首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The structure and reactivity of the dolomite (104)-water interface was probed in situ with high resolution X-ray reflectivity and surface force microscopy at room temperature. Measurements in stoichiometric solutions alternating between saturated and supersaturated (log IAP/K = 2.3) conditions show that the dolomite surface termination readily changes in response to solution composition, but these changes are self-limiting and partially irreversible. The freshly cleaved dolomite (104) surface in contact with the saturated solution has a stoichiometric termination, a distinct surface hydration layer and small surface structural displacements, similar to those observed previously at the calcite-water interface. After reaction with supersaturated solutions dolomite is terminated by a two-layer thick Ca-rich film with substantial structural displacements of the cations. With subsequent exposure to a saturated solution this surface was transformed to an interfacial structure different from the freshly cleaved surface, having a reduced density of the outermost surface layer and a Ca-rich second layer. These results provide new insight into the lack of dolomite growth in modern carbonate environments (i.e., the “dolomite problem”), suggesting that this behavior is associated with a combination of thermodynamic and kinetic factors, including (1) growth of compositionally modified epitaxial CaXMg2−X(CO3)2 layers having thicknesses limited by lattice strain, (2) slow incorporation of Mg during layer growth, and (3) partial irreversibility of surface reactions.  相似文献   

2.
Dolomite [Ca,Mg(CO3)2] precipitation from supersaturated ionic solutions at Earth surface temperatures is considered kinetically inhibited because of the difficulties experienced in experimentally reproducing such a process. Nevertheless, recent dolomite is observed to form in hypersaline and alkaline environments. Such recent dolomite precipitation is commonly attributed to microbial mediation because dolomite has been demonstrated to form in vitro in microbial cultures. The mechanism of microbially mediated dolomite precipitation is, however, poorly understood and it remains unclear what role microbial mediation plays in natural environments. In the study presented here, simple geochemical methods were used to assess the limitations and controls of dolomite formation in Deep Springs Lake, a highly alkaline playa lake in eastern California showing ongoing dolomite authigenesis. The sediments of Deep Springs Lake consist of unlithified, clay‐fraction dolomite ooze. Based on δ18O equilibria and textural observations, dolomite precipitates from oxygenated and agitated surface brine. The Na‐SO4‐dominated brine contains up to 500 mm dissolved inorganic carbon whereas Mg2+ and Ca2+ concentrations are ca 1 and 0·3 mm , respectively. Precipitation in the subsurface probably is not significant because of the lack of Ca2+ (below 0·01 mm ). Under such highly alkaline conditions, the effect of microbial metabolism on supersaturation by pH and alkalinity increase is negligible. A putative microbial effect could, however, support dolomite nucleation or support crystal growth by overcoming a kinetic barrier. An essential limitation on crystal growth rates imposed by the low Ca2+ and Mg2+ concentrations could favour the thermodynamically more stable carbonate phase (which is dolomite) to precipitate. This mode of unlithified dolomite ooze formation showing δ13C values near to equilibrium with atmospheric CO2 (ca 3‰) contrasts the formation of isotopically light (organically derived), hard‐lithified dolomite layers in the subsurface of some less alkaline environments. Inferred physicochemical controls on dolomite formation under highly alkaline conditions observed in Deep Springs Lake may shed light on conditions that favoured extensive dolomite formation in alkaline Precambrian oceans, as opposed to modern oceans where dolomites only form diagenetically in organic C‐rich sediments.  相似文献   

3.
Cleaved surfaces of dolomite were studied using ex-situ X-ray photoelectron spectroscopy (XPS) following exposure of the surfaces to various experimental conditions. Dolomite samples exposed to air, to a highly undersaturated solution (0.1 M NaCl, pH = 9), and to solution with a supersaturation (−Δμ/kT) of 5.5 (pH = 9) were investigated with semiquantitative methods of analysis to ascertain the degree of non-stoichiometry resulting at the dolomite surface from reactive conditions. It was found that the dolomite cleavage surface in undersaturated solution was not altered significantly from the stoichiometric surface termination. The composition of the cleaved surface after exposure to supersaturated solution, a surface known to have self-limiting growth characteristics under similar conditions, was found to be Ca2+ rich (CaxMg2 − x(CO3)2, 1.7 > x > 1.3). The observations, while underscoring differences in hydration/dehydration kinetics of the two alkaline earth cations, suggest that achievement of equilibrium at dolomite-water interfaces may be subject to significant barriers from both undersaturated and supersaturated solutions.  相似文献   

