首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The effects of elevated pH, ionic strength, and temperature on sediments in the vadose zone are of primary importance in modeling contaminant transport and understanding the environmental impact of tank leakage at nuclear waste storage facilities like those of the Hanford site. This study was designed to investigate biotite dissolution under simulated high level waste (HLW) conditions and its impact on Cr(VI) reduction and immobilization. Biotite dissolution increased with NaOH concentrations in the range of 0.1 to 2 mol L-1. There was a corresponding release of K, Fe, Si, and Al to solution, with Si and Al showing a complex pattern due to the formation of secondary zeolite minerals. Dissolved Fe concentrations were an order of magnitude lower than the other elements, possibly due to the formation of green rust and Fe(OH)2. The reduction of Cr(VI) to Cr(III) also increased with increased NaOH concentration. A homogeneous reduction of chromate by Fe(II)aq released through biotite dissolution was probably the primary pathway responsible for this reaction. Greater ionic strengths increased biotite dissolution and consequently increased Fe(II)aq release and Cr(VI) removal. The results indicated that HLW would cause phyllosilicate dissolution and the formation of secondary precipitates that would have a major impact on radionuclide and contaminant transport in the vadose zone at the Hanford site.  相似文献   

2.
Caustic high level radioactive waste induces mineral weathering reactions that can influence the fate of radionuclides released in the vicinity of leaking storage tanks. The uptake and release of CsI and SrII were studied in batch reactors of 2:1 layer-type silicates—illite (Il), vermiculite (Vm) and montmorillonite (Mt)—under geochemical conditions characteristic of leaking tank waste at the Hanford Site in WA (0.05 m AlT, 2 m Na+, 1 m NO3, pH ∼14, Cs and Sr present as co-contaminants). Time series (0 to 369 d) experiments were conducted at 298 K, with initial [Cs]0 and [Sr]0 concentrations from 10−5 to 10−3 mol kg−1. Clay mineral type affected the rates of (i) hydroxide promoted dissolution of Si, Al and Fe, (ii) precipitation of secondary solids and (iii) uptake of Cs and Sr. Initial Si release to solution followed the order Mt > Vm > Il. An abrupt decrease in soluble Si and/or Al after 33 d for Mt and Vm systems, and after 190 d for Il suspensions was concurrent with accumulation of secondary aluminosilicate precipitates. Strontium uptake exceeded that of Cs in both rate and extent, although sorbed Cs was generally more recalcitrant to subsequent desorption and dissolution. After 369 d reaction time, reacted Il, Vm and Mt solids retained up to 17, 47 and 14 mmol kg−1 (0.18, 0.24 and 0.02 μmol m−2) of Cs, and 0, 27 and 22 mmol kg−1 (0, 0.14 and 0.03 μmol m−2) Sr, respectively, which were not removed in subsequent Mg exchange or oxalic acid dissolution reactions. Solubility of Al and Si decreased with initial Cs and Sr concentration in Mt and Il, but not in Vm. High co-contaminant sorption to the Vm clay, therefore, appears to diminish the influence of those ions on mineral transformation rates.  相似文献   

3.
Hyperalkaline and saline radioactive waste fluids with elevated temperatures from S-SX high-level waste tank farm at Hanford, WA, USA accidentally leaked into sediments beneath the tanks, initiating a series of geochemical processes and reactions whose significance and extent was unknown. Among the most important processes was the dissolution of soil minerals and precipitation of stable secondary phases. The objective of this investigation was to study the release of Fe into the aqueous phase upon dissolution of Fe-bearing soil minerals, and the subsequent formation of Fe-rich precipitates. Batch reactors were used to conduct experiments at 50 °C using solutions similar in composition to the waste fluids. Results clearly showed that, similarly to Si and Al, Fe was released from the dissolution of soil minerals (most likely phyllosilicates such as biotite, smectite and chlorite). The extent of Fe release increased with base concentration and decreased with Al concentration in the contacting solution. The maximum apparent rate of Fe release (0.566 × 10−13 mol m−2 s−1) was measured in the treatment with no Al and a concentration of 4.32 mol L−1 NaOH in the contact solution. Results from electron microscopy indicated that while Si and Al precipitated together to form feldspathoids in the groups of cancrinite and/or sodalite, Fe precipitation followed a different pathway leading to the formation of hematite and goethite. The newly formed Fe oxy-hydroxides may increase the sorption capacity of the sediments, promote surface mediated reactions such as precipitation and heterogeneous redox reactions, and affect the phase distribution of contaminants and radionuclides.  相似文献   

