首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 608 毫秒
1.
Chemical weathering in the Three Rivers region of Eastern Tibet   总被引:2,自引:0,他引:2  
Three large rivers - the Chang Jiang (Yangtze), Mekong (Lancang Jiang) and Salween (Nu Jiang) - originate in eastern Tibet and run in close parallel over 300 km near the eastern Himalayan syntaxis. Seventy-four river water samples were collected mostly during the summer season from 1999 to 2004. Their major element compositions vary widely, with total dissolved solids (TDS) ranging from 31 to 3037 mg/l, reflecting the complex geologic makeup of the vast drainage basins. The major ion distribution of the main channel samples primarily reflects the weathering of carbonates. Evaporite dissolution prevails in the headwater samples of the Chang Jiang in the Tibetan Plateau interior, as evidenced by the high TDS (928 and 3037 mg/l) and the Na-Cl dominant major element composition. Local tributary samples of the Mekong and Salween, draining the Lincang Batholith and the Tengchong Volcano, show distinctive silicate weathering signatures. We used five reservoirs - rain, halite, sulfate, carbonate, and silicate - in a forward model to calculate the contribution from silicate weathering to the total dissolved load and to estimate the consumption rate of atmospheric CO2 by silicate weathering. Carbonate weathering accounts for about 50% of the total cationic charge (TZ+) in the samples of the Mekong and the Salween exiting the Tibetan Plateau. In the “exit” sample of the Chang Jiang, 45% of TZ+ is from halite dissolution inherited from the extreme headwater tributaries in the interior of the plateau, and carbonates contribute only 26% to the TZ+. The net rate of CO2 consumption by silicate weathering is (103-121) × 103 mol km−2 year−1, lower than the rivers draining the Himalayan front. GIS-based analyses indicate that runoff and relief can explain 52% of the spread in the rate of atmospheric CO2 drawdown by silicate weathering, but other climatic (temperature, precipitation, potential evapotranspiration) and geomorphic (elevation, slope) factors also show collinearity. Only qualitative conclusions can be drawn for the significance of lithology due to lack of digitized lithologic information. The effect of the peculiar drainage pattern due to tectonic forcing is not readily apparent in the major element composition or in increased chemical weathering rates. The 87Sr/86Sr ratios and the silicate weathering rates are in general lower in the Three Rivers than in the rivers draining the Himalayan front.  相似文献   

2.
We investigated rates of chemical weathering of volcanic and ophiolitic rocks on Luzon Island, the Philippines. Luzon has a tropical climate and is volcanically and tectonically very active, all factors that should enhance chemical weathering. Seventy-five rivers and streams (10 draining ophiolites, 65 draining volcanic bedrock) and two volcanic hot springs were sampled and analyzed for major elements, alkalinity and 87Sr/86Sr. Cationic fluxes from the volcanic basins are dominated by Ca2+ and Mg2+ and dissolved silica concentrations are high (500-1900 μM). Silica concentrations in streams draining ophiolites are lower (400-900 μM), and the cationic charge is mostly Mg2+. The areally weighted average CO2 export flux from our study area is 3.89 ± 0.21 × 106 mol/km2/yr, or 5.99 ± 0.64 × 106 mol/km2/yr from ophiolites and 3.58 ± 0.23 × 106 mol/km2/yr from volcanic areas (uncertainty given as ±1 standard error, s.e.). This is ∼6-10 times higher than the current best estimate of areally averaged global CO2 export by basalt chemical weathering and ∼2-3 times higher than the current best estimate of CO2 export by basalt chemical weathering in the tropics. Extrapolating our findings to all tropical arcs, we estimate that around one tenth of all atmospheric carbon exported via silicate weathering to the oceans annually is processed in these environments, which amount to ∼1% of the global exorheic drainage area. Chemical weathering of volcanic terranes in the tropics appears to make a disproportionately large impact on the long-term carbon cycle.  相似文献   

