首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 378 毫秒
1.
台湾浅滩大型沙波、潮流结构和推移质输运特征   总被引:12,自引:5,他引:7       下载免费PDF全文
杜晓琴  李炎  高抒 《海洋学报》2008,30(5):124-136
对2006年8月所获台湾浅滩的底质、水深、多层位流速、流向以及CTD观测数据进行了分析,探讨了台湾浅滩大型沙波区水流的时空分布特征、沉积物输运过程及影响因素,结果表明,台湾浅滩动力作用较强,底质为粗砂,其上发育的沙波波长为325~822 m,波高为14.4~20.3 m,较接近由前人总结的沙波波高、波长的关系式计算出的波高和波长。沙波波峰、波谷、迎水面和背水面流速以12.5 h为周期沿顺时针方向旋转;底部最大流速出现在半日潮周期的同一时段,对应的方向均为偏南方向,且沙波迎水面的流速大于背水面的。在两个半日潮过程中研究区域的沉积物输入量大于输出量,处于淤积状态。在潮流作用下沉积物输运量较少,沙波脊线移动较小,而台湾浅滩有较大规模的沙波运动,故认为改造沙波的主要作用力应该是风暴流。在观测的断面中涨潮推移质输运量大于落潮的,且第一个半日潮涨落潮的输运能力均较第二个半日潮的大,这可能与潮流的流速-时间不对称特征及潮能变化形式有关。  相似文献   

2.
观测红树林潮滩在波浪和潮流作用下的近底层垂向剖面悬沙浓度变化过程, 对理解海岸带植被的消能促淤机制和滨海湿地生态修复工程有着重要作用。本文以北部湾七星岛岛尾桐花树红树林潮滩为例, 基于剖面流速仪HR、声学多普勒单点流速仪ADV、浪潮仪T-wave及剖面浊度仪ASM, 获取了研究区域2019年夏季大潮连续3天的水文数据, 同时结合桐花树典型植株实测参数, 分析了潮周期内红树林潮滩近底层垂向剖面悬沙响应波浪、潮流作用及桐花树空间结构的运动过程。结果表明: 1) 桐花树潮滩近底层悬沙浓度和悬沙通量具有涨潮明显大于落潮的潮汐不对称现象, 剖面垂向高悬沙浓度区域在涨潮初期—涨急由距底部0.1~0.37m转变为距底部0.5~0.67m, 落急—落潮末期则由上部转变为下部; 2) 潮周期内悬沙起动和再悬浮阶段发生在以波浪作用主导的涨潮初期和落潮末期, 平流和沉降发生在以潮流作用为主的涨急至落急整个阶段; 3) 涨潮阶段桐花树冠层的茂密枝叶通过减缓流速拦截多于冠层上部40%以上的悬沙, 落潮水体则挟沙自陆向海经过桐花树群落, 使得悬沙浓度下降超过71%。该不对称涨、落潮动力沉积机制有利于悬沙向岸输运, 促进潮滩扩张过程。  相似文献   

3.
近期长江河口南汇南滩水域水沙变化特征   总被引:1,自引:0,他引:1  
基于南汇南滩水域2011年12月和2012年6月洪、枯季大潮的现场水文观测资料及2003年2月枯季大潮、2004年9月洪季大潮的历史观测资料,分析潮流历时、流速、优势流和含沙量等水沙现状和变化特征,探讨近年来该水域水沙变化的主要影响因素。结果表明:(1)目前,南汇南滩水域洪季大潮落潮流占主导优势,枯季大潮涨潮流占主导优势;(2)东海大桥及其周边促淤围垦工程后,洪季大潮落潮优势增强,涨潮垂线平均含沙量减少,落潮垂线平均含沙量增多;枯季大潮落潮优势减弱,涨、落潮垂线平均含沙量均减少;(3)近岸工程建设是南汇南滩水域洪季落潮优势增强、枯季落潮优势减弱的主要影响因素;涨、落潮垂线平均含沙量的变化主要与工程建设、流域来沙量减少、近岸沙体变迁等作用有关。可为河口河槽治理提供理论依据。  相似文献   