4.
Electron paramagnetic resonance (EPR) measurements on dolomites from 9 different localities revealed contents of Mn2+ on two axial sites in all of them. The center with largerzero-field splitting (ZFS) was always present in much higher concentrations, except for a sample from Oberdorf it amounted to 95 percent or more of the total. This dolomite was the only one with a considerable content of Fe3+ on one axial site, almost certainly substituting for Mg2+. With X-ray irradiation the concentration of Fe3+ increased by about 30 percent showing that at least some of the divalent iron also substitutes for Mg. The ZFSs for Fe3+ and Mn2+ with larger ZFS increase with decreasing temperature in the same manner. The previous assignment of this Mn2+ to Mg sites is thus confirmed. An almost regular increase of the trigonal distortions at the divalent ions in different carbonates with increasing ionic radius is indicated by their crystal structure data. The very small ZFS for Mn2+ on Ca sites in dolomite must thus result from a strong local relaxation in the direction of a more regular octahedral arrangement. It is difficult to explain the different distribution ratios of Mn2+ on Ca and Mg sites with differences in growth and/or annealing temperatures alone. Thus different supply of Mg2+ and Ca2+ in the growth solutions may also contribute.  相似文献   

5.
The relative contributions of dolomite to calcite weathering related to riverine fluxes are investigated on a highly resolved spatial scale in the diverse watersheds of Slovenia, which previous work has shown have some of the highest carbonate-weathering intensities in the world and suggests that dolomite weathering is favored over limestone weathering in mixed carbonate watersheds. The forested Sava and So?a River watersheds of Slovenia with their headwaters in the Julian Alps drain alpine regions with thin soils (<30 cm) and dinaric karst regions with thicker soils (0 to greater than 70 cm) all developed over bedded Mesozoic carbonates (limestone and dolomite), and siliclastic sediments is the ideal location for examining temperate zone carbonate weathering. This study extends previous work, presenting geochemical data on source springs and documenting downstream geochemical fluctuations within tributaries of the Sava and So?a Rivers. More refined sampling strategies of springs and discrete drainages permit directly linking the stream Mg2+/Ca2+ ratios to the local bedrock lithology and the HCO3 ? concentrations to the relative soil depths of the tributary drainages. Due to differences in carbonate source lithologies of springs and tributary streams, calcite and dolomite weathering end members can be identified. The Mg2+/Ca2+ ratio of the main channel of the Sava River indicates that the HCO3 ? concentration can be attributed to nearly equal proportions by mass of dolomite relative to calcite mineral weathering (e.g., Mg2+/Ca2+ mole ratio of 0.33). The HCO3 ? concentration and pCO2 values increase as soil thickness and alluvium increase for discrete spring samples, which are near equilibrium with respect to calcite. Typically, this results in approximately 1.5 meq/l increase in HCO3 ? from the alpine to the dinaric karst regions. Streams in general do not change in HCO3 ?, Mg2+/Ca2+, or Mg2+/HCO3 ? concentrations down course, but warming and degassing of CO2 produce high degrees of supersaturation with respect to calcite. Carbonate-weathering intensity (mmol/km2-s) is highest within the alpine regions where stream discharge values range widely to extreme values during spring snowmelt. Overall, the elemental fluxes of HCO3 ?, Ca2+, and Mg2+ from the tributary watersheds are proportional to the total water flux because carbonates dissolve rapidly to near equilibrium. Importantly, dolomite weathers preferentially over calcite except for pure limestone catchments.  相似文献   

6.
Groundwater is a critical resource in Deoria district, as it is the main source of drinking water and irrigation. The aquifer has deteriorated to a high degree, during the last two to three decades, in quality and quantity due to high population growth and environmental pollution. More than 90% of the population get their drinking water from subsurface waters. Fifteen wells were sampled in June 2006 to probe the hydrogeochemical components that influence the water quality. The results show that groundwater have EC, TDS, Na+, Mg2+, HCO3 and TH higher than the WHO, 1997 maximum desirable limits. A hydrogeochemical numerical model for carbonate minerals was constructed using the PHREEQC package. The regression analysis shows that there are three groups of elements which are significantly and positively correlated. The main hydrochemical facies of the aquifer (Ca + Mg–HCO3) represents 33.33% of the total wells. The geochemical modeling demonstrated that the reactions responsible for the hydrochemical evolution in the area fall into three categories: (1) dissolution of salts, (2) precipitation of dolomite, (3) ion exchange. Solubility of dolomite, calcite, aragonite and gypsum were assessed in terms of the saturation index. The thermodynamic prerequisites for dolomite supersaturation reactions are satisfied by subsurface waters, since they are supersaturated with respect to dolomite, undersaturated (or in equilibrium) with respect to calcite, and undersaturated with respect to gypsum. The Ca2+ versus SO42− and Mg2+ versus SO42− trends are also compatible with homologous trends resulting from dolomite supersaturation.  相似文献   

