首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Pseudotachylytes occur associated with mylonite and ultramylonite in the Mahanadi shear zone (MSZ) in the Eastern Ghats Mobile Belt (EGMB). The MSZ is about 200 km long curvilinear high strain zone trending WNW-ESE in its eastern part that splays out in the west. In Kantilo-Ganian segment of MSZ in northern EGMB, an interbanded sequence of granulite facies lithoassemblage has undergone ductile shearing. Kinematic studies of mylonite and ultramylonite indicate MSZ to be a NE-dipping, extensional type ductile shear zone. Non-coaxial metamorphic growth of garnet and presence of truncated sillimanite-fish in ultramylonite suggest high temperature regime during shearing. Pseudotachylytes in MSZ occur as millimetre thick layers to decimetre thick zones containing fragments of mylonite, ultramylonite and lithic clasts. Pseudotachylyte generation veins are mostly sub-parallel to C-planes and the injection veins cross-cut at high angle to these. The presence of an isotropic glassy matrix, injection features, corroded grains and dendritic microlites can be evidences for the existence of a melt phase. The composition of pseudotachylyte matrix (by EPMA) indicates silica deficiency with higher normative hypersthene, plagioclase and lower quartz compared with average whole rock composition for host. Absence of overprinting of mylonitic fabric on pseudotachylytes indicates their formation by brittle failure without passing through a plastic deformation and thus a two stage development for mylonite-ultramylonite and pseudotachylyte generation is suggested.  相似文献   

2.
A deep-level crustal section of the Cretaceous Kohistan arc is exposed in the northern part of the Jijal complex. The occurrence of mafic to ultramafic granulite-facies rocks exhibits the nature and metamorphic evolution of the lower crust. Mafic granulites are divided into two rock types: two-pyroxene granulite (orthopyroxene+clinopyroxene+plagioclase±quartz [1]); and garnet–clinopyroxene granulite (garnet+clinopyroxene+plagioclase+quartz [2]). Two-pyroxene granulite occurs in the northeastern part of the Jijal complex as a relict host rock of garnet–clinopyroxene granulite, where the orthopyroxene-rich host is transected by elongated patches and bands of garnet–clinopyroxene granulite. Garnet–clinopyroxene granulite, together with two-pyroxene granulite, has been partly replaced by amphibolite (hornblende±garnet+plagioclase+quartz [3]). The garnet-bearing assemblage [2] is expressed by a compression–dehydration reaction: hornblende+orthopyroxene+plagioclase=garnet+clinopyroxene+quartz+H2O↑. Subsequent amphibolitization to form the assemblage [3] is expressed by two hydration reactions: garnet+clinopyroxene+plagioclase+H2O=hornblende+quartz and plagioclase+hornblende+H2O=zoisite+chlorite+quartz. The mafic granulites include pod- and lens-shaped bodies of ultramafic granulites which consist of garnet hornblendite (garnet+hornblende+clinopyroxene [4]) associated with garnet clinopyroxenite, garnetite, and hornblendite. Field relation and comparisons in modal–chemical compositions between the mafic and ultramafic granulites indicate that the ultramafic granulites were originally intrusive rocks which dissected the protoliths of the mafic granulites and then have been metamorphosed simultaneously with the formation of garnet–clinopyroxene granulite. The results combined with isotopic ages reported elsewhere give the following tectonic constraints: (1) crustal thickening through the development of the Kohistan arc and the subsequent Kohistan–Asia collision caused the high-pressure granulite-facies metamorphism in the Jijal complex; (2) local amphibolitization of the mafic granulites occurred after the collision.  相似文献   

3.
A.G. Dessai  A. Markwick  H. Downes 《Lithos》2004,78(3):263-290
Granulite and pyroxenite xenoliths in lamprophyre dykes intruded during the waning stage of Deccan Trap volcanism are derived from the lower crust beneath the Dharwar craton of Western India. The xenolith suite consists of plagioclase-poor mafic granulites (55% of the total volume of xenoliths), plagioclase-rich felsic granulites (25%), and ultramafic pyroxenites and websterites (20%) with subordinate wehrlites. Rare spinel peridotite xenoliths are also present, representing mantle lithosphere. The high Mg #, low SiO2/Al2O3 and low Nb/La (<1) ratios suggest that the protoliths of the mafic granulites broadly represent cumulates of sub-alkaline magmas. All of the granulites are peraluminous and light rare-earth element-enriched. The felsic granulites may have resulted from anatexis of the mafic lower crustal rocks; thus, the mafic granulites are enriched in Sr whereas the felsic ones are depleted. Composite xenoliths consisting of mafic granulites traversed by veins of pyroxenite indicate intrusion of the granulitic lower crust by younger pyroxenites. Petrography and geochemistry of the latter (e.g. presence of phlogopite) indicate the metasomatised nature of the deep crust in this region.Thermobarometric estimates from phase equilibria indicate equilibration conditions between 650 and 1200 °C, 0.7-1.2 GPa suggestive of lower crustal environments. These estimates provide a spatial context for the sampled lithologies thereby placing constraints on the interpretation of geophysical data. Integration of xenolith-derived P-T results with Deep Seismic Soundings (DSS) data suggests that the pyroxenites and websterites are transitional between the lower crust and the upper mantle. A three-layer model for the crust in western India, derived from the xenoliths, is consistent with DSS data. The mafic nature of this hybrid lower crust contrasts with the felsic lower crustal composition of the south Indian granulite terrain.  相似文献   