4.
Abstract

Lower Cook Inlet in Alaska has high‐ tidal currents that average 3–4 knots and normally reach a peak of 6–8 knots. The bottom has an average depth of about 60–70 m in the central part of the inlet that deepens toward the south. Several types of bedforms, such as sand waves, dunes, ripples, sand ribbons, and lag deposits form a microtopography on the otherwise smooth seafloor. Each bedform type covers a small field, normally a few hundred to a few thousand meters wide, and usually several kilometers long parallel to the tidal flow. High‐resolution seismic systems, side‐scan sonar and bottom television were used to study these bedforms. Large sand waves with wavelengths over 300 m and wave heights up to 10 m were observed. Fields of ebb‐oriented or flood‐oriented asymmetric bedforms commonly grade into more symmetric shapes. Several orders of smaller sand waves and dunes cover the flanks of the very large bedforms. The crest directions of both size groups are normally parallel, but deviations of up to 90° have been observed; local deviations may occur where smaller forms approach the crests of the larger sand waves. Bottom television observations demonstrated active bedload transport in a northerly direction on crests and midflanks of southward asymmetric large sand waves, but not in their troughs. Movement of bedload occurs in the form of small ripples. Although the asymmetry of the large bedforms suggests that migration has taken place in the ebb or flood directions, the very low surface angles (2.5°‐8°) of these bedforms do not indicate regular movements. The large bedforms are probably relict features, or they migrate only under severe conditions, whereas active sand transport by ripples and smaller sand waves and dunes moves bedload back and forth with the tides. An understanding of such movements is essential for determining design criteria for offshore installations and in benthic‐faunal studies.  相似文献   

5.
While shoreface-connected sand ridges may be molded by storm-generated waves and currents, calmweather counterparts may determine their longevity in the German Bight. Fair-weather flow measurements on shoreface ridges off Spiekeroog Island show that: (1) peak velocities (U100 max) mostly range from 30 to 60 cm s–1 and are flood asymmetric, except at neap tide when ebb flows are dominant in ridge troughs; (2) velocity contrast between accelerating and decelerating flow phases is higher for ebb than flood currents, suggesting intense interaction between inlet and shoreface ebb currents; and (3) tidal currents play a primary role in ridge maintenance.  相似文献   

6.
陈茁  李薇  胡鹏  贺治国 《海洋工程》2022,40(1):149-159
基于平面二维水沙床耦合地貌模型,反演了1958年1月至1964年12月连续枯水年期间钱塘江尖山河段的主槽摆动过程,揭示了河势由顺直到弯曲的主要演变规律和内在机制.结果表明,在低径流和强潮流作用下,丰水年形成的北部落潮槽逐渐淤积形成浅滩,南部涨潮槽冲刷发展形成南、北两支,两槽间江心滩发育壮大,形成弯曲河势.河床冲淤主要集中在前两年内,潮汐周期内涨潮初期冲刷、涨憩和落潮初期淤积,区域淤积泥沙主要来源于下游杭州湾,北槽前期淤积为落潮型淤积,后期为涨潮型淤积.河势变化使得区域潮差增大潮动力增强,南槽涨落潮流速显著增大.顺直河势下,江心滩南北两侧分流比差异不大,涨潮期间南侧略高、落潮期间北槽略高.弯曲河势下,南槽水深和纳潮量增加,涨、落潮分流比均显著增大至75%以上.  相似文献   

7.
Profiles of tidal current and suspended sediment concentration(SSC) were measured in the North Branch of the Changjiang Estuary from neap tide to spring tide in April 2010. The measurement data were analyzed to determine the characteristics of intratidal and neap-spring variations of SSC and suspended sediment transport. Modulated by tidal range and current speed, the tidal mean SSC increased from 0.5 kg/m3 in neap tide to 3.5 kg/m3 in spring tide. The intratidal variation of the depth-mean SSC can be summarized into three types: V-shape variation in neap tide, M-shape and mixed M-V shape variation in medium and spring tides. The occurrence of these variation types is controlled by the relative intensity and interaction of resuspension, settling and impact of water exchange from the rise and fall of tide. In neap tide the V-shape variation is mainly due to the dominant effect of the water exchange from the rise and fall of tide. During medium and spring tides, resuspension and settling processes become dominant. The interactions of these processes, together with the sustained high ebb current and shorter duration of low-tide slack, are responsible for the M-shape and M-V shape SSC variation. Weakly consolidated mud and high current speed cause significant resuspension and remarkable flood and ebb SSC peaks. Settling occurs at the slack water periods to cause SSC troughs and formation of a thin fluff layer on the bed. Fluxes of water and suspended sediment averaged over the neap-spring cycle are all seawards, but the magnitude and direction of tidal net sediment flux is highly variable.  相似文献   