4.
Biotite dissolution experiments were carried out to better understand the dissolution kinetics and Fe behavior under low O2 conditions, and to give an insight into the Precambrian weathering. Mineral dissolution with a continuous flow-through reactor was employed at 25 °C for up to 65 days varying partial pressure of atmospheric oxygen (PO2), pH (6.86 and 3.01) and Fe content in mineral (1.06 and 0.11 mol of Fe per O10(OH,F)2 for biotite and phlogopite, respectively) independently for the examination of their effects on biotite dissolution. Low PO2 conditions were achieved in a newly developed glove box (PO2 ? 6 × 10−4 atm; referred to as anoxic conditions), which was compared to the present, ambient air conditions (0.2 atm of PO2; oxic conditions). The biotite dissolution rate was slightly faster under anoxic conditions at pH 6.86 while it was not affected by PO2 at pH 3.01. There was no direct effect of Fe content on dissolution rate at pH 6.86 while there was a small difference in dissolution rate between biotite and phlogopite at pH 3.01. The 1.5 order-of-magnitude faster release rate of Fe under anoxic conditions for biotite dissolution at pH 6.86 resulted from the difference in ratio of Fe3+ precipitates remaining in the reactor to Fe dissolved (about 60% and 100% under anoxic and oxic conditions, respectively), which is caused mainly by the difference in PO2. The results infer that the Fe2+ and Fe3+ contents in the Paleoproterozoic paleosols, fossil weathering profiles, are reflected by atmospheric oxygen levels at the time of weathering.  相似文献   

5.
The dissolution rate of illite, a common clay mineral in Australian soils, was studied in saline-acidic solutions under far from equilibrium conditions. The clay fraction of Na-saturated Silver Hill illite (K1.38Na0.05)(Al2.87Mg0.46Fe3+0.39Fe2+0.28Ti0.07)[Si7.02Al0.98]O20(OH)4 was used for this study. The dissolution rates were measured using flow-through reactors at 25 ± 1 °C, solution pH range of 1.0-4.25 (H2SO4) and at two ionic strengths (0.01 and 0.25 M) maintained using NaCl solution. Illite dissolution rates were calculated from the steady state release rates of Al and Si. The dissolution stoichiometry was determined from Al/Si, K/Si, Mg/Si and Fe/Si ratios. The release rates of cations were highly incongruent during the initial stage of experiments, with a preferential release of Al and K over Si in majority of the experiments. An Al/Si ratio >1 was observed at pH 2 and 3 while a ratio close to the stoichiometric composition was observed at pH 1 and 4 at the higher ionic strength. A relatively higher K+ release rate was observed at I = 0.25 in 2-4 pH range than at I = 0.01, possibly due to ion exchange reaction between Na+ from the solution and K+ from interlayer sites of illite. The steady state release rates of K, Fe and Mg were higher than Si over the entire pH range investigated in the study. From the point of view of the dominant structural cations (Si and Al), stoichiometric dissolution of illite occurred at pH 1-4 in the higher ionic strength experiments and at pH ?3 for the lower ionic strength experiments. The experiment at pH 4.25 and at the lower ionic strength exhibited lower RAl (dissolution rate calculated from steady state Al release) than RSi (dissolution rate calculated from steady state Si release), possibly due to the adsorption of dissolved Al as the output solutions were undersaturated with respect to gibbsite. The dissolution of illite appears to proceed with the removal of interlayer K followed by the dissolution of octahedral cations (Fe, Mg and Al), the dissolution of Si is the limiting step in the illite dissolution process. A dissolution rate law showing the dependence of illite dissolution rate on proton concentration in the acid-sulfate solutions was derived from the steady state dissolution rates and can be used in predicting the impact of illite dissolution in saline acid-sulfate environments. The fractional reaction orders of 0.32 (I = 0.25) and 0.36 (I = 0.01) obtained in the study for illite dissolution are similar to the values reported for smectite. The dissolution rate of illite is mainly controlled by solution pH and no effect of ionic strength was observed on the dissolution rates.  相似文献   