4.
High‐pressure kyanite‐bearing felsic granulites in the Bashiwake area of the south Altyn Tagh (SAT) subduction–collision complex enclose mafic granulites and garnet peridotite‐hosted sapphirine‐bearing metabasites. The predominant felsic granulites are garnet + quartz + ternary feldspar (now perthite) rocks containing kyanite, plagioclase, biotite, rutile, spinel, corundum, and minor zircon and apatite. The quartz‐bearing mafic granulites contain a peak pressure assemblage of garnet + clinopyroxene + ternary feldspar (now mesoperthite) + quartz + rutile. The sapphirine‐bearing metabasites occur as mafic layers in garnet peridotite. Petrographical data suggest a peak assemblage of garnet + clinopyroxene + kyanite + rutile. Early kyanite is inferred from a symplectite of sapphirine + corundum + plagioclase ± spinel, interpreted to have formed during decompression. Garnet peridotite contains an assemblage of garnet + olivine + orthopyroxene + clinopyroxene. Thermobarometry indicates that all rock types experienced peak P–T conditions of 18.5–27.3 kbar and 870–1050 °C. A medium–high pressure granulite facies overprint (780–820 °C, 9.5–12 kbar) is defined by the formation of secondary clinopyroxene ± orthopyroxene + plagioclase at the expense of garnet and early clinopyroxene in the mafic granulites, as well as by growth of spinel and plagioclase at the expense of garnet and kyanite in the felsic granulite. SHRIMP II zircon U‐Pb geochronology yields ages of 493 ± 7 Ma (mean of 11) from the felsic granulite, 497 ± 11 Ma (mean of 11) from sapphirine‐bearing metabasite and 501 ± 16 Ma (mean of 10) from garnet peridotite. Rounded zircon morphology, cathodoluminescence (CL) sector zoning, and inclusions of peak metamorphic minerals indicate these ages reflect HP/HT metamorphism. Similar ages determined for eclogites from the western segment of the SAT suggest that the same continental subduction/collision event may be responsible for HP metamorphism in both areas.  相似文献   

5.
Lower crustal xenoliths entrained in a Paleozoic ultramafic lamprophyre breccia pipe on Elovy island, Kola peninsula, Russia, represent some of the oldest lower crustal material yet investigated from Europe. The xenoliths vary from feldspar-poor, garnetrich rocks which resemble eclogites, to feldspar-rich garnet granulites. Quartz-rich felsic granulites, as well as pyroxenites and amphibole-rich rocks are also present.

The mafic granulites/eclogites represent a suite of gabbros and norites that is related by olivine fractionation. The igneous protoliths may have formed in a manner analogous to lower crustal rocks from most other European xenolith localities, i.e. by basaltic underplating, but magmatic cumulates are not in evidence.

The Kola lower crust was subjected to one or more metasomatic events which introduced up to 45% phlogopite and/or amphibole into both eclogites/granulites and pyroxenites. The resulting rocks have strong enrichments in Rb, Ba, and K, indicating that the lower crust is not uniformly depleted in LIL and heat-producing elements. Siliceous (65% SiO2) and mafic (< 50% SiO2) lithologies coexist in migmatitic xenoliths, which provide evidence for partial melting processes and restite formation in mafic metaigneous lower crust. The relationship, if any, between partial melting and metasomatism is unclear.  相似文献   