7.
Geochemical controls on a calcite precipitating spring   总被引:2,自引:0,他引:2  
A small spring fed stream was found to precipitate calcite by mainly inorganic processes and in a nonuniform manner. The spring water originated by rainwater falling in a 0.8 km2 basin, infiltrating, and dissolving calcite and dolomite followed by dissolution of gypsum or anhydrite. The Ca2+/Mg2+ indicates that calcite is probably precipitated in the subsurface from a supersaturated solution. This water emerges from the spring still about 5 times supersaturated with respect to calcite and continues calcite precipitation. When 10 times supersaturation is reached, due to CO2 degassing the precipitation is more rapid. The calcite accumulation from the stream with a flow of 5 l/s is calculated to be 12600 kg/yr with the highest rates in areas where CO2 degassing is the greatest. The non-equilibrium, as shown by the high calcite supersaturation, is also reflected in a variable partitioning pattern for Sr2+ between the water and calcite.  相似文献   

8.
This paper reports original data on the physical and chemical parameters of precipitation, river water and groundwater in and around the Longhushan Nature Reserve Area, located in southwestern China karst region, and provides a preliminary characterization of the hydrogeochemical process governing the natural water evolution in this area. The rainfall and river water mainly pertain to the HCO3 –Ca2+ type and groundwater mainly pertain to the HCO3 –Ca2+ + Mg2+ type. The HCO3 was the predominant anion and Ca2+ was the predominant cation in all waters, respectively. The Gibbs Boomerang Envelop model, the 1:1 relationship of Na+ plus K+ versus Cl as well as the 1:1 relationship of Ca2+ plus Mg2+ versus HCO3 all suggested geochemical weathering is the main controlling factor for the geochemical compositions of this natural water. In surface water, the Mg2+/Ca2+ ratios ranged from 0.32 to 0.42 and the Na+/Ca2+ varied between 0.04 and 0.05. In the groundwater, the Mg2+/Ca2+ ratios varied from 0.37 to 0.62 and were below the ideal ratio of 0.8. These ratios showed the presence of a dolomite source. Analysis of trace elements showed that As, B, Pb, Se, Sr, V and Zn elements were abundant in the natural water during summer in this region.  相似文献   

9.
The hydrogeochemistry and isotope geochemistry of groundwater from 85 wells in fractured dolomite aquifers of Central Slovenia were investigated. This groundwater represents waters strongly influenced by chemical weathering of dolomite with an average of δ13CCARB value of +2.2 ‰. The major groundwater geochemical composition is HCO3 ? > Ca2+ > Mg2+. Several differences in hydrogeochemical properties among the classes of dolomites were observed when they were divided based on their age and sedimentological properties, with a clear distinction of pure dolomites exhibiting high Mg2+/Ca2+ ratios and low Na+, K+ and Si values. Trace element and nutrient concentrations (SO4 2?, NO3 ?) were low, implying that karstic and fractured dolomite aquifers are of good quality to be used as tap water. Groundwater was generally slightly oversaturated with respect to calcite and dolomite, and dissolved CO2 was up to 46 times supersaturated relative to the atmosphere. The isotopic composition of oxygen (δ18OH2O), hydrogen (δDH2O) and tritium ranged from ?10.3 to ?8.4 ‰, from ?68.5 to ?52.7 ‰ and from 3.5 TU to 10.5 TU, respectively. δ18O and δD values fell between the GMWL (Global Meteoric Water Line) and the MMWL (Mediterranean Meteoric Water Line) and indicate recharge from precipitation with little evaporation. The tritium activity in groundwater suggests that groundwater is generally younger than 50 years. δ13CDIC values ranged from ?14.6 to ?9.3 ‰ and indicated groundwater with a contribution of degraded organic matter/dissolved inorganic carbon in the aquifer. The mass balances for groundwater interacting with carbonate rocks suggested that carbonate dissolution contributes from 43.7 to 65.4 % and degradation of organic matter from 34.6 to 56.3 %.  相似文献   