6.
Over 1.6 million liters of radioactive, high-temperature, Al-rich, alkaline and saline high-level waste (HLW) fluids were accidentally discharged from tank leaks onto the sediments at the Hanford Site, Washington. In order to better understand processes that might occur during the migration of HLW through sediments and to estimate their extents, we studied the effects of Al-rich, alkaline and saline solutions on soil mineral dissolution and precipitation during reactive transport. Metal- and glass-free systems were used to conduct miscible-displacement experiments at 50 °C under CO2 and O2 free conditions. Results showed significant release of Si, K, Al, Fe, Ca, Mg, and Ba into the aqueous phase. The transport-controlled release of these elements was time dependent as evidenced by its extent varying with the fluid residence time. Silica initial dissolution rates (6.08 × 10-11 and 5.38 × 10-13 mol m-2 s-1) increased with base concentration, decreased with Al concentration, and decreased with fluid residence time. Aluminum precipitation rates varied in the range from 0.44 to 1.07 × 10-6 mol s-1 and were faster in these column experiments than in previous batch studies. The initial rate constant of Al precipitation reaction was 0.07 h-1 (half-life of 9.9 h at about 3 PV); it increased up to 0.137 h-1 (half-life of 5.1 h at about 20 PV). The precipitates identified with SEM and suggested from the modeling results were mainly NO3-cancrinite. SEM analyses also indicated the formation of sodalite when Al was not present in the leaching solution. In addition, results from modeling suggested the precipitation of brucite, goethite and gibbsite; the latter may precipitate in the presence of high Al concentrations. Aqueous and solid phase transformations caused by base-induced dissolution and subsequent secondary phases precipitation should be important determinants of the fate of contaminants and radionuclides in the vadose zone under alkaline and saline conditions.  相似文献   

7.
Radioactive core samples containing elevated concentrations of Cr from a high level nuclear waste plume in the Hanford vadose zone were studied to asses the future mobility of Cr. Cr(VI) is an important subsurface contaminant at the Hanford Site. The plume originated in 1969 by leakage of self-boiling supernate from a tank containing REDOX process waste. The supernate contained high concentrations of alkali (NaOH ≈ 5.25 mol/L), salt (NaNO3/NaNO2 >10 mol/L), aluminate [Al(OH)4 = 3.36 mol/L], Cr(VI) (0.413 mol/L), and 137Cs+ (6.51 × 10−5 mol/L). Water and acid extraction of the oxidized subsurface sediments indicated that a significant portion of the total Cr was associated with the solid phase. Mineralogic analyses, Cr valence speciation measurements by X-ray adsorption near edge structure (XANES) spectroscopy, and small column leaching studies were performed to identify the chemical retardation mechanism and leachability of Cr. While X-ray diffraction detected little mineralogic change to the sediments from waste reaction, scanning electron microscopy (SEM) showed that mineral particles within 5 m of the point of tank failure were coated with secondary, sodium aluminosilicate precipitates. The density of these precipitates decreased with distance from the source (e.g., beyond 10 m). The XANES and column studies demonstrated the reduction of 29-75% of the total Cr to insoluble Cr(III), and the apparent precipitation of up to 43% of the Cr(VI) as an unidentified, non-leachable phase. Both Cr(VI) reduction and Cr(VI) precipitation were greater in sediments closer to the leak source where significant mineral alteration was noted by SEM. These and other observations imply that basic mineral hydrolysis driven by large concentrations of OH in the waste stream liberated Fe(II) from the otherwise oxidizing sediments that served as a reductant for CrO42−. The coarse-textured Hanford sediments contain silt-sized mineral phases (biotite, clinochlore, magnetite, and ilmenite) that are sources of Fe(II). Other dissolution products (e.g., Ba2+) or Al(OH)4 present in the waste stream may have induced Cr(VI) precipitation as pH moderated through mineral reaction. The results demonstrate that a minimum of 42% of the total Cr inventory in all of the samples was immobilized as Cr(III) and Cr(VI) precipitates that are unlikely to dissolve and migrate to groundwater under the low recharge conditions of the Hanford vadose zone.  相似文献   