3.
The geochemistry of dissolved and suspended loads in river catchments of two low mountain ranges in Central Europe allows comparison of pertinent chemical weathering rates. Distinct differences in lithology, i.e. granites prevailing in the Black Forest compared to Palaeozoic sediments in the Rhenish Massif, provide the possibility to examine the influence of lithology on weathering. Here we determine the origin of river water using the stable isotope ratio δ18OH2O and we quantify the geogenic proportions of sulphate from stable isotope ratios δ34SSO4 and δ18OSO4. Particularly in catchments with abundant pyrite, determination of the geogenic amount of sulphate is important, since oxidation of pyrite leads to acidity, which increases weathering. Our results show that spatially averaged silicate weathering rates are higher for the river catchments Acher and Gutach in the Black Forest (10–12 t/km2/yr) compared to the river catchments of the Möhne dam and the Aabach dam in the Rhenish Massif (2–6 t/km2/yr). Correspondingly, the CO2 consumption by silicate weathering in the Black Forest (334–395 × 103 mol/km2/yr) is more than twice as high as in the Rhenish Massif (28–151 × 103 mol/km2/yr). These higher rates for watersheds of the Black Forest are likely due to steeper slopes leading to higher mechanical erosion with respective higher amounts of fresh unweathered rock particulates and due to the fact that the sediments in the Rhenish Massif have already passed through at least one erosion cycle. Carbonate weathering rates vary between 12 and 38 t/km2/yr in the catchments of the Rhenish Massif. The contribution of sulphuric acid to the silicate weathering is higher in the catchments of the Rhenish Massif (9–16%) than in the catchments of the Black Forest (5–7%) due to abundant pyrite in the sediments of the Rhenish Massif. Three times higher long-term erosion rates derived from cosmogenic nuclides compared to short-term erosion rates derived from river loads in Central Europe point to three times higher CO2 consumption during the past 103 to 104 years.  相似文献   

4.
A detailed geochemical study on river waters of the Australian Victorian Alps was carried out to determine: (i) the relative significance of silicate, carbonate, evaporite and sulfide weathering in controlling the major ion composition and; (ii) the factors regulating seasonal and spatial variations of CO2 consumption via silicate weathering in the catchments. Major ion chemistry implies that solutes are largely derived from evaporation of precipitation and chemical weathering of carbonate and silicate lithologies. The input of solutes from rock weathering was determined by calculating the contribution of halite dissolution and atmospheric inputs using local rain and snow samples. Despite the lack of carbonate outcrops in the study area and waters being undersaturated with respect to calcite, the dissolution of vein calcite accounts for up to 67% of the total dissolved cations, generating up to 90% of dissolved Ca and 97% of Mg. Dissolved sulfate has δ34S values of 16 to 20‰CDT, indicating that it is derived predominantly from atmospheric deposition and minor gypsum weathering and not from bacterial reduction of FeS2. This militates against sulphuric acid weathering in Victorian rivers. Ratios of Si vs. the atmospheric corrected Na and K concentrations range from ~ 1.1 to ~ 4.3, suggesting incongruent weathering from plagioclase to smectite, kaolinite and gibbsite.Estimated long-term average CO2 fluxes from silicate weathering range from ~ 0.012 × 106 to 0.039 × 106 mol/km2/yr with the highest values in rivers draining the basement outcrops rather than sedimentary rocks. This is about one order of magnitude below the global average which is due to low relief, and the arid climate in that region. Time series measurements show that exposure to lithology, high physical erosion and long water–rock contact times dominate CO2 consumption fluxes via silicate weathering, while variations in water temperature are not overriding parameters controlling chemical weathering. Because the atmospheric corrected concentrations of Na, K and Mg act non-conservative in Victorian rivers the parameterizations of weathering processes, and net CO2 consumption rates in particular, based on major ion abundances, should be treated with skepticism.  相似文献   

5.
To better understand chemical weathering and controlling processes in the Yalong River of the eastern Tibetan Plateau, this study presents major ion concentrations and stable isotopes of the dissolved loads. The isotopic compositions (δ13C-DIC, δ34S and δ18O-SO4) of the dissolved loads are very useful to quantify solute sources and define the carbon budget related with chemical weathering in riverine systems. The isotopic composition of sulphate demonstrates that most of the sulphate is derived from sulphide oxidation, particularly in the upper reach of the Yalong River. The correlations between δ13C-DIC, water chemistry and isotopes of sulphate, suggest that the carbon dynamics are mainly affected by carbonate weathering by sulphuric acid and equilibration processes. Approximately 13% of the dissolved inorganic carbon in the Yalong River originates from carbonate weathering by strong acid. The CO2 consumption rates are estimated to be 2.8 × 105 mol/km2/yr and 0.9 × 105 mol/km2/yr via carbonate and silicate weathering in the Yalong River, respectively. In this study, the influence of sulphide oxidation and metamorphic CO2 on the carbon budget is estimated for the Yalong River draining the eastern Tibetan Plateau.  相似文献   