10.
The geochemical significance of three selected ions (Mg2+, Na+, and Sr2+) supports a model of dolomitization by brackish groundwater. This groundwater zone contains sufficient quantities of Mg2+ to facilitate dolomitization (MgCaratios 1). Rising and falling of sea level and fluctuations of the phreatic zone related to climatic variations account for the thickness of the dolomite layers and the chemical distributions within these layers. Sodium concentrations in the calcite are 70–185 ppm, indicating formation in brackish water. Dolomite has sodium concentrations between 50–1400 ppm, suggesting formation in waters of similar salinity.Strontium in calcite ranges from 320–600 ppm, suggesting diagenesis in slightly saline waters in an open system. Dolomite contains 241 ppm Sr2+ on the average and calcite has 418 ppm Sr2+. The Sr2+ concentrations of the dolomite are characteristic of diagenesis in water less saline than sea water. Average strontium concentrations in the dolomite occur in two distinct groups, 260 ppm for dolomite with 39–43 mole-% MgCo3 and 195 ppm for the dolomite with 44–50 mole-% MgCO3. The difference in the Sr2+ concentrations of the two dolomite groups indicates the higher mole-% MgCO3 dolomite recrystallized in a less saline environment than the lower mole-% MgCO3 dolomite. These different environments are attributed to a relatively more saline coastal environment and a less saline inland environment.The more nearly stoichiometric dolomite (44–50 mole-% MgCO3) has less scatter when mole-% MgCO3 is plotted against Sr2+ and Na+. This suggests a greater approach to equilibrium with the dolomitizing fluid than the lower mole-% MgCO3 (39–43) dolomite. The more saline environment has higher Mg/Ca ratios and promotes more calcium-rich dolomite during diagenesis because of the inhibition from competing foreign ions and because it is thermodynamically a more favorable environment which causes more rapid crystallization. The less saline waters allow recrystallization to proceed more slowly, producing better ordering in the dolomites, textural preservation and development of subhedral to euhedral rhombic crystals.  相似文献   

11.
ABSTRACT Recent dolomitic sediment samples from Lagoa Vermelha, Brazil, were examined microscopically to study the process of bacterial fossilization in carbonate sediments. Bacteria‐like bodies were intimately associated with carbonate mineral surfaces, and coatings on the former demonstrate the calcification of single bacterial cells. The bacterial fossilization process in Lagoa Vermelha sediments was simulated in the laboratory by cultivation of mixed and pure cultures of sulphate‐reducing bacteria, which were isolated from the Lagoa Vermelha sediments. These cultures produced carbonate minerals that were studied to provide insight into the initiation of the fossilization process. In mixed culture experiments, bacterial colonies became calcified, whereas in pure culture experiments, single bacterial cells were associated with dolomite surfaces. Dolomite nucleated exclusively in bacterial colonies, intimately associated with extracellular organic matter and bacterial cells. Electrophoretic mobility measurements of the bacterial cells in electrolyte solutions demonstrated the specific adsorption of Ca2+ and Mg2+ onto the cell surfaces, indicating the role of the bacterial surface in carbonate nucleation and bacterial fossilization. The affinity of the cells for Mg2+ was related to the capability of the strains to mediate dolomite formation. Combined with sulphate uptake, which dissociates the [MgSO4]0 ion pair and increases the Mg2+ availability, the concentration of Mg2+ ions in the microenvironment around the cells, where the conditions are favourable for dolomite precipitation, may be the key to overcome the kinetic barrier to dolomite formation. These results demonstrate that bacterial fossilization is a consequence of the cell surface involvement in carbonate precipitation, implying that fossilized bacterial bodies can be used as a tool to recognize microbially mediated carbonates.  相似文献   

12.
The paper presents the results of the statistical and thermodynamic analysis of hydrogeochemical information on the genesis of F-bearing waters in the Carboniferous deposits of the Moscow artesian basin. The F concentration is demonstrated to increase with increasing salinity of the aqueous solution. As follows from the analysis of mineral equilibria, the saturation concentrations of the aqueous phase with respect to fluorite in association with calcite and gypsum is less than 2–3 mg of F/l. At the saturation of the aqueous phase with respect to fluorite in association with dolomite, the equilibrium concentration of F increases with increasing Mg concentration and decreasing equilibrium partial CO2 pressure and can reach 8–10 mg of F/l. The main reason for this enrichment of the aqueous phase in F is certain features of mineral equilibria in the system of aqueous solution with Ca and Mg carbonates. An increase in the Mg2+ concentration in the aqueous phase decreases the Ca2+ concentration in the solubility equilibrium of dolomite, and this, in turn, decreases the F? concentration in the solubility equilibrium of fluorite.  相似文献   