6.
在一些典型碰撞造山带中,高压麻粒岩与榴辉岩在空间和时间上密切相关,它们之间的关系对揭示碰撞造山带的造山过程和造山机制具有重要意义.本文以中国西部的南阿尔金、柴北缘及中部的北秦岭造山带为例,详细陈述了这3个地区榴辉岩和相关的高压麻粒岩的野外关系、变质演化和形成时代,目的是要建立大陆碰撞造山带中榴辉岩和相关高压麻粒岩形成的地球动力学背景模式.南阿尔金榴辉岩呈近东西向分布在江尕勒萨依,玉石矿沟一带,与含夕线石副片麻岩、花岗质片麻岩和少量大理岩构成榴辉岩一片麻岩单元,榴辉岩中含有柯石英假象,其峰期变质条件为P=2.8~3.0GPa,T=730~850℃,并在抬升过程中经历了角闪岩-麻粒岩相的叠加;大量年代学研究显示其峰期变质时代为485~500Ma.南阿尔金高压麻粒岩分布在巴什瓦克地区,包括高压基性麻粒岩和高压长英质麻粒岩,它们与超基性岩构成了一个大约5km宽的构造岩石单元,与周围角闪岩相的片麻岩为韧性剪切带接触.长英质麻粒岩和基性麻粒岩的峰期组合均具有蓝晶石和三元长石(已变成条纹长石),形成的温压条件为T=930~1020℃,P=1.8~2.5GPa,并在退变质过程中经历了中压麻粒岩相变质作用叠加.锆石SHRIMP测定显示巴什瓦克高压麻粒岩的峰期变质时代为493~497Ma.都兰地区的榴辉岩分布柴北缘HP-UHP变质带的东端,在榴辉岩和围岩副片麻岩中均发现有柯石英保存,形成的峰期温压条件为T=670~730℃和P=2.7~3.25GPa,退变质阶段经过了角闪岩相的叠加;榴辉岩相变质时代为420~450Mao都兰地区的高压麻粒岩分布在阿尔茨托山西部,高压麻粒岩包括基性麻粒岩长英质麻粒岩,基性麻粒岩的峰期矿物组合为Grt+Cpx+Pl±Ky±Zo+Rt±Qtz,长英质麻粒岩的峰期矿物组合为:Grt+Kf+Ky+Pl+Qtz.峰期变质条件为T=800~925℃,P=1.4~1.85GPa,退变质阶段经历了角闪岩-绿片岩的改造,高压麻粒岩的变质时代为420~450Ma.北秦岭榴辉岩分布在官坡-双槐树一带,榴辉岩的峰期变质组合为Grt+Omp±Phe+Qtz+Rt,所计算的峰期温压条件为T=680~770℃和P=2.25~2.65GPa,年代学数据显示榴辉岩的变质时代为500Ma左右.北秦岭高压麻粒岩分布在含榴辉岩单元的南侧松树沟一带,包括高压基性麻粒岩和高压长英质麻粒岩,与超基性岩在空间上密切伴生,高压麻粒岩的峰期温压条件为T=850~925℃,P=1.45~1.80GPa,锆石U-Pb年代学研究显示其峰期变质时代为485~507Ma.以上三个实例显示,出现在同一造山带、在空间上伴生的高压麻粒岩和榴辉岩有各自不同的变质演化历史,但榴辉岩中的榴辉岩相变质时代和相邻的高压麻粒岩中的高压麻粒岩相变质作用时代相同或相近,这种成对出现的榴辉岩和高压麻粒岩代表了它们同时形成在造山带中不同的构造环境中,即榴辉岩的形成于大陆俯冲带中,而高压麻粒岩可能形成在俯冲带之上增厚的大陆地壳根部.  相似文献   

7.
Monazite is a common accessory phase in felsic granulite ribbon mylonites exposed in the Upper Deck domain of the Athabasca granulite terrane, western Canadian Shield. Field relationships, bulk rock geochemistry and phase equilibria modelling in the Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3 system are consistent with the garnet‐rich rocks representing the residual products of ultrahigh temperature melting of biotite‐bearing paragneisses driven by intraplating of mafic magma in continental lower crust. The c. 2.64–2.61 Ga Y‐rich resorbed monazite cores included in garnet are interpreted as relicts of detrital grains deposited on the Earth's surface after c. 2.61 Ga. Yttrium‐poor monazite domains in garnet are depleted in Sm and Gd and linked to fluid‐absent melting of biotite + plagioclase + quartz ± sillimanite during a prograde loading path from 0.8 to ≥1.4 GPa. The c. 2.61–2.55 Ga Y‐depleted, Th‐rich monazite domains crystallized in the presence of garnet + ternary feldspar ± orthopyroxene + peraluminous melt. The c. 2.58–2.52 Ga monazite rims depleted in Th + Ca and enriched in Eu are linked to localized melt extraction synchronous with growth of high‐pressure (HP) grossular‐rich garnet at the expense of plagioclase during crustal thickening, culminating at >950 °C. Re‐heating and dextral transpressive lower crustal reactivation at c. 1.9 Ga resulted in syn‐kinematic growth of (La + Ce)‐enriched monazite and a second generation of garnet, concurrent with recrystallization of feldspar and orthopyroxene at 1.0–1.2 GPa and 600–700 °C. Monazite grains in this study are marked by positive Eu‐anomalies relative to chondrite. A direct link is implied between Y, Sm, Eu and Gd in monazite and two major phases in continental lower crust: garnet and plagioclase. Positive Eu‐anomalies in lower crustal monazite associated with modally abundant garnet appear to be directly related to Eu‐enrichment and depletions of Y, Sm and Gd that are consequences of garnet growth and plagioclase breakdown during HP melting of peraluminous bulk compositions.  相似文献   