6.
The conventional view of the climatic influence on weathering is that weathering rates are strongly temperature-dependent due to the near-exponential relationship (Clausius-Clapeyron) between temperature and the saturation vapor pressure of water, and hence precipitation and runoff. This is a central theme in the Earth “thermostat” model, i.e., weathering of aluminosilicate rocks on continents acts through the greenhouse effect as a negative feedback on atmospheric CO2. However, there is very little direct field evidence to support this hypothesis. To remedy the lack of systematic geochemical data for cold high latitude rivers as compared to the tropics, large, pristine drainages of Eastern Siberia have been studied. Here, data from basement terrains of the Siberian Craton are reported. The low Si to total cation ratios suggest a superficially weathered system. The total dissolved solids flux of 0.39 × 106 mol/km2/yr and the CO2 uptake flux of 149 × 103 mol/km2/yr are similar to those of the tropical cratonic systems and the collisional/accretionary zone of northeastern Siberia, but about a factor of 3 lower than for the orogenic zones of the western Americas at both low and high latitudes. The lack of systematic climatic effects on the solute and CO2 fluxes is ascribed to the unique non-glacial frost shattering processes which continuously expose fresh rock surfaces and, thus, overcome the effect of temperature inhibition on high-latitude shields and to the lateritic cover that seals in the weathering front away from the weathering agents on the tropical shields. No primary climatic effects on weathering rates on the present Earth were detected.  相似文献   

7.
The Hong (Red) River drains the prominent Red River Fault Zone that has experienced various tectonic activities—intrusion of magma, exhumation of basement rocks, and influx of thermal waters—associated with the Cenozoic collision of India and Eurasia. We report dissolved major element and Sr isotope compositions of 43 samples from its three tributary systems (Da, Thao/Hong main channel, and Lo) encompassing summer and winter seasons. Carbonic acid ultimately derived from the atmosphere is the main weathering agent, and sulfuric acid from pyrite oxidation plays a minor role. Seasonality is manifested in higher calcite saturation index and Mg/TZ+ and lower Ca/Mg in summer, suggesting calcite precipitation, and in higher Si/(Na + K) ratios in summer suggesting more intensive silicate weathering. We quantified the input from rain, evaporite, carbonate, and silicate reservoirs using forward and inverse models and examined the robustness of the results. Carbonate dissolution accounts for a significant fraction of total dissolved cations (55-97%), and weathering of silicates makes a minor contribution (1-40%). Our best estimate of the spatially averaged silicate weathering rate in the Hong basin is 170 × 103 mol/km2/yr in summer and 51 × 103 mol/km2/yr in winter. We tested for correlations between the rate of CO2 consumption by silicate weathering and various climatic (air temperature, precipitation, runoff, and potential evapotranspiration) and geologic (relief, elevation, slope, and lithology) parameters calculated using GIS. Clear correlations do not emerge (except for ?CO2 and runoff in winter) which we attribute to the complex geologic setting of the area, the seasonal regime change from physical-dominant in summer to chemical-dominant in winter, and the incoherent timescales involved for the different parameters tested.  相似文献   

8.
《Geochimica et cosmochimica acta》1999,63(23-24):4037-4051
This study focuses on the major and trace element composition of suspended sediments transported by the world’s largest rivers. Its main purpose is to answer the following question: is the degree of weathering of modern river-borne particles consistent with the estimated river dissolved loads derived from silicate weathering?In agreement with the well known mobility of elements during weathering of continental rocks, we confirm that river sediments are systematically depleted in Na, K, Ba with respect to the Upper Continental Crust. For each of these mobile elements, a systematics of weathering indexes of river-borne solids is attempted. A global consistency is found between all these indexes. Important variations in weathering intensities exist. A clear dependence of weathering intensities with climate is observed for the rivers draining mostly lowlands. However, no global correlation exists between weathering intensities and climatic or relief parameters because the trend observed for lowlands is obscured by rivers draining orogenic zones. An inverse correlation between weathering intensities and suspended sediment concentrations is observed showing that the regions having the highest rates of physical denudation produce the least weathered sediments. Finally, chemical and physical weathering are compared through the use of a simple steady state model. We show that the weathering intensities of large river suspended sediments can only be reconciled with the (silicate-derived) dissolved load of rivers, by admitting that most of the continental rocks submitted to weathering in large river basins have already suffered previous weathering cycles. A simple graphical method is proposed for calculating the proportion of sedimentary recycling in large river basins. Finally, even if orogenic zones produce weakly weathered sediments, we emphasize the fact that silicate chemical weathering rates (and hence CO2 consumption rates by silicate weathering) are greatly enhanced in mountains simply because the sediment yields in orogenic drainage basins are higher. Hence, the parameters that control chemical weathering rates would be those that control physical denudation rates.  相似文献   