13.
A suite of terrestrial-marine transitional carbonate beds occur in the Lower Tertiary of the Kuqa Basin, Xinjiang. The pebbly coquina, Paleocene in age, is distributed along the southern pediment of the Tianshan Mountains north of Baicheng, where Pb-mineralization has been observed for the first time. The pebbly coquina consists of well-rounded quartzitic pebbles, quartz sands, shell fossils, shell fragments and equigranular fecal pellets. Four types of carbonate minerals have been revealed: 1) euhedral dolomite (Mg60Ca40)CO3, 2) anhedral dolomite (Mg57Ca43)CO3, 3) dolomitic calcite (Mg20Ca80)CO3 and magnesitic dolomite with a trace amount of Pb(Mg73Ca27)CO3. Five types of galena filling the pebbly coquina have been found: 1) in the shell tower end, 2) on the inner shell wall, 3) on the outer shell wall, 4) around the shell wall, and 5) among shell fragments. The galena replacement took place mainly in the early stage of diagenesis. Stable isotope analyses show (δ13C values range from −0.8 to +2.3 and δ18O values from −0.1 to +0.5, indicating a marine environment under the influence of fresh water, which is consistent with the result of megascopic facies analysis in paleogeography. It is concluded that the discovery of galena in the Tertiary pebbly coquina in the north of Baicheng, Xinjiang may provide new clues to the searching for strata-bound Pb-Zn deposits in the vast area of northern Tarim Basin.  相似文献   

14.
Geochemistry of soil, soil water, and soil gas was characterized in representative soil profiles of three Michigan watersheds. Because of differences in source regions, parent materials in the Upper Peninsula of Michigan (the Tahquamenon watershed) contain only silicates, while those in the Lower Peninsula (the Cheboygan and the Huron watersheds) have significant mixtures of silicate and carbonate minerals. These differences in soil mineralogy and climate conditions permit us to examine controls on carbonate and silicate mineral weathering rates and to better define the importance of silicate versus carbonate dissolution in the early stage of soil-water cation acquisition.Soil waters of the Tahquamenon watershed are the most dilute; solutes reflect amphibole and plagioclase dissolution along with significant contributions from atmospheric precipitation sources. Soil waters in the Cheboygan and the Huron watersheds begin their evolution as relatively dilute solutions dominated by silicate weathering in shallow carbonate-free soil horizons. Here, silicate dissolution is rapid and reaction rates dominantly are controlled by mineral abundances. In the deeper soil horizons, silicate dissolution slows down and soil-water chemistry is dominated by calcite and dolomite weathering, where solutions reach equilibrium with carbonate minerals within the soil profile. Thus, carbonate weathering intensities are dominantly controlled by annual precipitation, temperature and soil pCO2. Results of a conceptual model support these field observations, implying that dolomite and calcite are dissolving at a similar rate, and further dissolution of more soluble dolomite after calcite equilibrium produces higher dissolved inorganic carbon concentrations and a Mg2+/Ca2+ ratio of 0.4.Mass balance calculations show that overall, silicate minerals and atmospheric inputs generally contribute <10% of Ca2+ and Mg2+ in natural waters. Dolomite dissolution appears to be a major process, rivaling calcite dissolution as a control on divalent cation and inorganic carbon contents of soil waters. Furthermore, the fraction of Mg2+ derived from silicate mineral weathering is much smaller than most of the values previously estimated from riverine chemistry.  相似文献   