8.
Spherulitic pseudotachylytes from the Arunta Block formed by frictional fusion of mylonitic parent rocks during high-level reactivation of a previously ductile fault zone. Fusion occurred preferentially in mica-rich domains due to release of water through disruption of the mica lattice by frictional sliding. This generated selective localised melting of mica during frictional heating, with the production of initial pseudotachylyte melts enriched in water and ferromagnesian components. Subsequent fusion of adjacent salic phases, promoted by the high water content of the existing melt, would tend to shift the trend of later melts towards a total melt composition. Therefore, under conditions of frictional sliding, fusion appears to be favoured in crystalline quartzofeldspathic rocks possessing both a high shear strength, and a significant water content locked up in the lattices of hydrous minerals, principally biotite.The presence or pre-existence of glass in many pseudotachylytes demands that they cooled in a near-surface environment, i.e. at depths of less than about 5 km. Thus glassy pseudotachylytes must postdate associated mylonite series rocks, generally forming subsequent to exhumation of the mylonites to a higher level in the crust. Some non-glassy pseudotachylytes, however, may possibly form towards the end of movements in a ductile regime, as strain hardening sets in.  相似文献   

9.
A suite of crustal xenoliths from Tertiary basaltic tuffs of the Northern Hessian Depression (NHD) volcanic field comprises abundant meta-igneous pyroxene granulites of mafic, noritic to anorthositic, IAT and tonalitic composition. Less abundant are granitic, tonalitic and leucogranitic gneisses and metasedimentary xenoliths. A total of 49 samples were analyzed for modal compositions, for major and trace elements (including Li, Rb, Sr, Ba, Cs, V, Sc, Cr, Co, Ni, Y, Zr, Nb, Ta, Hf, Th and REE) and oxygen isotopes. Two-pyroxene thermometry yields temperatures between 700 and 900° C for mafic and noritic granulites. Feldspar thermometry indicates temperatures of 660°–710° C for tonalitic granulites and 470°–520° C for granitic and tonalitic gneisses. One highly depleted sillimanite-rich metasediment contains cordierite and garnet which have equilibrated at temperatures of 780° C. The general lack of garnet in the mafic and noritic granulites and the presence of sillimanite in felsic xenoliths indicates that metamorphic pressures have not exceeded 10 kb. Major and trace element data and oxygen isotope compositions of the mafic granulites are compatible with an origin from spilitized enriched-type MORB rocks (enrichment in 18O to 11 and in Li to 34 ppm at average SiO2 contents of 44.1 wt%). These low-T spilites were transformed into amphibolites and then pyroxene granulites during subsequent high temperature metamorphic events. Low Si, Al, K, and Rb concentrations along with An contents in plagioclase ranging from near 50 to 98 mole percent suggest that amphibolite facies protoliths have generated tonalitic melts during partial melting at temperatures above 700° C. The mafic granulite xenoliths are interpreted as restites whereas the tonalitic samples probably represent the extracted partial melts derived by 20 to 30 percent degree of melting. Metasedimentary xenoliths strongly depleted in granitic component could represent restites from which granitic S-type partial melts have been extracted. Tonalitic and leucogranitic gneisses including one trondhjemite xenolith have many chemical characteristics (e.g. REE distribution) in common with tonalite-trondhjemite-granodiorite suites of the North Atlantic region but cannot be accounted for a more specific origin. Estimated elastic properties of the main types of NHD xenoliths yield P-wave velocities of 6.0–6.4 km-1 for granitic, tonalitic and trondhjemite gneisses including tonalitic granulites and 6.5–7.0 for the more mafic xenoliths. When compared with two seismic depths-Vp profiles these data are in accordance with a model where the mafic, andesitic, noritic and tonalitic granulites comprise abundant rock types at depths between 29 km (Moho) and 20 km which mainly consists of old oceanic crust including subduction related volcanic products. The more felsic xenoliths probably represent material from depths between 12 and 20 km.  相似文献   