8.
This study used batch reactors to characterize the mechanisms and rates of elemental release (Al, Ca, K, Mg, Na, F, Fe, P, Sr, and Si) during interaction of a single bacterial species (Burkholderia fungorum) with granite at T = 28 °C for 35 days. The objective was to evaluate how actively metabolizing heterotrophic bacteria might influence granite weathering on the continents. We supplied glucose as a C source, either NH4 or NO3 as N sources, and either dissolved PO4 or trace apatite in granite as P sources. Cell growth occurred under all experimental conditions. However, solution pH decreased from ∼7 to 4 in NH4-bearing reactors, whereas pH remained near-neutral in NO3-bearing reactors. Measurements of dissolved CO2 and gluconate together with mass-balances for cell growth suggest that pH lowering in NH4-bearing reactors resulted from gluconic acid release and H+ extrusion during NH4 uptake. In NO3-bearing reactors, B. fungormum likely produced gluconic acid and consumed H+ simultaneously during NO3 utilization.Over the entire 35-day period, NH4-bearing biotic reactors yielded the highest release rates for all elements considered. However, chemical analyses of biomass show that bacteria scavenged Na, P, and Sr during growth. Abiotic control reactors followed different reaction paths and experienced much lower elemental release rates compared to biotic reactors. Because release rates inversely correlate with pH, we conclude that proton-promoted dissolution was the dominant reaction mechanism. Solute speciation modeling indicates that formation of Al-F and Fe-F complexes in biotic reactors may have enhanced mineral solubilities and release rates by lowering Al and Fe activities. Mass-balances further reveal that Ca-bearing trace phases (calcite, fluorite, and fluorapatite) provided most of the dissolved Ca, whereas more abundant phases (plagioclase) contributed negligible amounts. Our findings imply that during the incipient stages of granite weathering, heterotrophic bacteria utilizing glucose and NH4 only moderately elevate silicate weathering reactions that consume atmospheric CO2. However, by enhancing the dissolution of non-silicate, Ca-bearing trace minerals, they could contribute to high Ca/Na ratios commonly observed in granitic watersheds.  相似文献   

9.
Leakage of highly saline and alkaline radioactive waste from storage tanks into underlying sediments is a serious environmental problem at the Hanford Site in Washington State. This study focuses on geochemical evolution of tank waste plumes resulting from interactions between the waste solution and sediment. A synthetic tank waste solution was infused into unsaturated Hanford sediment columns (0.2, 0.6, and 2 m) maintained at 70°C to simulate the field contamination process. Spatially and temporally resolved geochemical profiles of the waste plume were obtained. Thorough OH neutralization (from an initial pH 14 down to 6.3) was observed. Three broad zones of pore solutions were identified to categorize the dominant geochemical reactions: the silicate dissolution zone (pH > 10), pH-neutralized zone (pH 10 to 6.5), and displaced native sediment pore water (pH 6.5 to 8). Elevated concentrations of Si, Fe, and K in plume fluids and their depleted concentrations in plume sediments reflected dissolution of primary minerals within the silicate dissolution zone. The very high Na concentrations in the waste solution resulted in rapid and complete cation exchange, reflected in high concentrations of Ca and Mg at the plume front. The plume-sediment profiles also showed deposition of hydrated solids and carbonates. Fair correspondence was obtained between these results and analyses of field borehole samples from a waste plume at the Hanford Site. Results of this study provide a well-defined framework for understanding waste plumes in the more complex field setting and for understanding geochemical factors controlling transport of contaminant species carried in waste solutions that leaked from single-shell storage tanks in the past.  相似文献   