15.
The major-ion (Mg2+, Ca2+, Na+, K+, , and Cl) chemistry of Cretaceous seawater was determined from analyses of seawater-derived brines preserved as fluid inclusions in marine halites. Fluid inclusions in primary halite from three evaporite deposits were analyzed by the environmental scanning electron microscopy (ESEM) X-ray energy dispersive spectrometry (EDS) technique: the Early Cretaceous (Aptian, 121.0-112.2 Ma) of the Sergipe basin, Brazil and the Congo basin, Republic of the Congo, and the Early to Late Cretaceous (Albian to Cenomanian, 112.2-93.5 Ma) of the Khorat Plateau, Laos, and Thailand. The fluid inclusions in halite indicate that Cretaceous seawater was enriched several fold in Ca2+, depleted in , Na+, and Mg2+, and had lower Na+/Cl, Mg2+/Ca2+, and Mg2+/K+ ratios compared to modern seawater. Elevated Ca2+ concentrations, with Ca2+ >  at the point of gypsum saturation, allowed Cretaceous seawater to evolve into Mg2+-Ca2+-Na+-K+-Cl brines lacking measurable .The major-ion composition of Cretaceous seawater was modeled from fluid inclusion chemistries for the Aptian and the Albian-Cenomanian. Aptian seawater was extreme in its Ca2+ enrichment, more than three times higher than present day seawater, with a Mg2+/Ca2+ ratio of 1.1-1.3. Younger, Albian-Cenomanian seawater had lower Ca2+ concentrations, and a higher Mg2+/Ca2+ ratio of 1.2-1.7. Cretaceous (Aptian) seawater has the lowest Mg2+/Ca2+ ratios so far documented in Phanerozoic seawater from fluid inclusions in halite, and within the range chemically favorable for precipitation of low-Mg calcite ooids and cements. Results from halite fluid inclusions, together with Mg2+/Ca2+ ratios measured from echinoderm and rudist calcite, all indicate that Early Cretaceous seawater (Hauterivian, Barremian, Aptian, and Albian) had lower Mg2+/Ca2+ ratios than Late Cretaceous seawater (Coniacian, Santonian, and Campanian). Low Aptian-Albian Mg2+/Ca2+ seawater ratios coincide with negative excursions of 87Sr/86Sr ratios and δ34SSO4, and peak Cretaceous ocean crust production rates, all of which suggests a link between seawater chemistry and midocean ridge hydrothermal brine flux.  相似文献   

16.
The strontium content and the SO42?/Cl? and Mg2+/Ca2+ ratios were used as natural tracers of the residence time of seawater intrusion into the Castell de Ferro aquifer. Analysis of these parameters indicated the existence of two principal flowpaths in the aquifer. The first flows through the eastern part of the aquifer, through the karstified Castell de Ferro massif; it accommodates a larger and more rapid flow, so that the residence time is shorter, leading to lower SO42+/Cl? ratios, lower Sr2+ content and higher Mg2+/Ca2+ ratios. The second flowpath is in the western sector, and flows exclusively through alluvial deposits; the flow here is slower, particularly that flowing towards the sea. Thus the residence time of the water here will be longer and there is scant flushing of the intruded seawater; this is manifested in the high Sr2+ content, high SO42+/Cl? and low Mg2+/Ca2+ ratios. To cite this article: P. Pulido-Leboeuf et al., C. R. Geoscience 335 (2003).  相似文献   

17.
The hydrogeochemical and carbon isotope characteristics of the Krka River, Slovenia, were investigated to estimate the carbon transfer from the land ecosystem in the watershed. During the 3-year sampling period (2008–2010), temperature, pH, electrical conductivity, major ion content, dissolved inorganic carbon (DIC) and dissolved organic carbon content, and the isotopic composition of DIC (δ13CDIC) were monitored in the main stream of the Krka River and its tributaries. The major solute composition of analysed waters is dominated by an input of HCO3 ?, Ca2+ and Mg2+ originating from carbonate dissolution. The Mg2+/Ca2+ and Mg2+/HCO3 ? molar ratio values ranging from 0.24 to 0.71 and 0.05 to 0.30, respectively, indicate a high degree of dolomite dissolution relative to calcite. Dissolved CO2 concentrations in the river were up to tenfold supersaturated relative to the atmosphere, resulting in supersaturation with respect to calcite and degassing of CO2 downstream. The δ13C values in river water range from ?15.6 to ?9.4 ‰ and are controlled by the input of tributaries, exchange with atmospheric CO2, degradation of organic matter, and dissolution of carbonates. The mass balance calculations for riverine DIC suggest that the contribution from carbonate dissolution and degradation of organic matter have major influence, whereas the exchange with atmospheric CO2 has minor influence on the inorganic carbon pool in the Krka River.  相似文献   