10.
Equilibrium melt trace element contents are calculated from Proterozoic Nain Plutonic Suite (NPS) mafic and anorthositic cumulates, and from plagioclase and orthopyroxene megacrysts. Assumed trapped melt fractions (TMF) <20% generally eliminate all minor phases in most mafic cumulate rocks, reducing them to mixtures of feldspar, pyroxene and olivine, which would represent the high-temperature cumulus assemblage. In anorthosites, TMF <15% generally reduce the mode to a feldspar-only assemblage. All model melts have trace element profiles enriched in highly incompatible elements relative to normal mid-ocean ridge basalt (NMORB); commonly with negative Nb and Th anomalies. Most mafic cumulates yield similar profiles with constant incompatible element ratios, and can be linked through fractional crystallization. High K-La subtypes probably represent crust-contaminated facies. Mafic cumulates are inferred to belong to a tholeiitic differentiation series, variably contaminated by upper and lower crustal components, and probably related to coeval tholeiitic basaltic dyke swarms and lavas in Labrador. Model melts from anorthosites and megacrysts have normalized trace element profiles with steeper slopes than those calculated from mafic cumulates, indicating that mafic cumulates and anorthosites did not crystallize from the same melts. Orthopyroxene megacrysts yield model melts that are more enriched than typical anorthositic model melts, precluding an origin from parental melts. Jotunites have lower K-Rb-Ba-Y-Yb and higher La-Ce than model residues from fractionation of anorthositic model melts, suggesting they are not cosanguineous with them, but provide reasonable fits to evolved mafic cumulate model melts. Incompatible element profiles of anorthositic model melts closely resemble those of crustal melts such as tonalites, with steep Y-Yb-Lu segments that suggest residual garnet in the source. Inversion models yield protoliths similar to depleted lower crustal granulite xenoliths with aluminous compositions, suggesting that the incompatible trace element budget of the anorthosites are derived from remobilization of the lower crust. The similarity of the highly incompatible trace elements and LILE between anorthositic and mafic cumulate model melts suggests that the basalts parental to the mafic cumulates locally assimilated considerable quantities of the same crust that yielded the anorthosites. The reaction between underplating basalt and aluminous lower crust would have forced crystallization of abundant plagioclase, and remobilization of these hybrid plagioclase-rich mushes then produced the anorthosite massifs.  相似文献   

11.
徐武家麻粒岩相糜棱岩   总被引:9,自引:1,他引:9       下载免费PDF全文
内蒙中部土贵乌拉南徐武家早前寒武纪麻粒岩地体中发育北东向韧性剪切带,其中发现有宽达5km 的麻粒岩相糜棱岩剖面,成分相当于紫苏辉长岩、钠质花岗岩和泥质岩的麻粒岩相糜棱岩出露齐全,保存完整。二辉斜长麻粒岩中紫苏辉石、斜长石、钾长石和透辉石斑晶普遍发育强烈的塑性形变;细粒重结晶相矿物组合 Hy+Di+Pl+Kf+Hb+Bi+Scap+Q 显示糜棱岩形成于麻粒岩相变质条件,二辉石矿物对给出温度 T=710℃。该糜棱岩带与麻粒岩相变辉长岩和地壳熔融型石榴子石花岗岩密切共生,这一事实既确证了韧性剪切带在麻粒岩变质过程中发育,为研究该区麻粒岩相岩带构造演化找到了一个构造标志,同时,也为深入探讨下地壳的实际构造过程,包括麻粒岩相条件下剪切形变发生的饥理以及克拉通化提供了地质实例。  相似文献   