10.
In the mountainous Rio Icacos watershed in northeastern Puerto Rico, quartz diorite bedrock weathers spheroidally, producing a 0.2-2 m thick zone of partially weathered rock layers (∼2.5 cm thickness each) called rindlets, which form concentric layers around corestones. Spheroidal fracturing has been modeled to occur when a weathering reaction with a positive ΔV of reaction builds up elastic strain energy. The rates of spheroidal fracturing and saprolite formation are therefore controlled by the rate of the weathering reaction.Chemical, petrographic, and spectroscopic evidence demonstrates that biotite oxidation is the most likely fracture-inducing reaction. This reaction occurs with an expansion in d (0 0 1) from 10.0 to 10.5 Å, forming “altered biotite”. Progressive biotite oxidation across the rindlet zone was inferred from thin sections and gradients in K and Fe(II). Using the gradient in Fe(II) and constraints based on cosmogenic age dates, we calculated a biotite oxidation reaction rate of 8.2 × 10−14 mol biotite m−2 s−1. Biotite oxidation was documented within the bedrock corestone by synchrotron X-ray microprobe fluorescence imaging and XANES. X-ray microprobe images of Fe(II) and Fe(III) at 2 μm resolution revealed that oxidized zones within individual biotite crystals are the first evidence of alteration of the otherwise unaltered corestone.Fluids entering along fractures lead to the dissolution of plagioclase within the rindlet zone. Within 7 cm surrounding the rindlet-saprolite interface, hornblende dissolves to completion at a rate of 6.3 × 10−13 mol hornblende m−2 s−1: the fastest reported rate of hornblende weathering in the field. This rate is consistent with laboratory-derived hornblende dissolution rates. By revealing the coupling of these mineral weathering reactions to fracturing and porosity formation we are able to describe the process by which the quartz diorite bedrock disaggregates and forms saprolite. In the corestone, biotite oxidation induces spheroidal fracturing, facilitating the influx of fluids that react with other minerals, dissolving plagioclase and chlorite, creating additional porosity, and eventually dissolving hornblende and precipitating secondary minerals. The thickness of the resultant saprolite is maintained at steady state by a positive feedback between the denudation rate and the weathering advance rate driven by the concentration of pore water O2 at the bedrock-saprolite interface.  相似文献   

11.
Laboratory determined mineral weathering rates need to be normalised to allow their extrapolation to natural systems. The principle normalisation terms used in the literature are mass, and geometric- and BET specific surface area (SSA). The purpose of this study was to determine how dissolution rates normalised to these terms vary with grain size. Different size fractions of anorthite and biotite ranging from 180-150 to 20-10 μm were dissolved in pH 3, HCl at 25 °C in flow through reactors under far from equilibrium conditions. Steady state dissolution rates after 5376 h (anorthite) and 4992 h (biotite) were calculated from Si concentrations and were normalised to initial- and final- mass and geometric-, geometric edge- (biotite), and BET SSA. For anorthite, rates normalised to initial- and final-BET SSA ranged from 0.33 to 2.77 × 10−10 molfeldspar m−2 s−1, rates normalised to initial- and final-geometric SSA ranged from 5.74 to 8.88 × 10−10 molfeldspar m−2 s−1 and rates normalised to initial- and final-mass ranged from 0.11 to 1.65 molfeldspar g−1 s−1. For biotite, rates normalised to initial- and final-BET SSA ranged from 1.02 to 2.03 × 10−12 molbiotite m−2 s−1, rates normalised to initial- and final-geometric SSA ranged from 3.26 to 16.21 × 10−12 molbiotite m−2 s−1, rates normalised to initial- and final-geometric edge SSA ranged from 59.46 to 111.32 × 10−12 molbiotite m−2 s−1 and rates normalised to initial- and final-mass ranged from 0.81 to 6.93 × 10−12 molbiotite g−1 s−1. For all normalising terms rates varied significantly (p ? 0.05) with grain size. The normalising terms which gave least variation in dissolution rate between grain sizes for anorthite were initial BET SSA and initial- and final-geometric SSA. This is consistent with: (1) dissolution being dominated by the slower dissolving but area dominant non-etched surfaces of the grains and, (2) the walls of etch pits and other dissolution features being relatively unreactive. These steady state normalised dissolution rates are likely to be constant with time. Normalisation to final BET SSA did not give constant ratios across grain size due to a non-uniform distribution of dissolution features. After dissolution coarser grains had a greater density of dissolution features with BET-measurable but unreactive wall surface area than the finer grains. The normalising term which gave the least variation in dissolution rates between grain sizes for biotite was initial BET SSA. Initial- and final-geometric edge SSA and final BET SSA gave the next least varied rates. The basal surfaces dissolved sufficiently rapidly to influence bulk dissolution rate and prevent geometric edge SSA normalised dissolution rates showing the least variation. Simple modelling indicated that biotite grain edges dissolved 71-132 times faster than basal surfaces. In this experiment, initial BET SSA best integrated the different areas and reactivities of the edge and basal surfaces of biotite. Steady state dissolution rates are likely to vary with time as dissolution alters the ratio of edge to basal surface area. Therefore they would be more properly termed pseudo-steady state rates, only appearing constant because the time period over which they were measured (1512 h) was less than the time period over which they would change significantly.  相似文献   