9.
This study focuses on the chemical and Sr isotopic compositions of the dissolved load of the rivers of the Changjiang Basin, one of the largest riverine systems in the world. Water samples were collected in August 2006 from the main tributaries and the main Changjiang channel. The chemical and isotopic analyses indicated that four major reservoirs (carbonates, silicates, evaporites and agriculture/urban effluents) contribute to the total dissolved solutes. The overall chemical weathering (carbonate and silicate) rate for the Changjiang is approximately 40 ton/km2/year or 19 mm/kyr, similar to that of the Ganges-Brahmaputra system, and the basin is characterized by carbonate and silicate weathering rates ranging from 17 to 56 ton/km2/year and from 0.7 to 7.1 ton/km2/year, respectively. In the lower reach of the Changjiang main channel, the weathering rates are estimated to be 36 and 2.2 ton/km2/year for carbonates and silicates, respectively. It appears that sulphuric acid may dominate chemical weathering reactions for some sub-basins. The budgets of CO2 consumption are estimated to be 646 × 109 and 191 × 109 mol/year by carbonate and silicate weathering, respectively. The contribution of the anthropogenic inputs to the cationic TDS of the Changjiang is estimated to be 15-20% for the most downstream stations. Our study suggested that the Changjiang is strongly impacted by human activities and is very sensitive to the change of land use.  相似文献   

10.
We investigated the dissolved major elements, $ {}^{87}{\text{Sr/}}{}^{86}{\text{Sr}},\;\delta {}^{34}{\text{S}}_{{\text{SO}}_{\text{4}} } ,\;{\text{and}}\;\delta {}^{18}{\text{O}}_{{\text{SO}}_{\text{4}} } $ composition of the Min Jiang, a headwater tributary of the Chang Jiang (Yangtze River). A forward calculation method was applied to quantify the relative contribution to the dissolved load from rain, evaporite, carbonate, and silicate reservoirs. Input from carbonate weathering dominated the major element composition (58–93%) and that from silicate weathering ranged from 2 to 18% in unperturbed Min Jiang watersheds. Most samples were supersaturated with respect to calcite, and the CO2 partial pressures were similar to or up to ~5 times higher than atmospheric levels. The Sr concentrations in our samples were low (1.3–2.5 μM) with isotopic composition ranging from 0.7108 to 0.7127, suggesting some contribution from felsic silicates. The Si/(Na* + K) ratios ranged from 0.5 to 2.5, which indicate low to moderate silicate weathering intensity. The $ \delta {}^{34}{\text{S}}_{{\text{SO}}_{\text{4}} } \;{\text{and}}\;\delta {}^{18}{\text{O}}_{{\text{SO}}_{\text{4}} } $ for five select samples showed that the source of dissolved sulfate was combustion of locally consumed coal. The silicate weathering rates were 23–181 × 103 mol/km2/year, and the CO2 consumption rates were 31–246 × 103 mol/km2/year, which are moderate on a global basis. Upon testing various climatic and geomorphic factors for correlation with the CO2 consumption rate, the best correlation coefficients found were with water temperature (r 2 = 0.284, p = 0.009), water discharge (r 2 = 0.253, p = 0.014), and relief (r 2 = 0.230, p = 0.019).  相似文献   

11.
The Yarlung Tsangpo-Brahmaputra river drains a large portion of the Himalaya and southern Tibetan plateau, including the eastern Himalayan syntaxis, one of the most tectonically active regions on the globe. We measured the solute chemistry of 161 streams and major tributaries of the Tsangpo-Brahmaputra to examine the effect of tectonic, climatic, and geologic factors on chemical weathering rates. Specifically, we quantify chemical weathering fluxes and CO2 consumption by silicate weathering in southern Tibet and the eastern syntaxis of the Himalaya, examine the major chemical weathering reactions in the tributaries of the Tsangpo-Brahmaputra, and determine the total weathering flux from carbonate and silicate weathering processes in this region. We show that high precipitation, rapid tectonic uplift, steep channel slopes, and high stream power generate high rates of chemical weathering in the eastern syntaxis. The total dissolved solids (TDS) flux from the this area is greater than 520 tons km−2 yr−1 and the silicate cation flux more than 34 tons km−2 yr−1. In total, chemical weathering in this area consumes 15.2 × 105 mol CO2 km−2 yr−1, which is twice the Brahmaputra average. These data show that 15-20% of the total CO2 consumption by silicate weathering in the Brahmaputra catchment is derived from only 4% of the total land area of the basin. Hot springs and evaporite weathering provide significant contributions to dissolved Na+ and Cl fluxes throughout southern Tibet, comprising more than 50% of all Na+ in some stream systems. Carbonate weathering generates 80-90% of all dissolved Ca2+ and Mg2+ cations in much of the Yarlung Tsangpo catchment.  相似文献   

