首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New Zealand Earthquake Forecast Testing Centre   总被引:1,自引:0,他引:1  
The New Zealand Earthquake Forecast Testing Centre is being established as one of several similar regional testing centres under the umbrella of the Collaboratory for the Study of Earthquake Predictability (CSEP). The Centre aims to encourage the development of testable models of time-varying earthquake occurrence in the New Zealand region, and to conduct verifiable prospective tests of their performance over a period of five or more years. The test region, data-collection region and requirements for testing are described herein. Models must specify in advance the expected number of earthquakes with epicentral depths h ≤ 40 km in bins of time, magnitude and location within the test region. Short-term models will be tested using 24-h time bins at magnitude M ≥ 4. Intermediate-term models and long-term models will be tested at M ≥ 5 using 3-month, 6-month and 5-year bins, respectively. The tests applied will be the same as at other CSEP testing centres: the so-called N test of the total number of earthquakes expected over the test period; the L test of the likelihood of the earthquake catalogue under the model; and the R test of the ratio of the likelihoods under alternative models. Four long-term, three intermediate-term and two short-term models have been installed to date in the testing centre, with tests of these models commencing on the New Zealand earthquake catalogue from the beginning of 2008. Submission of models is open to researchers worldwide. New models can be submitted at any time. The New Zealand testing centre makes extensive use of software produced by the CSEP testing centre in California. It is envisaged that, in time, the scope of the testing centre will be expanded to include new testing methods and differently-specified models, nonetheless that the New Zealand testing centre will develop in parallel with other regional testing centres through the CSEP international collaborative process.  相似文献   

2.
This article explores the possibility to measure deformations of building foundations from measurements of ambient noise and strong motion recordings. The case under study is a seven-storey hotel building in Van Nuys, California. It has been instrumented by strong motion accelerographs, and has recorded several earthquakes, including the 1971 San Fernando (ML=6.6, R=22 km), 1987 Whittier–Narrows (ML=5.9, R=41 km), 1992 Landers (ML=7.5, R=186 km), 1992 Big Bear (ML=6.5, R=149 km), and 1994 Northridge (ML=6.4, R=1.5 km) earthquake and its aftershocks (20 March: ML=5.2, R=1.2 km; 6 December, 1994: ML=4.3, R=11 km). It suffered minor structural damage in 1971 earthquake and extensive damage in 1994. Two detailed ambient vibration tests were performed following the Northridge earthquake, one before and the other one after the 20 March aftershock. These included measurements at a grid of points on the ground floor and in the parking lot surrounding the building, presented and analyzed in this article. The analysis shows that the foundation system, consisting of grade beams on friction piles, does not act as a “rigid body” but deforms during the passage of microtremor and therefore earthquake waves. For this geometrically and by design essentially symmetric building, the center of stiffness of the foundation system appears to have large eccentricity (this is seen both from the microtremor measurements and from the earthquake recordings). This eccentricity may have contributed to strong coupling of transverse and torsional responses, and to larger than expected torsional response, contributing to damage during the 1994 Northridge, earthquake.  相似文献   

3.
马婷  邓莉  王晓山  宋程  谭毅培 《中国地震》2021,37(2):415-429
地震序列发震构造研究是区域地震活动性和地震危险性分析的重要基础。2017年3月渤海海域发生地震序列活动,该序列发生在郯城-庐江断裂带与张家口-渤海地震带的交汇部位,区域构造较为复杂。然而在渤海海域,连续运行的固定地震监测仪器难以布设,导致地震监测能力相对较弱。本文首先采用模板匹配方法对序列遗漏地震进行检测,再使用波形互相关震相检测进行震相校正,基于校正后的震相到时数据对序列进行精定位,并计算序列中2次最大地震的震源机制解。通过计算共检测到目录遗漏地震32个,约为台网目录中地震数量的1.8倍。根据波形互相关聚类分析发现渤海地震序列可分为2组,一组为M_L4.4地震及其余震序列,一组为最大震级M_L3.5的震群,另有一个M_L1.6地震与其他地震波形相似度较低,可能为一个孤立的地震事件。精定位和震源机制结果显示,2组地震均为NE走向,M_L4.4地震发生在低倾角正断层,M_L3.5地震发生在高倾角走滑断层。最后结合区域地质构造相关研究成果,认为M_L4.4地震及其余震序列发震构造为渤中凹陷内NE向低倾角的伸展性正断层,M_L3.5震群发震构造为NE向倾角较陡的次级走滑断层。  相似文献   