12.
The present study compares the dissolution rates of plagioclase, microcline and biotite/chlorite from a bulk granite to the dissolution rates of the same minerals in mineral-rich fractions that were separated from the granite sample. The dissolution rate of plagioclase is enhanced with time as a result of exposure of its surface sites due to the removal of an iron oxide coating. Removal of the iron coating was slower in the experiment with the bulk granite than in the mineral-rich fractions due to a higher Fe concentration from biotite dissolution. As a result, the increase in plagioclase dissolution rate was initially slower in the experiment with the bulk granite. The measured steady state dissolution rates of both plagioclase (6.2 ± 1.2 × 10−11 mol g−1 s−1) and microcline (1.6 ± 0.3 × 10−11 mol g−1 s−1) were the same in experiments conducted with the plagioclase-rich fraction, the alkali feldspar-rich fraction and the bulk granite.Based on the observed release rates of the major elements, we suggest that the biotite/chlorite-rich fraction dissolved non-congruently under near-equilibrium conditions. In contrast, the biotite and chlorite within the bulk granite sample dissolved congruently under far from equilibrium conditions. These differences result from variations in the degree of saturation of the solutions with respect to both the dissolving biotite/chlorite and to nontronite, which probably was precipitating during dissolution of the biotite and chlorite-rich fraction. Following drying of the bulk granite, the dissolution rate of biotite was significantly enhanced, whereas the dissolution rate of plagioclase decreased.The presence of coatings, wetting and drying cycles and near equilibrium conditions all significantly affect mineral dissolution rates in the field in comparison to the dissolution rate of fully wetted clean minerals under far from equilibrium laboratory conditions. To bridge the gap between the field and the laboratory mineral dissolution rates, these effects on dissolution rate should be further studied.  相似文献   

13.
14.
The main goal of this paper is to propose a new rate law describing the combined effect of pH (1 to 4.5) and temperature (25 to 70 °C) on smectite dissolution rate, under far from equilibrium conditions, as a step towards establishing the full rate law of smectite dissolution under acidic conditions. Dissolution experiments were carried out using non-stirred flow-through reactors fully immersed in a thermostatic water bath held at a constant temperature of 25.0°C, 50.0°C or 70.0°C ± 0.1°C. Smectite dissolution rates were obtained based on the release of silicon and aluminum at steady state. The results show good agreement between these two estimates of smectite dissolution rate. Low Al/Si ratios were obtained in experiments that were conducted at pH ≥4. These low Al/Si ratios are explained by precipitation of gibbsite and/or diaspore.Dissolution rate increases with temperature and decreases with increasing pH. Dissolution rates of experiments in which ΔGr ≤ −21 kcal mol −1, are not affected by deviation from equilibrium. Dissolution rates in most experiments are not affected by the addition of up to 0.3 M NaNO3 to the input solution.A simple model is used to describe the combined effect of pH and temperature on smectite dissolution rate. According to this model, dissolution rate is linearly proportional to the concentration of adsorbed protons on the mineral surface, and proton adsorption is described using a Langmuir adsorption isotherm. All experimental results at pH <4 were fitted to the model using a multiple non-linear regression. The resulting rate law is:
(A1)  相似文献   