12.
《Chemical Geology》2007,236(3-4):199-216
The chemical characteristics of freshwaters draining the silicate rocks in the northern part of Okinawa Island were studied to understand solute generation processes, and to determine rates of chemical weathering and CO2 consumption. It was observed that the water chemistry is highly influenced by marine aerosols, contributing more than 60% of total solute. Significant positive correlations observed for chloride versus dissolved silica and chloride versus bicarbonate suggest a strong influence of evapotranspiration on the seasonality of solute concentration. It was also found that chemical weathering has been highly advanced in which the dominant kaolinite minerals are being gibbsitized. Carbonic acid was found to be the major chemical weathering agent, releasing greater than 80% of weathering-derived dissolved cations and silica while the remaining portion was attributed to weathering by sulfuric acid generated via oxidation of pyrite contained in the rocks. The flux of basic cations, weathering-derived silica and CO2 consumption were relatively high due to favourable climatic condition, topography and high rate of mechanical erosion. Silicate weathering rates for basic cations were estimated to be 6.7–9.7 ton km 2 y 1. Carbon dioxide consumed by silicate weathering was 334–471 kmol km 2 y 1 which was slightly higher than that consumed by carbonate weathering. In general, divalent cations (Mg and Ca) and bicarbonate alkalinity derived from carbonate dissolution were higher than those from silicate weathering. As a consequence, the evolution of chemical species in the freshwaters of northern area of Okinawa Island to a large extent could be explained by mixing of two components, characterized by waters with Na+ and Cl as predominant species and waters enriched with Ca2+ and HCO3.  相似文献   

13.
Analyses of 72 samples from Upper Panjhara basin in the northern part of Deccan Plateau, India, indicate that geochemical incongruity of groundwater is largely a function of mineral composition of the basaltic lithology. Higher proportion of alkaline earth elements to total cations and HCO3>Cl + SO4 reflect weathering of primary silicates as chief source of ions. Inputs of Cl, SO4, and NO3 are related to rainfall and localized anthropogenic factors. Groundwater from recharge area representing Ca + Mg–HCO3 type progressively evolves to Ca + Na–HCO3 and Na–Ca–HCO3 class along flow direction replicates the role of cation exchange and precipitation processes. While the post-monsoon chemistry is controlled by silicate mineral dissolution + cation exchange reactions, pre-monsoon variability is attributable chiefly to precipitation reactions + anthropogenic factors. Positive correlations between Mg vs HCO3 and Ca + Mg vs HCO3 supports selective dissolution of olivine and pyroxene as dominant process in post-monsoon followed by dissolution of plagioclase feldspar and secondary carbonates. The pre-monsoon data however, points toward the dissolution of plagioclase and precipitation of CaCO3 supported by improved correlation coefficients between Na + Ca vs HCO3 and negative correlation of Ca vs HCO3, respectively. It is proposed that the eccentricity in the composition of groundwater from the Panjhara basin is a function of selective dissolution of olivine > pyroxene followed by plagioclase feldspar. The data suggest siallitization (L < R and R k) as dominant mechanism of chemical weathering of basalts, stimulating monosiallitic (kaolinite) and bisiallitic (montmorillonite) products. The chemical denudation rates for Panjhara basin worked out separately for the ground and surface water component range from 6.98 to 36.65 tons/km2/yr, respectively. The values of the CO2 consumption rates range between 0.18 × 106 mol//km2/yr (groundwater) and 0.9 × 106 mol/km2/yr (surface water), which indicates that the groundwater forms a considerable fraction of CO2 consumption, an inference, that is, not taken into contemplation in most of the studies.  相似文献   

14.
Over geological timescales, CO2 levels are determined by the operation of the long term carbon cycle, and it is generally thought that changes in atmospheric CO2 concentration have controlled variations in Earth's surface temperature over the Phanerozoic Eon. Here we compile independent estimates for global average surface temperature and atmospheric CO2 concentration, and compare these to the predictions of box models of the long term carbon cycle COPSE and GEOCARBSULF.We find a strong relationship between CO2 forcing and temperature from the proxy data, for times where data is available, and we find that current published models reproduce many aspects of CO2 change, but compare poorly to temperature estimates. Models are then modified in line with recent advances in understanding the tectonic controls on carbon cycle source and sink processes, with these changes constrained by modelling 87Sr/86Sr ratios. We estimate CO2 degassing rates from the lengths of subduction zones and rifts, add differential effects of erosion rates on the weathering of silicates and carbonates, and revise the relationship between global average temperature changes and the temperature change in key weathering zones.Under these modifications, models produce combined records of CO2 and temperature change that are reasonably in line with geological and geochemical proxies (e.g. central model predictions are within the proxy windows for >~75% of the time covered by data). However, whilst broad long-term changes are reconstructed, the models still do not adequately predict the timing of glacial periods. We show that the 87Sr/86Sr record is largely influenced by the weathering contributions of different lithologies, and is strongly controlled by erosion rates, rather than being a good indicator of overall silicate chemical weathering rates. We also confirm that a combination of increasing erosion rates and decreasing degassing rates over the Neogene can cause the observed cooling and Sr isotope changes without requiring an overall increase in silicate weathering rates.On the question of a source or sink dominated carbon cycle, we find that neither alone can adequately reconstruct the combination of CO2, temperature and strontium isotope dynamics over Phanerozoic time, necessitating a combination of changes to sources and sinks. Further progress in this field relies on >108 year dynamic spatial reconstructions of ancient tectonics, paleogeography and hydrology. Whilst this is a significant challenge, the latest reconstruction techniques, proxy records and modelling advances make this an achievable target.  相似文献   