8.
The Otzum ebb-tidal delta, located between Langeoog and Spiekeroog islands along the East Frisian barrier-island coast, southern North Sea, was investigated with respect to its morphological evolution, sediment distribution patterns and internal sedimentary structures. Bathymetric charts reveal that, over the last 50 years, the size of the Otzum ebb-tidal delta has slightly shrunk, while sediment has accreted on the ebb-delta lobe to the east of the main inlet channel (west of Spiekeroog). Swash bars superimposed on the eastern ebb-tidal shoal (Robben Plate) have migrated south or south-eastwards, i.e. towards the inlet throat. The main ebb-delta body is composed of fine quartz sand, whereas the superimposed swash bars and the inlet channel bed consist of medium-grained quartz sand containing high proportions of coarser bioclastic material. Internal sedimentary structures in short box-cores (up to 30 cm long) are dominated by flood-oriented cross-beds. Longer vibro-cores (up to 1.5 m long) show that, at depth, the sediment is dominated by storm-generated parallel (upper plane bed) laminations with intercalated shell layers and dune cross-bedding. The cross-bedded sands in both box-cores and vibro-cores from the ebb-delta shoal predominantly dip towards the south or southeast, indicating transport towards the inlet throat by the flood current. The observations demonstrate that, contrary to previous contentions, the sediments of the highly mobile swash bars do not bypass the inlet but are instead being continually recirculated by the combined action of tidal currents and waves. In this model, the cycle begins with both fine and medium sands, including shell hash, being transported seawards in the main ebb channel until they reach the shallow ebb-delta front. From here, the sediment is pushed onto the eastern ebb-delta shoal by the flood current assisted by waves, becoming strongly size-sorted in the process. The medium sands together with the shell hash are formed into swash bars which migrate along arcuate paths over a base of fine sand back to the main ebb channel located south of the ebb delta. By the same token, the fine sand between the swash bars is transported south-eastwards by the flood current in the form of small dunes until it cascades into the large flood channel located to the west of Spiekeroog. From here, the fine sand is fed back into the main ebb channel, thus completing the cycle. No evidence was found on the ebb delta for alongshore sediment bypassing.  相似文献   

9.
本文基于4次洪枯季同步水文观测资料,着重分析了长江口北支悬沙浓度的潮周期变化、垂向分布、纵向分布和悬沙输移及其时空差异。研究结果显示,悬沙浓度的潮周期变化过程在大中潮期以M型(双峰型)为主,下段主槽内在大潮期多出现V型,上段在枯季可出现涨潮单峰型;小潮期可出现无峰、单峰或双峰型。涨、落潮悬沙浓度峰值及均值,在枯季多涨潮大于落潮,洪季中小潮特别是小潮期易出现落潮大于涨潮;下段主槽内在大潮期易出现落潮大于涨潮。悬沙浓度的垂向分布及其变化特点,在大中潮期与悬沙的潮周期变化型式有关,其中M型存在显著的洪枯季差异。纵向上,最高悬沙浓度在枯季出现于中段灵甸港至三和港之间及附近河段,洪季则在下段三条港附近。潮周期悬沙净输移,枯季大多向陆特别是大中潮期,洪季中上段大多向海,下段大潮期多向陆、中小潮易出现向海;下段主槽内在大潮期易出现向海。  相似文献   

10.
A field campaign was conducted to better understand the influence of wave action, in terms of turbulence and bed shear stress, on sediment resuspension and transport processes on a protected tidal flat. An H-frame was deployed in a tidal channel south of Gangwha Island for 6 tidal cycles during November 2006 with instrumentation including an Acoustic Doppler Velocimeter, an Acoustic Backscatter System, and an Optical Backscatter Sensor. During calm conditions, the current-induced shear was dominant and responsible for suspending sediments during the accelerating phases of flood and ebb. During the high-tide slack, both bed shear stress and suspended sediment concentration were reduced. The sediment flux was directed landward due to the scour-lag effect over a tidal cycle. On the other hand, when waves were stronger, the wave-induced turbulence appeared to keep sediments in suspension even during the high-tide slack, while the current-induced shear remained dominant during the accelerating phases of flood and ebb. The sediment flux under strong waves was directed offshore due to the sustained high suspended sediment concentration during the high-tide slack. Although strong waves can induce offshore sediment flux, infrequent events with strong waves are unlikely to alter the long-term accretion of the protected southern Gangwha tidal flats.  相似文献   

11.
杭州湾北岸金汇潮滩冲淤分析   总被引:3,自引:0,他引:3  
杭州湾北岸在南汇嘴和金山嘴人工控制节点作用下,形成微弯内凹的弧形海岸廓线,金汇岸段位于弧形岸线凹段。由于海岸凹段内水流相对较弱,尤其是涨落潮转流过程中低流速(<20cm/s)历时长,有利于泥沙下沉淤泥。11世纪中叶,杭州湾北岸自修筑了第一条海塘进入人工控制后,金汇潮滩处于淤涨中。近年来,受长江来沙量减少和南汇边滩促淤圈围工程的影响,进入杭州湾北岸水域的泥沙也有所减少,出现冲刷现象,金汇潮滩由淤涨型转换为冲刷型。  相似文献   