15.
Mineralization of organic matter and the subsequent dissolution of calcite were simulated for surface sediments of the upper continental slope off Gabon by using microsensors to measure O2, pH, pCO2 and Ca2+ (in situ), pore-water concentration profiles of NO3, NH4+, Fe2+, and Mn2+ and SO42− (ex situ), as well as sulfate reduction rates derived from incubation experiments. The transport and reaction model CoTReM was used to simulate the degradation of organic matter by O2, NO3, Fe(OH)3 and SO42−, reoxidation reactions involving Fe2+ and Mn2+, and precipitation of FeS. Model application revealed an overall rate of organic matter mineralization amounting to 50 μmol C cm−2 yr−1, of which 77% were due to O2, 17% to NO3 and 3% to Fe(OH)3 and 3% to SO42−. The best fit for the pH profile was achieved by adapting three different dissolution rate constants of calcite ranging between 0.01 and 0.5% d−1 and accounting for different calcite phases in the sediment. A reaction order of 4.5 was assumed in the kinetic rate law. A CaCO3 flux to the sediment was estimated to occur at a rate of 42 g m−2 yr−1 in the area of equatorial upwelling. The model predicts a redissolution flux of calcite amounting to 36 g m−2 yr−1, thus indicating that ∼90% of the calcite flux to the sediment is redissolved.  相似文献   

16.
Far from equilibrium enstatite dissolution rates both open to atmospheric CO2 and CO2 purged were measured as a function of solution pH from 8 to 13 in batch reactors at room temperature. Congruent dissolution was observed after an initial period of incongruent dissolution with preferential Si release from the enstatite. Steady-state dissolution rates in open to atmospheric CO2 conditions decrease with increase in solution pH from 8 to 12 similar to the behavior reported by other investigators. Judging from the pH 13 dissolution rate, rates increase with pH above pH 12. This is thought to occur because of the increase in overall negative surface charges on enstatite as Mg surface sites become negative above pH 12.4, the pH of zero surface charge of MgO.Steady-state dissolution rates of enstatite increase above pH 10 when CO2 was purged by performing the experiments in a N2 atmosphere. This suggests inhibition of dissolution rates above pH 10 when experiments were open to the atmosphere. The dissolved carbonate in these solutions becomes dominantly CO32− above pH 10.33. It is argued that CO32− forms a >Mg2-CO3 complex at positively charged Mg surface sites on enstatite, resulting in stabilization of the surface Si-O bonds. Therefore, removal of solution carbonate results in an increase in dissolution rates of enstatite above pH 10. The log rate of CO2-purged enstatite dissolution in moles per cm2 per s as a function of increasing pH above pH 10 is equal to 0.35. This is consistent with the model of silicate mineral dissolution in the absence of surface carbonation in alkaline solutions proposed earlier in the literature.  相似文献   

17.
Pyrite (FeS2) and iron monosulfide (FeS) play a central role in the sulfur and iron cycles of marine sediments. They may be buried in the sediment or oxidized by O2 after transport by bioturbation to the sediment surface. FeS2 and FeS may also be oxidized within the anoxic sediment in which NO3, Fe(III) oxides, or MnO2 are available as potential electron acceptors. In chemical experiments, FeS2 and FeS were oxidized by MnO2 but not with NO3 or amorphous Fe(III) oxide (Schippers and Jørgensen, 2001). Here we also show that in experiments with anoxic sediment slurries, a dissolution of tracer-marked 55FeS2 occurred with MnO2 but not with NO3 or amorphous Fe(III) oxide as electron acceptor. To study a thermodynamically possible anaerobic microbial FeS2 and FeS oxidation with NO3 or amorphous Fe(III) oxide as electron acceptor, more than 300 assays were inoculated with material from several marine sediments and incubated at different temperatures for > 1 yr. Bacteria could not be enriched with FeS2 as substrate or with FeS and amorphous Fe(III) oxide. With FeS and NO3, 14 enrichments were obtained. One of these enrichments was further cultivated anaerobically with Fe2+ and S0 as substrates and NO3 as electron acceptor, in the presence of 55FeS2, to test for co-oxidation of FeS2, but an anaerobic microbial dissolution of 55FeS2 could not been detected. FeS2 and FeS were not oxidized by amorphous Fe(III) oxide in the presence of Fe-complexing organic compounds in a carbonate-buffered solution at pH 8. Despite many different experiments, an anaerobic microbial dissolution of FeS2 could not be detected; thus, we conclude that this process does not have a significant role in marine sediments. FeS can be oxidized microbially with NO3 as electron acceptor. O2 and MnO2, but not NO3 or amorphous Fe(III) oxide, are chemical oxidants for both FeS2 and FeS.  相似文献   