18.
The potential for metal release associated with CO2 leakage from underground storage formations into shallow aquifers is an important consideration in assessment of risk associated with CO2 sequestration. Metal release can be driven by acidification of groundwaters caused by dissolution of CO2 and subsequent dissociation of carbonic acid. Thus, acidity is considered one of the main drivers for water quality degradation when evaluating potential impacts of CO2 leakage. Dissolution of carbonate minerals buffers the increased acidity. Thus, it is generally thought that carbonate aquifers will be less impacted by CO2 leakage than non-carbonate aquifers due to their high buffering potential. However, dissolution of carbonate minerals can also release trace metals, often present as impurities in the carbonate crystal structure, into solution. The impact of the release of trace metals through this mechanism on water quality remains relatively unknown. In a previous study we demonstrated that calcite dissolution contributed more metal release into solution than sulfide dissolution or desorption when limestone samples were dissolved in elevated CO2 conditions. The study presented in this paper expanded our work to dolomite formations and details a thorough investigation on the role of mineral composition and mechanisms on trace element release in the presence of CO2. Detailed characterization of samples from dolomite formations demonstrated stronger associations of metal releases with dissolution of carbonate mineral phases relative to sulfide minerals or surface sorption sites. Aqueous concentrations of Sr2+, CO2+, Mn2+, Ni2+, Tl+, and Zn2+ increased when these dolomite rocks were exposed to elevated concentrations of CO2. The aqueous concentrations of these metals correlate to aqueous concentrations of Ca2+ throughout the experiments. All of the experimental evidence points to carbonate minerals as the dominant source of metals from these dolomite rocks to solution under experimental CO2 leakage conditions. Aqueous concentrations of Ca2+ and Mg2+ predicted from numerical simulation of kinetic dolomite dissolution match those observed in the experiments when the surface area is three to five orders of magnitude lower than the surface area of the samples measured by gas adsorption.  相似文献   

19.
Sabkhas are ubiquitous geomorphic features in eastern Saudi Arabia. Seven brine samples were taken from Sabkha Jayb Uwayyid in eastern Saudi Arabia. Brine chemistry, saturation state with respect to carbonate and evaporate minerals, and evaporation-driven geochemical reaction paths were investigated to delineate the origin of brines and the evolution of both brine chemistry and sabkha mineralogy. The average total dissolved solids in the sabkha brines is 243 g/l. The order of cation dominance is Na+   >>  Mg2+ >>  Ca2+>K+, while anion dominance is Cl >> SO4 2− >> HCO3 . Based on the chemical divide principle and observed ion ratios, it was concluded that sabkha brines have evolved from deep groundwater rather than from direct rainfall, runoff from the surroundings, or inflow of shallow groundwater. Aqueous speciation simulations show that: (1) all seven brines are supersaturated with respect to calcite, dolomite, and magnesite and undersaturated with respect to halite; (2) three brines are undersaturated with respect to both gypsum and anhydrite, while three brines are supersaturated with respect to both minerals; (3) anhydrite is a more stable solid phase than gypsum in four brines. Evaporation factors required to bring the brines to the halite phase boundary ranged from 1.016 to 4.53. All reaction paths to the halite phase boundary follow the neutral path as CO2 is degassed and dolomite precipitates from the brines. On average, a sabkha brine containing 1 kg of H2O precipitates 7.6 g of minerals along the reaction path to the halite phase boundary, of which 52% is anhydrite, 35.3% is gypsum, and 12.7% is dolomite. Bicarbonate is the limiting factor of dolomite precipitation, and sulfate is the limiting factor of gypsum and anhydrite precipitation from sabkha brines.  相似文献   

20.
Some species of sulphate‐reducing bacteria (SRB) are known to mediate the formation of dolomite and Mg‐calcite. However, their exact role in the mineralization process remains elusive. Here, we present the result of a laboratory experiment that was designed to test whether formation of carbonate minerals by SRB can occur in the absence of living cells, through passive mineralization of their exopolymeric substances (EPS). SRB capable of mediating dolomite were cultivated in the laboratory, allowing them to secrete EPS. Microbial activity within the cultures was subsequently inhibited with antibiotics. Only after this step, Ca2+ and Mg2+ were added to the solution and carbonate minerals could form. Mg‐calcite and disordered Ca‐dolomite precipitated in association with EPS. The mol.% of Mg2+ in the crystals increased with longer incubation times. This result demonstrates that organic compounds produced by SRB can mediate the formation of Ca‐Mg carbonates in the absence of an active metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号