12.
胶州湾海域潮流动力特征及其与含沙量的关系   总被引:1,自引:0,他引:1  
根据2009年胶州湾海域的悬沙、流速、流向的实测资料,应用短期资料的潮流准调和分析方法,对连续海流资料进行了分析,并结合悬沙资料,对含沙量与潮流之间动力关系进行了探讨。研究结果表明:该海域潮流属于正规半日潮流性质,半日分潮流的东分量大于北分量,潮流以带有旋转性质的往复流为主,涨潮流流向偏西,落潮流流向偏东。胶州湾内含沙量分布特征与海底沉积物粒径特征基本一致。含沙量在涨落潮的交替和流速的更迭作用下出现明显的周期性变化,含沙量的峰值基本与海域半日潮流特点相对应,几乎每1个流速峰值对应1个含沙量的峰值,含沙量的峰值一般出现在流速峰值之后。胶州湾口处流速和单宽输沙量都为最大,涨潮单宽输沙量大于落潮单宽输沙量,输沙方向为偏西向。  相似文献   

13.
李鹏  杨世伦 《海洋与湖沼》2014,45(1):126-133
为研究潮间带和潮下带的水、沙、盐交换,于2006年6月25~28日(夏季大潮)和2006年12月29日~2007年1月4日(冬季中-大潮和小潮)在长江口九段沙一典型潮沟的固定点利用OBS-3A和ADP-XR进行了水深、浊度、盐度、流速流向剖面和回声强度观测。结果和结论为:(1)夏季大潮、冬季中-大潮、冬季小潮的潮周期垂向平均流速分别为26.5、15.9和8.4 cm/s,夏、冬季观测到的最大流速分别为84 cm/s和35 cm/s。(2)夏季盐度变化范围为0.65~4.91,平均盐度2.14;冬季盐度变化范围为3.5~10.3,中-大潮和小潮平均盐度分别为6.26和7.98。(3)高悬沙浓度出现在涨潮初期和部分落潮末期的低水位阶段;涨潮阶段的平均悬沙浓度是落潮阶段的1.11~7.0倍。(4)涨、落潮阶段的水体和盐输运量大体上趋于平衡;(5)无论是冬夏季或大小潮,潮沟在潮周期内的净输沙方向均指向陆,即落潮输沙量小于涨潮输沙量(平均小40%);平均每个潮周期的净输沙量为6102 kg,结合潮盆面积推算的潮周期沉积速率为0.0112 mm/tide,或8.2 mm/a。  相似文献   

14.
天然感潮河道水流紊动特性分析   总被引:5,自引:0,他引:5  
采用多谱勒三相流速仪,在长江口徐六泾水文观测断面分别进行了涨潮、落潮时中泓与近岸垂线的流速观测,根据这些观测资料,对天然感潮河段潮流紊动的周期、频率、概率密度函数等进行了定量的数学描述,并对时均流速、紊动强度、雷诺应力等沿垂线分布进行了分析计算。  相似文献   

15.
The horizontal and vertical distribution patterns of five planktonic copepods,Calanus sinicus, Acartia pacifica, Tortanus derjugini, Acartiella sinensis and Pseudodiaptomus poplesia, predominant in the Jiulong Estuary, were investigated from May 2003 to April 2004. The results showed that the distribution of these copepods was related to the tidal period but that each species had its own specific pattern. C. sinicus showed no tidal vertical migration behavior and was thought to be a non-resident species in this estuary. Among Acartia pacifica,T. derjugini,Acartiella sinensis, more individuals occurred in the surface than in the bottom waters during flood tide, and the pattern was reversed during ebb tide. The epibenthic copepod P. poplesia usually remained in the bottom waters in the upstream part of the estuary, but it displayed strong tidally-oriented vertical migration in the middle reaches of the estuary.Taking into account the hydrographic characteristics of the Jiulong Estuary,it was hypothesized that the planktonic copepods in this estuary had more or less adopted the mechanism of vertically migrating to the surface waters during flood tide in order to make use of the inflowing tide, and then sinking to the bottom during ebb tide to avoid being carried out of the estuary by net outflow.  相似文献   