4.
冀鲁豫交界地区历史上曾发生过多次中强地震,是一直受关注的地震危险区。利用该区1995—2010年共20期的流动重力观测资料,在统一起算基准、消除系统误差的基础上进行拟稳平差,计算重力场累积变化量;通过对重力场变化的分析,研究测区内重力场动态变化与测区内发生的一系列4级左右地震的关系。研究结果认为:冀鲁豫地区发生M_L4.0以上地震前后震区的重力场变化具有明显的"震前持续上升-震后反向恢复"的特征。  相似文献   

5.
张晖  谭毅培  马婷  翟浩  张珂  李娟 《中国地震》2021,37(2):430-441
内蒙古和林格尔地处鄂尔多斯块体北缘阴山地震带内,历史上6级以上强震频发。2020年3月30日和林格尔发生M_L4.5地震,打破了自2005年以来阴山地震带M_L4.0以上地震的长期平静。研究此次地震序列的发震构造对区域应力状态和地震危险性分析有重要作用,然而内蒙古地震台网台站较为稀疏,相对于华北其他地区地震监测能力较低,对和林格尔地震序列的分析造成不利影响。本文采用匹配定位检测方法(ML)检测区域台网目录遗漏的微震,并对检测到的地震事件进行精定位。匹配定位方法共检测到序列中可定位的地震事件61个,约为台网目录的1.3倍,可定位地震约为台网目录的2.9倍。地震序列重定位结果中余震整体呈现NE向的分布,与使用CAP方法得到主震震源机制NE向节面走向基本一致,破裂为正断走滑型,显示和林格尔M_L4.5地震序列发震构造为NE走向、NW倾向的拉张性断层。结合计算结果和区域地震地质构造特征,认为M_L4.5地震序列发震构造为NE走向的岱海-黄旗海盆地南缘断裂。  相似文献   

6.
In the Taiwan region, the empirical spectral models for estimating ground-motion parameters were obtained recently on the basis of recordings of small to moderate (5.0≤ML≤6.5) earthquakes. A large collection of acceleration records from the ML=7.3 Chi-Chi earthquake (21 September, 1999) makes it possible to test the applicability of the established relationships in the case of larger events. The comparison of ground-motion parameters (Fourier amplitude spectra, peak accelerations and response spectra), which were calculated using the models, and the observed data demonstrates that the models could provide an accurate prediction for the case of the Chi-Chi earthquake and the largest aftershocks. However, there are some peculiarities in the ground-motion frequency content and attenuation that, most probably, are caused by the features of the rupture process of the large shallow earthquake source.  相似文献   

7.
The method of prediction of earthquake by using seismisity (MPES) is to make use of the message of earthquakes (including large, middle, small) in pre-period to predict large earthquake in post-period. Some better methods are presented in this paper which are selected among many means used in our country recent years. These methods are classified into six sets: 1. Method of spatial pattern; 2. Method of time process; 3. Method of seismic sequence; 4. Method of earthquake correlation; 5. Method of parameters of seismic source and medium; 6. Comprehensive method. Prediction effects of each method are evaluated with unique score. The value of each method, scoreR, are generally in a range between 0.3 and 0.6. This value only represents internal consistency, however, the ability of actual prediction belongs to the extensional effect, which is generally lower than the value of internal consistency. If the ability of actual prediction could be evaluated withR = 0.3, the ability of prediction of earthquake by seismicity will be stated as following: If most of earthquakes must be predicted, the warning time needs to take seventy percent of whole time period of prediction; If half earthquakes must be predicted, the warning time needs to take twenty percent of whole time period of prediction. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,15, 239–252, 1993.  相似文献   