15.
Determining the relative proportions of silicate vs. carbonate weathering in the Himalaya is important for understanding atmospheric CO2 consumption rates and the temporal evolution of seawater Sr. However, recent studies have shown that major element mass-balance equations attribute less CO2 consumption to silicate weathering than methods utilizing Ca/Sr and 87Sr/86Sr mixing equations. To investigate this problem, we compiled literature data providing elemental and 87Sr/86Sr analyses for stream waters and bedrock from tributary watersheds throughout the Himalaya Mountains. In addition, carbonate system parameters (PCO2, mineral saturation states) were evaluated for a selected suite of stream waters. The apparent discrepancy between the dominant weathering source of dissolved major elements vs. Sr can be reconciled in terms of carbonate mineral equilibria. Himalayan streams are predominantly Ca2+-Mg2+-HCO3 waters derived from calcite and dolomite dissolution, and mass-balance calculations demonstrate that carbonate weathering contributes ∼87% and ∼76% of the dissolved Ca2+ and Sr2+, respectively. However, calculated Ca/Sr ratios for the carbonate weathering flux are much lower than values observed in carbonate bedrock, suggesting that these divalent cations do not behave conservatively during stream mixing over large temperature and PCO2 gradients in the Himalaya.The state of calcite and dolomite saturation was evaluated across these gradients, and the data show that upon descending through the Himalaya, ∼50% of the streams evaluated become highly supersaturated with respect to calcite as waters warm and degas CO2. Stream water Ca/Mg and Ca/Sr ratios decrease as the degree of supersaturation with respect to calcite increases, and Mg2+, Ca2+, and HCO3 mass balances support interpretations of preferential Ca2+ removal by calcite precipitation. On the basis of patterns of saturation state and PCO2 changes, calcite precipitation was estimated to remove up to ∼70% of the Ca2+ originally derived from carbonate weathering. Accounting for the nonconservative behavior of Ca2+ during riverine transport brings the Ca/Sr and 87Sr/86Sr composition of the carbonate weathering flux into agreement with the composition of carbonate bedrock, thereby permitting consistency between elemental and Sr isotope approaches to partitioning stream water solute sources. These results resolve the dissolved Sr2+ budget and suggest that the conventional application of two-component Ca/Sr and 87Sr/86Sr mixing equations has overestimated silicate-derived Sr2+ and HCO3 fluxes from the Himalaya. In addition, these findings demonstrate that integrating stream water carbonate mineral equilibria, divalent cation compositional trends, and Sr isotope inventories provides a powerful approach for examining weathering fluxes.  相似文献   

16.
Major ion composition of waters, δ13C of its DIC (dissolved inorganic carbon), and the clay mineral composition of bank sediments in the Brahmaputra River System (draining India and Bangladesh) have been measured to understand chemical weathering and erosion and the factors controlling these processes in the eastern Himalaya. The time-series samples, collected biweekly at Guwahati, from the Brahmaputra mainstream, were also analyzed for the major ion composition. Clay mineralogy and chemical index of alteration (CIA) of sediments suggest that weathering intensity is relatively poor in comparison to that in the Ganga basin. This is attributed to higher runoff and associated physical erosion occurring in the Brahmaputra basin. The results of this study show, for the first time, spatial and temporal variations in chemical and silicate erosion rates in the Brahmaputra basin. The subbasins of the Brahmaputra watershed exhibit chemical erosion rates varying by about an order of magnitude. The Eastern Syntaxis basin dominates the erosion with a rate of ∼300 t km−2 y−1, one of the highest among the world river basins and comparable to those reported for some of the basaltic terrains. In contrast, the flat, cold, and relatively more arid Tibetan basin undergoes much slower chemical erosion (∼40 t km−2 y−1). The abundance of total dissolved solids (TDS, 102-203 mg/L) in the time-series samples collected over a period of one year shows variations in accordance with the annual discharge, except one of them, cause for which is attributable to flash floods. Na* (Na corrected for cyclic component) shows a strong positive correlation with Si, indicating their common source: silicate weathering. Estimates of silicate cations (Nasil+Ksil+Casil+Mgsil) suggest that about half of the dissolved cations in the Brahmaputra are derived from silicates, a proportion higher than that for the Ganga system. The CO2 consumption rate due to silicate weathering in the Brahmaputra watershed is ∼6 × 105 moles km−2 y−1; whereas that in the Eastern Syntaxis subbasin is ∼19 × 105 moles km−2 y−1, similar to the estimates for some of the basaltic terrains. This study suggests that the Eastern Syntaxis basin of the Brahmaputra is one of most intensely chemically eroding regions of the globe; and that runoff and physical erosion are the controlling factors of chemical erosion in the eastern Himalaya.  相似文献   