16.
南黄海辐射沙洲区悬沙潮扩散规律数值研究   总被引:2,自引:0,他引:2  
在对南黄海辐射沙洲区的潮汐、潮流特征作进一步探讨的基础上,数值模拟了该区的悬沙潮扩散。根据计算结果,分析了计算海域悬沙含量在一个半日潮过程中随潮流场的瞬时变化规律,研究了不同地点悬沙含量与潮位、潮流的关系,总结了涨、落潮平均含沙量的平面分布规律。结果表明,该区的潮流场控制着悬沙的扩散、运移和分布,进而控制着海底地形的发育,尤其是辐射沙洲北大南小不对称格架的塑造与辐射沙洲根部的加积淤高。  相似文献   

17.
We observed tidal currents, turbulent energy dissipation and water column stratification at the entrance of a narrow strait (Neko Seto) in the Seto Inland Sea, Japan, using a free-falling turbulent microstructure profiler (TurboMAP) and acoustic Doppler current profiler (ADCP). The variation in turbulent energy dissipation at the entrance of the strait was not at quarter-diurnal frequency but at semi-diurnal frequency; turbulent energy dissipation was enhanced during the ebb tide, although it was moderate during the flood tide. This result is consistent with the results of Takasugi (1993), which showed the asymmetry of tidal energy loss during a semidiurnal tidal cycle using control volume analysis. It is suggested that significant turbulent energy dissipation is generated in the strait, which influences the properties of water outside the strait when tidal currents flow out from the strait.  相似文献   

18.
In order to discuss the content distributions and fluxes of heavy metals in suspended matters during a tidal cycle in the turbidity maximum around the Changjiang(Yangtze) Estuary,the contents of heavy metals(Zn,Pb,Cd,Co and Ni) have been analyzed.During a tidal cycle,the average contents of heavy metals are in the order of ZnNiPbCo àCd.The average contents in ebb tide are generally higher than that in flood tide.However,at the inshore Sta.11,influenced by the contamination from the nearby waste treatment plant,the average contents of Zn and Ni in flood tide are higher than those in ebb tide and at the offshore Sta.10,the content of Cd in flood tide higher than that in ebb tide due to marine-derived materials.The five heavy metals,mainly terrigenous,are transported towards east-northeast,and settle down with suspended matters in the area between Sta.11 and Sta.10.Influenced by marine-derived materials,the flux value of Cd does not alter significantly with obviously changing in flux direction towards northwest.The source of heavy metals,the salinity of water and the concentration of suspended matters are the main factors controlling the content distributions of heavy metals during a tidal cycle.There is a positive correlation between the contents of heavy metals(Zn,Pb,Co and Ni) and the salinity of water,while the opposite correlation between the contents and the concentrations of suspended matters.Because of marine-derived materials,the content of Cd is not correlated with the concentration of suspended matters and the salinity of water.  相似文献   

19.
弱动力浅海中的悬沙输运机制:以天津港附近海域为例   总被引:3,自引:1,他引:2  
根据在天津港附近海域获取的水动力和浊度数据,分析了悬沙输运特征和输运机制,结果表明:天津港附近海域受不规则半日潮控制呈低流态往复流特征,但涨潮流强于落潮流;涨潮期间底部悬沙浓度与垂线平均流速呈显著线性相关,存在显著的再悬浮作用;潮周期内的悬沙输运呈典型的不对称特征,形成向岸的净输运趋势。输运机制分析结果显示:潮泵效应(尤其是潮汐捕捉效应)是天津港附近海域悬沙输运的主要贡献项,其次是拉格朗日平流输运项,前者比后者高一个量级;垂向剪切作用最小。涨落潮期间流速与悬沙浓度的显著不对称是造成潮汐捕捉效应占主导的基本条件。在潮下带这种悬沙输运格局可能和潮间带发生的细颗粒沉积物捕集(堆积)作用有关。  相似文献   

20.
Physical oceanography of Rangaunu Harbour,Northland, New Zealand   总被引:1,自引:1,他引:0  
Current meter, current drogue, salinity, temperature, and tidal elevation observations from Rangaunu Harbour are presented. The flow is dominated by the tides, the ebb tide in general being stronger than the flood. The time of high tide is increasingly delayed with distance from the open ocean. High tide at the head of the harbour lags about an hour behind that at the mouth. The phase of the flow relative to that of the elevation is less than that for a frictionless system. This difference from a quarter of a tidal period results from tidal energy dissipation and probably varies through the spring‐neap tidal cycle. The outer harbour has essentially coastal water which is exchanged each tide. Residence time of the inner harbour waters and the inner harbour shallows (where evaporation is sufficient to raise the salinity) is several days.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号