8.
本文基于匹配滤波技术,通过SEPD(Seismic Events and Phase Detection)对2018年11月25日新疆博乐MS4.9地震序列进行检测,检测出遗漏地震32条,84.4%地震为ML0.0—1.0,9.4%地震小于ML0.0,较地震目录中原有15条地震多213%,检测出的遗漏地震事件使地震目录更加完整。检测后的最小完整性震级由检测前的ML1.6减至ML0.8,地震目录最小完整性震级的减小有利于地震工作者对区域地震活动性作出更准确全面的结论,并使地震危险性分析更可靠。  相似文献   

9.
The characteristics of spatio-temporal seismicity evolution before the Wenchuan earthquake are studied. The results mainly involve in the trend abnormal features and its relation to the Wenchuan earthquake. The western Chinese mainland and its adjacent area has been in the seismically active period since 2001, while the seismic activity shows the obvious quiescence of M≥?7.0, M≥?6.0 and M?≥5.0 earthquakes in Chinese mainland. A quiescence area with M?≥7.0 has been formed in the middle of the North-South seismic zone since 1988, and the Wenchuan earthquake occurred just within this area. There are a background seismicity gap of M?≥5.0 earthquakes and a seismogenic gap of ML?≥4.0 earthquakes in the area of Longmenshan fault zone and its vicinity prior to the Wenchuan earthquake. The seismic activity obviously strengthened and a doughnut-shape pattern of M?≥4.6 earthquakes is formed in the middle and southern part of the North-South seismic zone after the 2003 Dayao, Yunnan, earthquake. Sichuan and its vicinity in the middle of the doughnut-shape pattern show abnormal quiescence. At the same time, the seismicity of earthquake swarms is significant and shows heterogeneity in the temporal and spatial process. A swarm gap appears in the M4.6 seismically quiet area, and the Wenchuan earthquake occurred just on the margin of the gap. In addition, in the short term before the Wenchuan earthquake, the quiescence of earthquake with ML≥?4.0 appears in Qinghai-Tibet block and a seismic belt of ML?≥3.0 earthquakes, with NW striking and oblique with Longmenshan fault zone, is formed.  相似文献   

10.
本文提出用四维空间的欧氏距离DFM来表示不同地震震源机制之间的一致性,并以1975年辽宁海城ML7.3地震序列和1999年辽宁岫岩MS5.4地震序列为例分析了主震与前震和余震的震源机制一致性与DFM值之间的关系,其结果显示,当欧氏距离DFM<50时,两次地震的震源机制接近。为了对若干次地震组成的一组地震的震源机制一致性进行判定,引入了显著性检验方法。根据陈颙提出的震源机制一致性参数K,以符号检验法和统计检验量Z值检验法对岫岩MS5.4地震前小震的震源机制一致性进行了分析,其结果表明,在临近岫岩MS5.4地震前所发生地震的震源机制的一致性显著,置信度可达98%。   相似文献   

11.
Abstract

This study was carried out to investigate the role of rainfall in triggering ordinary earthquakes that occurred before and after the major Chi-Chi earthquake (7.2 ML) in central Taiwan on 21 September 1999. To test a possible mechanism, earthquake activities from January 1995 to July 2012 were examined. The Chi-square (χ2) test revealed a significant difference between the correlations of monthly accumulated rainfall values and earthquake activities before and after the Chi-Chi earthquake. This result is discussed in terms of changes in crustal conditions after the Chi-Chi earthquake. Two ordinary earthquakes that may have been associated with heavy rainfall after the Chi-Chi earthquake are identified.
Editor D. Koutsoyiannis; Associate editor A. Porporato