12.
The mylonitization of the Pankenushi gabbro in the Hidaka metamorphic belt of central Hokkaido, Japan, occurred along its western margin at ≈600 MPa and 660–700 °C through dynamic recrystallization of plagioclase and a retrograde reaction from granulite facies to amphibolite facies (orthopyroxene + clinopyroxene + plagioclase + H2O = hornblende + quartz). The reaction produced a fine-grained (≤100 μm) polymineralic aggregate composed of orthopyroxene, clinopyroxene, quartz, hornblende, biotite and ilmenite, into which strain is localized. The dynamic recrystallization of plagioclase occurred by grain boundary migration, and produced a monomineralic aggregate of grains whose crystallographic orientations are mostly unrelated to those of porphyroclasts. The monomineralic plagioclase aggregates and the fine-grained polymineralic aggregates are interlayered and define the mylonitic foliation, while the latter is also mixed into the former by grain boundary sliding to form a rather homogeneous polymineralic matrix in ultramylonites. However in both mylonite and ultramylonite, plagioclase aggregates form a stress-supporting framework, and therefore controlled the rock rheology. Crystal plastic deformation of pyroxenes and plagioclase with dominant (100)[001] and (001)1/2 slip systems, respectively, produced distinct shape- and crystallographic-preferred orientations of pyroxene porphyroclasts and dynamically recrystallized plagioclase grains in both mylonite and ultramylonite. Euhedral to subhedral growth of hornblende in pyroxene porphyroclast tails during the reaction and its subsequent rigid rotation in the fine-grained polymineralic aggregate or matrix produced clear shape- and crystallographic-preferred orientations of hornblende grains in both mylonite and ultramylonite. In contrast, the dominant grain boundary sliding of pyroxene and quartz grains in the fine-grained polymineralic aggregate of the mylonite resulted in their very weak shape- and crystallographic-preferred orientations. In the fine-grained polymineralic matrix of the ultramylonite, however, pyroxene and quartz grains became scattered and isolated in the plagioclase aggregate so that they were crystal-plastically deformed leading to stronger shape- and crystallographic-preferred orientations than those seen in the mylonite.  相似文献   

13.
Microstructural and textural investigations by scanning (SEM) and transmission electron microscopy (TEM) techniques have been performed on samples taken across two quartzo-feldspathic mylonite zones from the Redbank Deformed Zone, Central Australia. One has been deformed at greenschist-facies (GS), the second at amphibolite-facies (Am), conditions. With increasing strain the rock type changes from protomylonite to mylonite to ultramylonite. The protomylonites and mylonites consist of alternating quartz and polymineralic quartz-feldspar bands. At the highest strains a homogeneous, fine-grained polymineralic ultramylonite occurs. Shear-zone geometry and microscale structures indicate that these ultramylonites experienced higher strains and were weaker than the encapsulating protomylonites and mylonites. TEM and SEM studies of the ultramylonites reveal a rectangular to square grain shape, a continuous alignment of grain and interphase boundaries across several grain diameters, a grain size (GS 0.5 μm; Am 5–11 μm) less than the equilibrium subgrain size, and open and void-containing grain and interphase boundaries. Analysis of local textures by electron back-scatter diffraction (EBSD) in the SEM showed a very weak crystallographic preferred orientation (CPO) for the quartz. The grain misorientation relationships are not consistent, with dislocation creep being the dominant deformation mechanism. All structures are of the type expected if grain-boundary sliding processes had contributed significantly to the deformation. Consequently, the deformation of such quartzo-feldspathic rocks, and by implication the rheology of the Redbank Deformed Zone, must have been controlled by the mechanical properties of these fine-grained polymineralic ultramylonites, deforming by grain-boundary sliding processes. This is in contrast to the pure quartz bands which deformed by dislocation-creep mechanisms and were less important in the rheology of the Redbank Deformed Zone.  相似文献   

14.
High-pressure (HP) granulites provide telling records of mineral reactions at upper mantle to lower crustal levels and key information on the fate of material in subduction systems. The latter especially applies when they abut eclogite and mantle dunite because such rock associations are crucial for understanding the incompletely known processes at the interface of converging plates. A continental arc, active c. 520–395 Ma ago, formed an enigmatic example of such a rock association in the Songshugou area, Qinling Orogen. To unravel the juxtaposition of the distinct rocks, this study combines petrography, phase equilibria modelling, conventional thermobarometry, and zircon U–Th–Pb–Ti–REE analysis. Two mafic HP granulites, which contain the mineral assemblages garnet–clinopyroxene–plagioclase–rutile–mesoperthite–quartz and garnet–clinopyroxene–plagioclase–rutile, experienced peak metamorphic conditions of ≤1.4 GPa, 860°C and ~1.3 GPa, ≥910°C, respectively. During decompression and cooling, at 489 ± 4 Ma, amphibole lamellae unmixed from a clinopyroxene solid solution and orthopyroxene in part replaced garnet. A felsic HP granulite shows equilibration of garnet, perthite, antiperthite, kyanite, quartz, and rutile at 810–860°C, ~1.2 GPa, sillimanite growth during decompression, and upper amphibolite facies cooling at 510 ± 4 Ma. Though the thermobarometric data are just within the methodological errors, the U/Pb zircon ages imply the HP granulites did not evolve coherently. The HP granulites either represent foundered lower arc crust or originated from subduction erosion because their geochemistry is indistinguishable from that of the hanging-wall plate. Published and new pressure–temperature–time–deformation paths converge at ~710°C, ~0.9 GPa, and ≲470 Ma, implying exhumation tectonics juxtaposed the HP granulites with a mélange of eclogite and mantle dunite at lower crustal levels. This study highlights that lower arc crust can comprise material of diverse evolution.  相似文献   

