伤指数随加载循环水平的变化规律,分析和讨论了剪跨比、轴压比以及配箍率对损伤的影响。最后通过对各地震损伤模型的比较分析,提出了高强混凝土框架柱的地震损伤模型。  相似文献   

13.
The response of autoclaved aerated concrete confined masonry buildings to seismic ground motion has been studied. Three 1:4 scale models of residential buildings with the same distribution of walls in plan but different types of floors and number of stories have been tested on a uni-directional shaking table. Lightweight prefabricated slabs have been installed in the case of the three-storey model M1, whereas reinforced concrete slabs have been constructed in the case of three-storey model M2 and four-storey model M3. Model M1 was subjected to seismic excitation along the axis of symmetry, whereas models M2 and M3 were tested orthogonal to it. Typical storey mechanism, characterised by diagonal shear failure mode of walls in the ground floor in the direction of excitation has been observed in all cases. Taking into consideration the observed behaviour, a numerical model with concentrated masses and storey hysteretic rules has been used to simulate the observed behaviour. Storey resistance curves calculated by a push-over method and hysteretic rules, which take into account damage and energy based stiffness degradation hysteretic rules, have been used to model the non-linear behaviour of the structure. Good agreement between the experimentally observed and calculated non-linear behaviour has been obtained.  相似文献   

14.
Hysteretic behaviour of reinforced concrete members is strongly dependent on local conditions such as quality of materials, workmanship, construction and design practice. Low strength concrete was found in most of the damaged concrete structures after the earthquakes that have hit Eastern Europe in the past 50 years. Quality of concrete had a great impact, especially on shear controlled reinforced concrete short columns. Existing models of the effective strength, stiffness and deformation capacity of structural members need to be confirmed locally by experimental research as the large data sets used to calibrate the analytical models comprise results obtained on specimens with various characteristics. In this study, effective stiffness and deformation models available in literature are compared with the results of an experimental testing program conducted by the authors to investigate the hysteretic response of reinforced concrete short columns with low concrete strength, designed and detailed according to the local practice in the past. The hysteretic behaviour of the specimens is presented together with a comparison of the experimental data with predicted values and conclusions on the suitability of the applied models are drawn.  相似文献   

15.
基于预定损伤法对钢框架构件主要设计参数进行损伤敏感度分析,研究主要设计参数与钢框架结构梁、柱损伤的关系;揭示钢框架结构梁、柱的损伤及梁、柱线刚度比、结构高宽比、柱轴压比、锈蚀率对楼层损伤的影响规律;获得楼层的损伤与整体结构损伤的关系,最终建立钢框架结构的损伤演化模型。研究成果可为建立地震激励下钢框架结构的损伤模型提供理论基础和数据支持。  相似文献   

16.
This paper presents a new type of structural bracing intended for seismic retrofitting use in framed structures. This special composite brace,termed glass-fiber-reinforced-polymer(GFRP)-tube-confined-concrete composite brace,is comprised of concrete confined by a GFRP tube and an inner steel core for energy dissipation.Together with a contribution from the GFRP-tube confined concrete,the composite brace shows a substantially increased stiffness to control story drift, which is often a preferred feature in seismic retrofitting.An analysis model is established and implemented in a general finite element analysis program-OpenSees,for simulating the load-displacement behavior of the composite brace.Using this model,a parametric study of the hysteretic behavior(energy dissipation,stiffness,ductility and strength)of the composite brace was conducted under static cyclic loading and it was found that the area ratio of steel core to concrete has the greatest influence among all the parameters considered.To demonstrate the application of the composite brace in seismic retrofitting, a three-story nonductile reinforced concrete(RC)frame structure was retrofitted with the composite braces.Pushover analysis and nonlinear time-history analyses of the retrofitted RC frame structure was performed by employing a suite of 20 strong ground motion earthquake records.The analysis results show that the composite braces can effectively reduce the peak seismic responses of the RC frame structure without significantly increasing the base shear demand.  相似文献   

17.
18.
In recent earthquakes, a large number of reinforced concrete (RC) bridges were severely damaged due to mixed flexure-shear failure modes of the bridge piers. An integrated experimental and finite element (FE) analysis study is described in this paper to study the seismic performance of the bridge piers that failed in flexure-shear modes. In the first part, a nonlinear cyclic loading test on six RC bridge piers with circular cross sections is carried out experimentally. The damage states, ductility and energy dissipation parameters, stiffness degradation and shear strength of the piers are studied and compared with each other. The experimental results suggest that all the piers exhibit stable flexural response at displacement ductilities up to four before exhibiting brittle shear failure. The ultimate performance of the piers is dominated by shear capacity due to significant shear cracking, and in some cases, rupturing of spiral bars. In the second part, modeling approaches describing the hysteretic behavior of the piers are investigated by using ANSYS software. A set of models with different parameters is selected and evaluated through comparison with experimental results. The influences of the shear retention coefficients between concrete cracks, the Bauschinger effect in longitudinal reinforcement, the bond-slip relationship between the longitudinal reinforcement and the concrete and the concrete failure surface on the simulated hysteretic curves are discussed. Then, a modified analysis model is presented and its accuracy is verified by comparing the simulated results with experimental ones. This research uses models available in commercial FE codes and is intended for researchers and engineers interested in using ANSYS software to predict the hysteretic behavior of reinforced concrete structures.  相似文献   

19.
A series of shaking table tests on a 1:12‐scale model using scaled TaftN21E earthquake records were conducted to investigate the seismic performance of a 17‐storey high‐rise reinforced concrete structure with a high degree of torsional eccentricity and soft‐storey irregularities in the bottom two storeys. Based on the analysis of test results, the following conclusions were drawn: (1) the model responded mainly in the coupled mode of translation and torsion or in the torsional mode. Under severe table shaking, the flexible side underwent large inelastic deformation, and the predominant mode of the model changed from the coupled mode to the torsional mode, resulting in greatly increased torsional stiffness, thereby limiting damage in the flexible frame; (2) the shear force and deformation of the flexible side were governed by the torsional behaviour, whereas those of the stiff side were affected mainly by the overturning deformation. The lateral stiffness of the shear wall in the torsional mode was about four times that in the coupled mode because the warping deformation due to torsion counteracted the flexural deformation due to overturning moment in the torsional mode; and (3) the reversed cyclic overturning moments predicted by linear elastic dynamic analysis in the direction transverse to the table excitations contradicted unilateral overturning moments of the serviceability‐level test results, which showed a bias towards tension or compression in the columns. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
A new method of stiffness‐damping simultaneous identification of building structures is proposed using limited earthquake records. It is shown that when horizontal accelerations are recorded at the floors just above and below a specific storey in a shear building model, the storey stiffness and the damping ratio can be identified uniquely. The viscous damping coefficient and the linear hysteretic damping ratio can also be identified simultaneously in a numerical model structure. The accuracy of the present identification method is investigated through the actual limited earthquake records in a base‐isolated building. It is further shown that an advanced identification technique for mechanical properties of a Maxwell‐type model can be developed by combining the present method with a perturbation technique. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号