Citation Lin, J.-W., 2014. Rainfall-triggered ordinary earthquakes in Taiwan: a statistical analysis. Hydrological Sciences Journal, 59 (5), 1074–1080.  相似文献   

12.
利用模板匹配方法对2015年11月23日青海省祁连县M_S5.2地震进行遗漏地震检测研究,由于主震后短时间内目录中遗漏事件较多,故对主震后1天的连续波形进行检测。主震后1天内青海测震台网记录到的余震个数(包括单台)共62个,选取主震后M_L1.0以上余震30个作为模板事件,通过匹配滤波的方式扫描出遗漏地震31个,约为台网目录给出的0.5倍。基于包络差峰值振幅与震级的线性关系估测检测事件的震级参数,最后将检测后的余震目录与台网余震目录在主震后1天内的最小完备震级进行对比分析,结果发现检测后最小完备震级从M_L1.2降到了M_L0.7,得到青海测震台网在祁连地区最小完整性震级为M_L0.7。  相似文献   

13.
Global epicentre maps show that the majority of earthquakes are inter-plate, although moderate to large earthquakes do occur intra-plate, i.e. within the plates. The seismicity of the Australian continent is typical of intra-plate environments and a magnitude ML 6 earthquake has an average return period of about 5 years. Recordings of Australian intra-plate earthquakes are investigated here to characterise their frequency content, peak acceleration and duration.Due to lack of quality strong motion records of large intra-plate earthquakes at short distances, synthetic seismograms are commonly used for testing structural behaviour. An empirical Green's Function method (Geophys. Res. Lett., 5 (1978), 1–4; Proceedings of the Third International Microzonation Conference, Seattle, USA, vol. 1, (1982), pp. 447–458.) is chosen to simulate a large earthquake by summation in time of a number of smaller earthquakes or sub-events, each given a slightly different origin time to represent more realistically the propagation of a rupture along an assumed fault plane. In the first instance, recordings on rock of the magnitude ML 2.3 aftershock of the 29 December 1989 Newcastle earthquake were used as sub-events to simulate the main shock of magnitude ML 5.6. Validation studies for events recorded elsewhere in Australia are also considered.The response spectra of such synthetic events will be compared with the recommended spectra developed empirically from a statistical analysis of strong motion data for magnitude 5.4–6.5 intra-plate earthquakes recorded in other parts of the world and normalised to a peak ground velocity of 50 mm/s which is typical for a return period of 500 years in Australia (Australasian Structural Engineering Conference, Auckland, New Zealand, (1998), pp. 439–444.). Preliminary results from this comparison with the response spectra recommended for the Building Code of Australia show that the synthetic waveforms produced by this method are realistic and can be used to represent ground motion during typical Australian intra-plate earthquakes.  相似文献   

14.
Many crucial tasks in seismology, such as locating seismic events and estimating focal mechanisms, need crustal velocity models. The velocity models of shallow structures are particularly important in the simulation of ground motions. In southern Ontario, Canada, many small shallow earthquakes occur, generating high-frequency Rayleigh (Rg) waves that are sensitive to shallow structures. In this research, the dispersion of Rg waves was used to obtain shear-wave velocities in the top few kilometers of the crust in the Georgian Bay, Sudbury, and Thunder Bay areas of southern Ontario. Several shallow velocity models were obtained based on the dispersion of recorded Rg waves. The Rg waves generated by an m N 3.0 natural earthquake on the northern shore of Georgian Bay were used to obtain velocity models for the area of an earthquake swarm in 2007. The Rg waves generated by a mining induced event in the Sudbury area in 2005 were used to retrieve velocity models between Georgian Bay and the Ottawa River. The Rg waves generated by the largest event in a natural earthquake swarm near Thunder Bay in 2008 were used to obtain a velocity model in that swarm area. The basic feature of all the investigated models is that there is a top low-velocity layer with a thickness of about 0.5 km. The seismic velocities changed mainly within the top 2 km, where small earthquakes often occur.  相似文献   