15.
By means of petrogrological, meso- and microstructural analyses, the fabric of a syn-tectonic late Hercynian K-feldspar megacryst-bearing granodiorite is described in this paper. The granodiorite was emplaced at 293 Ma within migmatitic paragneisses which had reached the regional peak metamorphic conditions at 304–300 Ma. The granodiorite and the migmatitic paragneisses are both affected by the same ductile shear zone. In the core of the shear zone, mylonites show a clear grain-size reduction and microstructures related to deformation at high to medium temperature conditions. Migmatitic paragneisses, foliated granodiorites and mylonites mostly show concordant lineation and foliation orientations. In addition, the preferred orientation of euhedral feldspars in granodiorites indicates that the fabric anisotropy started to develop in the magmatic state. These features strongly suggest that shear deformation was active during crystallisation of granitoids and continued under subsolidus conditions. In wall rocks and mylonites, kinematic indicators such as - and -type porphyroclasts, S/C fabrics, shear bands and quartz (c) axis orientations suggest a top-to-the-W sense of shear. This is similar to the magma flow direction indicated by the tiling of euhedral feldspar megacrysts in granodiorites. Shear deformation developed, preferentially, by partitioning of strain in the granodioritic crystal mush. Geobarometry indicates that deformation took place at middle crustal levels (P=400–500 MPa). Whole rock-white mica Rb/Sr geochronological analysis of an undeformed pegmatite, crosscutting the mylonitic foliation, provided an age of 265 Ma. Timing of deformation is therefore bracketed between 293 Ma and 265 Ma.  相似文献   

16.
Whole rock major and trace element abundances in aluminous garnet–spinel websterite, sapphirine-bearing Mg–Al granulite and hibonite-bearing Ca–Al granulite xenoliths from the Chyulu Hills volcanic field, Kenya, suggest that the samples represent a meta-igneous suite linked by fractionation. The incompatible major element contents increase from the websterites to the Mg–Al granulites and further to the Ca–Al granulites. High bulk rock Mg#s and very low concentrations of most incompatible trace elements indicate that the rocks are cumulates rather than crystallized melts. Elevated Ni abundances, impoverishment in Cr and HFSE and high contents of normative plagioclase and olivine in the granulites indicate that their protoliths were similar to troctolite. The textures and metamorphic reaction paths recorded in the granulites suggest igneous emplacement in the crust and cooling from igneous to ambient crustal temperatures accompanied or followed by compression. For the websterite xenoliths, there is an apparent contradiction between the results of PT calculations that suggest high P and T of crystallization of early generation pyroxenes and elevated PT conditions during final equilibration (1.4–2.2 GPa/740–980°C) on the one hand and the positive Eu anomaly that suggests shallow-level plagioclase accumulation on the other hand. This contradiction can be reconciled by a model of compression of a plagioclase-bearing (gabbroic) protolith to mantle depths where it recrystallized to an ultramafic assemblage, which requires foundering of dense lower crustal material into the mantle.  相似文献   

17.
In Santonian-Early Campanian sedimentary melanges of the External Liguride units (northern Apennine), slide blocks of subcontinental mantle and MOR basalts are associated with lithologies derived from the continental crust. One of these sedimentary melanges, the Mt. Ragola complex, is characterized by the close association of mantle ultramafic, mafic and quartzo-feldspathic granulites. Mafic granulites show a wide compositional range. They generally display a marked metamorphic layering, but undeformed rocks which preserve a gabbroic fabric are found locally. The most frequent lithologies are Al-spinel gabbronorites, generally containing minor olivine, and Fe-Ti oxidebearing gabbronorites. Troctolites, olivine gabbronorites and anorthosites were also recovered. Relics of primary textures as well as mineral and bulk-rock compositional variations indicate a comagmatic intrusive origin for the protoliths of the mafic granulites. This intrusive mafic complex underwent a subsolidus reequilibration under granulite facies conditions, at 0.6–0.9 GPa and 810–920°C, and was derived from crystallization at intermediate levels of tholeiite-derived liquids, possibly affected by crustal contamination. Its primary features are similar to those of the upper zone of the Ivrea layered complex. The gabbroic protolith for the granulites of External Liguride units were probably crystallized into the extending Adria lithosphere in relation to the initial stages of the opening of the western Tethys.  相似文献   