18.
Lead- and Pb-As-jarosites are minerals common to acidic, sulphate-rich environments, including weathering zones of sulphide ore deposits and acid rock or acid mine drainage (ARD/AMD) sites, and often form on or near galena. The structures of these jarosites are based on linear tetrahedral-octahedral-tetrahedral (T-O-T) sheets, comprised of slightly distorted FeO6 octahedra and SO42− (-AsO43− in Pb-As-jarosites) tetrahedra. To better understand the dissolution mechanisms and products of the break down of Pb- and Pb-As-jarosite, preliminary batch dissolution experiments were conducted on synthetic Pb- and Pb-As-jarosite at pH 2 and 20 °C, to mimic environments affected by ARD/AMD, and at pH 8 and 20 °C, to simulate ARD/AMD environments recently remediated with slaked lime (Ca(OH)2). All four dissolutions are incongruent. Dissolution of Pb-jarosite at pH 2 yields aqueous Pb, Fe and SO42−. The pH 8 Pb-jarosite dissolution yields aqueous Pb, SO42− and poorly crystalline Fe(OH)3, which does not appear to resorb Pb or SO42−, possibly due to the low solution pH (3.44-3.54) at the end of the experiment. The pH 2 and 8 dissolutions of Pb-As-jarosite result in the formation of secondary compounds (poorly crystalline PbSO4 for pH 2 dissolution; poorly crystalline PbSO4 and Fe(OH)3 for pH 8 dissolution), which may act as dissolution inhibitors after 250 to 300 h of dissolution. In the pH 2 dissolution, aqueous Fe, SO42− and AsO43− also form, and in the pH 8 dissolution, Fe(OH)3 precipitates then subsequently resorbs aqueous AsO43−. The dissolutions probably proceed by preferred dissolution of the A- and T-sites, which contain Pb, and SO42− and AsO43−, respectively, rather than Fe, which is sterically remote, within the T-O-T Pb- and Pb-As-jarosite structures. These data provide the foundation necessary for further, more detailed investigations into the dissolution of Pb- and Pb-As-jarosites.  相似文献   

19.
We studied stable iron isotope fractionation during dissolution of a biotite and chlorite enriched mineral fraction from granite by HCl and 5 mM oxalic acid in a pH range of 4-5.9. Batch experiments covered a time period from 2 h to 100 days and were performed at initial potassium concentrations of 0, 0.5, and 5 mM to induce different levels of biotite exfoliation. All experiments were kept anoxic to investigate solely the dissolution step without the influence of oxidation and precipitation of secondary Fe oxyhydroxides. Oxalic acid increased the release of Fe by a factor of ∼15 compared with the HCl experiments. Addition of 0.5 mM K to initial solutions in proton-promoted dissolution decreased the release of Fe by 30-65% depending on the dissolution stage. In ligand-controlled dissolution, K reduced the Fe release only to a minor extent. All solutions of the early dissolution stages were enriched in light Fe isotopes by up to −1.4‰ in δ56Fe compared with the isotopic composition of biotite and chlorite mineral separates, which we explained by a kinetic isotope effect. In proton-promoted dissolution, early released fractions of K-enriched experiments were significantly lighter (−0.7‰ to −0.9‰) than in the initially K-free experiments. The evolution of Fe isotope ratios in solution was modeled by a linear combination of kinetic isotope effects during two independent dissolution processes attacking different crystallographic sites. In ligand-controlled dissolution, K did not influence the kinetic isotope effect and the Fe isotope composition in solution in the late dissolution stages remained slightly lighter than the bulk composition of the biotite/chlorite enriched mineral fraction. This study demonstrates that the initial Fe weathering flux should be enriched in light Fe isotopes and that Fe isotope data in combination with dissolution kinetics and stoichiometry provide new insights into dissolution mechanisms.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号