15.
This paper studies the relations between the great Wenchuan earthquake and the active-quiet periodic characteristics of strong earthquakes, the rhythmic feature of great earthquakes, and the grouped spatial distribution of MS8.0 earthquakes in Chinese mainland. We also studied the relation between the Wenchuan earthquake and the stepwise migration characteristics of MS?≥7.0 earthquakes on the North-South seismic belt, the features of the energy releasing acceleration in the active crustal blocks related to the Wenchuan earthquake and the relation between the Wenchuan earthquake and the so called second-arc fault zone. The results can be summarized as follows: ① the occurrence of the Wenchuan earthquake was consistent with the activequiet periodic characteristics of strong earthquakes; ② its occurrence is consistent with the features of grouped occurrence of MS8.0 earthquakes and follows the 25 years rhythm (each circulation experiences the same time) of great earthquakes; ③ the Wenchuan MS8.0 earthquake follows the well known stepwise migration feature of strong earthquakes on the North-South seismic belt; ④ the location where the Wenchuan MS8.0 earthquake took place has an obvious consistency with the temporal and spatial characteristic of grouped activity of MS≥?7.0 strong earthquakes on the second-arc fault zone; ⑤ the second-arc fault zone is not only the lower boundary for earthquakes with more than 30 km focal depth, but also looks like a lower boundary for deep substance movement; and ⑥ there are obvious seismic accelerations nearby the Qaidam and Qiangtang active crustal blocks (the northern and southern neighbors of the Bayan Har active block, respectively), which agrees with the GPS observation data.  相似文献   

16.
T. Kuo 《Ground water》2014,52(2):217-224
Both studies at the Antung hot spring in eastern Taiwan and at the Paihe spring in southern Taiwan confirm that groundwater radon can be a consistent tracer for strain changes in the crust preceding an earthquake when observed in a low‐porosity fractured aquifer surrounded by a ductile formation. Recurrent anomalous declines in groundwater radon were observed at the Antung D1 monitoring well in eastern Taiwan prior to the five earthquakes of magnitude (Mw): 6.8, 6.1, 5.9, 5.4, and 5.0 that occurred on December 10, 2003; April 1, 2006; April 15, 2006; February 17, 2008; and July 12, 2011, respectively. For earthquakes occurring on the longitudinal valley fault in eastern Taiwan, the observed radon minima decrease as the earthquake magnitude increases. The above correlation has been proven to be useful for early warning local large earthquakes. In southern Taiwan, radon anomalous declines prior to the 2010 Mw 6.3 Jiasian, 2012 Mw 5.9 Wutai, and 2012 ML 5.4 Kaohsiung earthquakes were also recorded at the Paihe spring. For earthquakes occurring on different faults in southern Taiwan, the correlation between the observed radon minima and the earthquake magnitude is not yet possible.  相似文献   

17.
Vrancea is one of the few singular seismic regions of the world where intermediate-depth earthquakes are permanently generated (around 10 events/month with M L > 3) within an extremely confined focal volume. This particularity and the relatively large number of short-period waveforms recorded by the Romanian local network provides us the opportunity to test the performance of the empirical Green's function technique in retrieving the source time function and source directivity of the Vrancea earthquakes. Three earthquakes that occurred on March 11, 1983 (M L = 5.4), April 12, 1983 (M L = 5.1) and August 7, 1984 (M L = 5.1) in the lower part of the subducting lithosphere (h 150 km) were analyzed. A set of 28 adjacent events (3.0 < M L < 4.4) which occurred between 1981 and 1997 were selected as corresponding empirical Green's functions. To test the confidence of the retrieved source time function, we compare the deconvolved pulses using Green's functions of different sizes and recorded simultaneously by short-period and broad-band instruments. Our tests show that the durations of the source time function is well-constrained and is not affected by the limited frequency range of the short-period instruments, or by the relative difference in the focal mechanism between the main event and Green's event. The apparent duration of the source time function outlines source directivity effects, and when these effects are sufficiently strong, they can identify the real fault plane. Relatively short source duration and correspondingly high stress drop values are in agreement with other previous results emphasizing a specific seismic regime in the lower part of the Vrancea subducting lithosphere.  相似文献   