18.
董杰  魏春景  张建新 《地球科学》2019,44(12):4004-4008
南阿尔金造山带是目前报道的具有最深俯冲记录的大陆超高压变质带,其内出露有高压-超高温麻粒岩,它们对深入理解大陆地壳岩石超深俯冲与折返过程具有重要意义.介绍了对南阿尔金巴什瓦克地区长英质麻粒岩和基性麻粒岩的岩相学、矿物化学、相平衡模拟及锆石U-Pb年代学研究成果.其中基性麻粒岩主要记录了深俯冲大陆地壳折返过程的变质演化:包括高压榴辉岩相、高压-超高温麻粒岩相、低压-超高温麻粒岩相及随后的近等压降温演化阶段;长英质麻粒岩除了记录与基性麻粒岩相似的折返过程外,还记录了从角闪岩相到超高压榴辉岩相的进变质演化过程.结合已有研究资料,确定超高压榴辉岩阶段峰期条件> 7~9 GPa和>1 000℃,可达到斯石英稳定域.锆石年代学显示两种岩石类型的原岩和变质年龄均分别在900 Ma和500 Ma左右.变质作用与年代学研究表明,南阿尔金大陆地壳岩石在早古生代发生超深俯冲至200~300 km后,折返至加厚地壳底部发生高压-超高温变质作用,随后被快速抬升至地壳浅部发生低压-超高温变质作用并经历迅速冷却.   相似文献   

19.
The analysis of fabric and microstructure across an amphibolite facies shear zone of mafic composition reveals that the strain-dependent change from grain size insensitive to grain size sensitive creep is associated with a fundamental reorganization of the mylonitic fabric. At moderate strain a banded mylonite evolves from a metagabbro, which displays a mechanically-induced compositional layering. Strain is concentrated in monomineralic layers of dynamically recrystallized plagioclase. At higher strain and decreasing grain size (10-30 µm) the phase segregation is progressively destroyed and replaced by a phase mixture of amphibole and plagioclase. Phase mixing in these ultramylonites is developed and stabilized by heterogeneous nucleation processes of amphibole and plagioclase within unlike phases and at dilatant sites. Nucleation appears to be controlled by grain-scale gradients in stress. A dispersed phase distribution in fine-grained ultramylonites indicates (water-assisted) diffusion processes that accommodate grain boundary sliding. Although diffusion-controlled creep plays a dominant role in these ultramylonites, the dislocation densities remain high (2.0-4.0᎒9 cm-2) and indicate that two competing mechanisms (dislocation and diffusion creep) accommodate grain boundary sliding. Commonly accepted criteria for superplastic or granular flow derived from monomineralic aggregates must be applied with caution to polymineralic rocks of mafic composition.  相似文献   

20.
The Woodroffe thrust, central Australia, is a > 1.5-km-wide mylonitized shear zone marked by large volumes of mm- to cm-scale pseudotachylyte veins. The pseudotachylytes display typical melt-origin features, including rounded and embayed clasts, spherulitic and dentritic microlites, and flow structures within a fine-grained matrix. Three types of pseudotachylyte are identified on the basis of deformation texture, vein morphology, and host-rock lithology: cataclasite-related (C-Pt), mylonite-related (M-Pt), and ultramylonite-related (Um-Pt). The M-Pt and Um-Pt veins intrude into mylonite and ultramylonite and are themselves overprinted by subsequent mylonitization. These pseudotachylytes contain an internal foliation defined by flattened porphyroclasts and layering of the fine-grained vein matrix, and the foliation is generally oriented parallel to foliation in the surrounding mylonite and ultramylonite. These observations constrain the timing and environment of M-Pt and Um-Pt pseudotachylyte formation to a protracted period of deformation and mylonitization within the ductile regime of the crust. The M-Pt and Um-Pt veins, as well as the host mylonite, are overprinted by cataclasis and multiple generations of late-stage C-Pt veins that were generated in the brittle-dominated regime of the upper crust during uplift and exhumation of the shear zone.The coexistence of multiple generations of voluminous C-Pt, M-Pt, and Um-Pt veins indicates that the pseudotachylyte veins represent a large number of large earthquakes and accompanying seismic slip over an extended period of seismicity on the Woodroffe thrust. The timing and distribution of pseudotachylyte indicate that the earthquakes nucleated at the base of the brittle-dominated seismogenic zone and propagated down through the brittle–ductile transition into the ductile-dominated regime of the crust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号