17.
Volcanic areas play a key role in the input of elements into the ocean and in the regulation of the geological carbon cycle. The aim of this study is to investigate the budget of silicate weathering in an active volcanic area. We compared the fluxes of the two major weathering regimes occurring at low temperature in soils and at high temperature in the active volcanic arc of Kamchatka, respectively. The volcanic activity, by inducing geothermal circulation and releasing gases to the surface, produces extreme conditions in which intense water-rock interactions occur and may have a strong impact on the weathering budgets. Our results show that the chemical composition of the Kamchatka river water is controlled by surface low-temperature weathering, atmospheric input and, in some limited cases, strongly imprinted by high-temperature water-rock reactions. We have determined the contribution of each source and calculated the rates of CO2 consumption and chemical weathering resulting from low and high-temperature water/rock interactions. The weathering rates (between 7 and 13.7 t/km2/yr for cations only) and atmospheric CO2 consumption rates (∼0.33-0.46 × 106 mol/km2/yr for Kamchatka River) due to rock weathering in soils (low-temperature) are entirely consistent with the previously published global weathering laws relating weathering rates of basalts with runoff and temperature. In the Kamchatka River, CO2 consumption derived from hydrothermal activity represents about 11% of the total HCO3 flux exported by the river. The high-temperature weathering process explains 25% of the total cationic weathering rate in the Kamchatka River. Although in the rivers non-affected by hydrothermal activity, the main weathering agent is carbonic acid (reflected in the abundance of in rivers), in the region most impacted by hydrothermalism, the protons responsible for minerals dissolution are provided not only by carbonic acid, but also by sulphuric and hydrochloric acid. A clear increase of weathering rates in rivers impacted by sulphuric acid can be observed. In the Kamchatka River, 19% of cations are released by hydrothermal acids or the oxidative weathering of sulphur minerals.Our results emphasise the important impact of both low and high-temperature weathering of volcanic rocks on global weathering fluxes to the ocean. Our results also show that besides carbonic acid derived from atmospheric CO2, hydrochloric acid and especially sulphuric acid are important weathering agents. Clearly, sulphuric acid, with hydrothermal activity, are key parameters that cause first-order increases of the chemical weathering rates in volcanic areas. In these areas, accurate determination of weathering budgets in volcanic area will require to better quantify sulphuric acid impact.  相似文献   

18.
The Narmada River in India is the largest west-flowing river into the Arabian Sea, draining through the Deccan Traps, one of the largest flood basalt provinces in the world. The fluvial geochemical characteristics and chemical weathering rates (CWR) for the mainstream and its major tributaries were determined using a composite dataset, which includes four phases of seasonal field (spot) samples (during 2003 and 2004) and a decade-long (1990-2000) fortnight time series (multiannual) data. Here, we demonstrate the influence of minor lithologies (carbonates and saline-alkaline soils) on basaltic signature, as reflected in sudden increases of Ca2+-Mg2+ and Na+ contents at many locations along the mainstream and in tributaries. Both spot and multiannual data corrected for non-geological contributions were used to calculate the CWR. The CWR for spot samples (CWRspot) vary between 25 and 63 ton km−2 year−1, showing a reasonable correspondence with the CWR estimated for multiannual data (CWRmulti) at most study locations. The weathering rates of silicate (SilWR), carbonate (CarbWR) and evaporite (Sal-AlkWR) have contributed ∼38-58, 28-45 and 8-23%, respectively to the CWRspot at different locations. The estimated SilWR (11-36 ton km−2 year−1) for the Narmada basin indicates that the previous studies on the North Deccan Rivers (Narmada-Tapti-Godavari) overestimated the silicate weathering rates and associated CO2 consumption rates. The average annual CO2 drawdown via silicate weathering calculated for the Narmada basin is ∼0.032 × 1012 moles year−1, suggesting that chemical weathering of the entire Deccan Trap basalts consumes approximately 2% (∼0.24 × 1012 moles) of the annual global CO2 drawdown. The present study also evaluates the influence of meteorological parameters (runoff and temperature) and physical weathering rates (PWR) in controlling the CWR at annual scale across the basin. The CWR and the SilWR show significant correlation with runoff and PWR. On the basis of observed wide temporal variations in the CWR and their close association with runoff, temperature and physical erosion, we propose that the CWR in the Narmada basin strongly depend on meteorological variability. At most locations, the total denudation rates (TDR) are dominated by physical erosion, whereas chemical weathering constitutes only a small part (<10%). Thus, the CWR to PWR ratio for the Narmada basin can be compared with high relief small river watersheds of Taiwan and New Zealand (1-5%) and large Himalayan Rivers such as the Brahmaputra and the Ganges (8-9%).  相似文献   