18.
针对2014年8月—2015年1月安徽金寨发生的M_L3.9震群,利用匹配滤波技术补充台网目录遗漏的地震事件,再利用波形互相关震相检测技术标定P波和S波到时,进一步采用双差定位方法对震群进行重定位,结合震源机制解等分析此次震群活动可能的发震构造。计算结果显示,通过互相关扫描检测到1376个地震台网常规分析遗漏的地震,数量约为台网目录给出的585个事件的2.35倍。检测到的遗漏地震震级估算为M_L0~2.3,通过震级-频次统计分析,加入遗漏地震后地震目录的完整性在M_L0~1.5范围内有较明显的改善。重定位后地震走时残差更小,水平位置更集中,沿NNE向断裂F和NW向青山-晓天断裂呈现近直立的条带状分布。结合地质构造、震源机制解和水库因素,推测2014年金寨M_L3.9震群可能是由周边水库水下渗引起NW向青山-晓天断裂与NNE向断裂F慢滑动而触发的。  相似文献   

19.
This paper describes the identification of finite dimensional, linear, time‐invariant models of a 4‐story building in the state space representation using multiple data sets of earthquake response. The building, instrumented with 31 accelerometers, is located on the University of California, Irvine campus. Multiple data sets, recorded during the 2005 Yucaipa, 2005 San Clemente, 2008 Chino Hills and 2009 Inglewood earthquakes, are used for identification and validation. Considering the response of the building as the output and the ground motion as the input, the state space models that represent the underlying dynamics of the building in the discrete‐time domain corresponding to each data set are identified. The time‐domain Eigensystem Realization Algorithm with the Observer/Kalman filter identification procedure are adopted in this paper, and the modal parameters of the identified models are consistently determined by constructing stabilization diagrams. The four state space models identified demonstrate that the response of the building is amplitude dependent with the response frequency and damping, being dependent on the magnitude of ground excitation. The practical application of this finding is that the consistency of this building response to future earthquakes can be quickly assessed, within the range of ground excitations considered (0.005g–0.074g), for consistency with prior response—this assessment of consistent response is discussed and demonstrated with reference to the four earthquake events considered in this study. Inclusion of data sets relating to future earthquakes will enable the findings to be extended to a wider range of ground excitation magnitudes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
For earthquakes (ML≥2.0) that occurred from January 2006 to October 2018 around the MS5.7 Xingwen earthquake occurred on 16 December 2018 in Xingwen, Sichuan province, China, we statistically investigated the correlation between the phase of Earth's rotation and the occurrence of earthquakes via Schuster's test to determine the signals that triggered earthquakes before the MS5.7 Xingwen event. The results were evaluated based on the P-value where a smaller P-value corresponded to a higher correlation between the occurrence of an earthquake and Earth's rotation. We investigated the spatial distribution of P-values in the region around the epicenter of the MS5.7 Xingwen event, and obtained a result exhibiting a extremely low-P-value region. The MS5.7 event occurred inside near the northern boundary of this region. Furthermore, we analyzed the temporal evolution of P-values for earthquakes that occurred within the extremely low-P-value region and found that some extremely low P-values (less that 0.1%), i.e., significant correlation, were calculated for earthquakes that occurred before the MS5.7 Xingwen earthquake. Among sixty-one earthquakes with the lowest P-value, occurred from May 2014 to April 2018, a vast majority of them occurred during the acceleration of Earth's rotation. The lower P-value obtained in this study reveals that the Xingwen source body probably was extremely unstable prior to the occurrence of the MS5.7 Xingwen earthquake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号