19.
The role of silicate and carbonate weathering in contributing to the major cation and Sr isotope geochemistry of the headwaters of the Ganga-Ghaghara-Indus system is investigated from the available data. The contributions from silicate weathering are determined from the composition of granites/ gneisses, soil profiles developed from them and from the chemistry of rivers flowing predominantly through silicate terrains. The chemistry of Precambrian carbonate outcrops of the Lesser Himalaya provided the data base to assess the supply from carbonate weathering. Mass balance calculations indicate that on an average ∼ 77% (Na + K) and ∼ 17% (Ca + Mg) in these rivers is of silicate origin. The silicate Sr component in these waters average ∼40% and in most cases it exceeds the carbonate Sr. The observations that (i) the87Sr/86Sr and Sr/Ca in the granites/gneisses bracket the values measured in the head waters; (ii) there is a strong positive correlation between87Sr/86Sr of the rivers and the silicate derived cations in them, suggest that silicate weathering is a major source for the highly radiogenic Sr isotope composition of these source waters. The generally low87Sr/86Sr (< 0.720) and Sr/Ca (∼ 0.2 nM/ μM) in the Precambrian carbonate outcrops rules them out as a major source of Sr and87Sr/86Sr in the headwaters on a basin-wide scale, however, the high87Sr/86Sr (∼ 0.85) in a few of these carbonates suggests that they can be important for particular streams. The analysis of87Sr/86Sr and Ca/Sr data of the source waters show that they diverge from a low87Sr/86Sr and low Ca/Sr end member. The high Ca/Sr of the Precambrian carbonates precludes them from being this end member, other possible candidates being Tethyan carbonates and Sr rich evaporite phases such as gypsum and celestite. The results of this study should find application in estimating the present-day silicate and carbonate weathering rates in the Himalaya and associated CO2 consumption rates and their global significance.  相似文献   

20.
A detailed investigation of the fluvial geochemistry of the Han River system allows to estimate the rates of chemical weathering and the consumption of CO2. The Han River drains approximately 26,000 km2 and is the largest river system in South Korea in terms of both water discharge and total river length. It consists of two major tributaries: the North Han River (NHR) and the South Han River (SHR). Distinct differences in basin lithology (silicate vs. carbonate) between the NHR and SHR provide a good natural laboratory in which to examine weathering processes and the influence of basin geology on water quality. The concentrations of major elements and the Sr isotopic compositions were obtained from 58 samples collected in both summer and winter along the Han River system in both 2000 and 2006. The concentrations of dissolved loads differed considerably between the NHR and SHR; compared with the SHR, the NHR had much lower total dissolved solids (TDS), Sr, and major ion concentrations but a higher Si concentration and 87Sr/86Sr ratio. A forward model showed that the dissolved loads in the NHR came primarily from silicate weathering (55 ± 11%), with a relatively small portion from carbonates (30 ± 14%), whereas the main contribution to the dissolved loads in the SHR was carbonate weathering (82 ± 3%), with only 11 ± 4% from silicates. These results are consistent with the different lithologies of the two drainage basins: silicate rocks in the NHR versus carbonate rocks in the SHR. Sulfuric acid derived from sulfide dissolution in coal-containing sedimentary strata has played an important role in carbonate weathering in the SHR basin, unlike in the NHR basin. The silicate weathering rate (SWR) was similar between the NHR and SHR basins, but the rate of CO2 consumption in the SHR basin was lower than in the NHR basin due to an important role of sulfuric acid derived from pyrite oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号