首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Microscopic and spectroscopic studies were conducted to assess mineral transformation processes in aqueous suspensions of illite (Il), vermiculite (Vm) and montmorillonite (Mt) that were subjected to weathering in a simulated high-level radioactive tank waste leachate (0.05 m AlT, 2 m Na+, 1 m NO3, pH ∼14, Cs+ and Sr2+ present as co-contaminants). Time series (0 to 369 d) experiments were conducted at 298 K, with initial [Cs]0 and [Sr]0 concentrations from 10−5 to 10 mol kg. Incongruent clay dissolution resulted in an accumulation of secondary aluminosilicate precipitates identified as nitrate-sodalite, nitrate-cancrinite and zeolite X, by molecular spectroscopy and electron microscopy (XRD, IR, NMR, SEM-EDS and TEM-EDS). Contaminant fate was dependent on competing uptake to parent clays and weathering products. TEM-EDS results indicated that high Il affinity for Cs was due to adsorption at frayed edge sites. The Il system also comprised Sr-rich aluminous precipitates after 369 d reaction time. In Mt systems, Cs and Sr were co-precipitated into increasingly recalcitrant spheroidal precipitates over the course of the experiment, whereas contaminant association with montmorillonite platelets was less prevalent. In contrast, Cs and Sr were found in association with weathered Vm particles despite the formation of spheroidal aluminosilicate precipitates that were comparable to those formed from Mt dissolution.  相似文献   

2.
The dissolution rate of illite, a common clay mineral in Australian soils, was studied in saline-acidic solutions under far from equilibrium conditions. The clay fraction of Na-saturated Silver Hill illite (K1.38Na0.05)(Al2.87Mg0.46Fe3+0.39Fe2+0.28Ti0.07)[Si7.02Al0.98]O20(OH)4 was used for this study. The dissolution rates were measured using flow-through reactors at 25 ± 1 °C, solution pH range of 1.0-4.25 (H2SO4) and at two ionic strengths (0.01 and 0.25 M) maintained using NaCl solution. Illite dissolution rates were calculated from the steady state release rates of Al and Si. The dissolution stoichiometry was determined from Al/Si, K/Si, Mg/Si and Fe/Si ratios. The release rates of cations were highly incongruent during the initial stage of experiments, with a preferential release of Al and K over Si in majority of the experiments. An Al/Si ratio >1 was observed at pH 2 and 3 while a ratio close to the stoichiometric composition was observed at pH 1 and 4 at the higher ionic strength. A relatively higher K+ release rate was observed at I = 0.25 in 2-4 pH range than at I = 0.01, possibly due to ion exchange reaction between Na+ from the solution and K+ from interlayer sites of illite. The steady state release rates of K, Fe and Mg were higher than Si over the entire pH range investigated in the study. From the point of view of the dominant structural cations (Si and Al), stoichiometric dissolution of illite occurred at pH 1-4 in the higher ionic strength experiments and at pH ?3 for the lower ionic strength experiments. The experiment at pH 4.25 and at the lower ionic strength exhibited lower RAl (dissolution rate calculated from steady state Al release) than RSi (dissolution rate calculated from steady state Si release), possibly due to the adsorption of dissolved Al as the output solutions were undersaturated with respect to gibbsite. The dissolution of illite appears to proceed with the removal of interlayer K followed by the dissolution of octahedral cations (Fe, Mg and Al), the dissolution of Si is the limiting step in the illite dissolution process. A dissolution rate law showing the dependence of illite dissolution rate on proton concentration in the acid-sulfate solutions was derived from the steady state dissolution rates and can be used in predicting the impact of illite dissolution in saline acid-sulfate environments. The fractional reaction orders of 0.32 (I = 0.25) and 0.36 (I = 0.01) obtained in the study for illite dissolution are similar to the values reported for smectite. The dissolution rate of illite is mainly controlled by solution pH and no effect of ionic strength was observed on the dissolution rates.  相似文献   

3.
Here we report on an experimental investigation of the relation between the dissolution rate of albite feldspar and the Gibbs free energy of reaction, ΔGr. The experiments were carried out in a continuously stirred flow-through reactor at 150 °C and pH(150 °C) 9.2. The dissolution rates R are based on steady-state Si and Al concentrations and sample mass loss. The overall relation between ΔGr and R was determined over a free energy range of −150 < ΔGr < −15.6 kJ mol−1. The data define a continuous and highly non-linear, sigmoidal relation between R and ΔGr that is characterized by three distinct free energy regions. The region furthest from equilibrium, delimited by −150 < ΔGr < −70 kJ mol−1, represents an extensive dissolution rate plateau with an average rate . In this free energy range the rates of dissolution are constant and independent of ΔGr, as well as [Si] and [Al]. The free energy range delimited by −70 ? ΔGr ? −25 kJ mol−1, referred to as the ‘transition equilibrium’ region, is characterized by a sharp decrease in dissolution rates with increasing ΔGr, indicating a very strong inverse dependence of the rates on free energy. Dissolution nearest equilibrium, defined by ΔGr > −25 kJ mol−1, represents the ‘near equilibrium’ region where the rates decrease as chemical equilibrium is approached, but with a much weaker dependence on ΔGr. The lowest rate measured in this study, R = 6.2 × 10−11 mol m−2 s−1 at ΔGr = −16.3 kJ mol−1, is more than two orders of magnitude slower than the plateau rate. The data have been fitted to a rate equation (adapted from Burch et al. [Burch, T. E., Nagy, K. L., Lasaga, A. C., 1993. Free energy dependence of albite dissolution kinetics at 80 °C and pH 8.8. Chem. Geol.105, 137-162]) that represents the sum of two parallel reactions
R=k1[1-exp(-ngm1)]+k2[1-exp(-g)]m2,  相似文献   

4.
The pool of iron oxides, available in sediments for reductive dissolution, is usually estimated by wet chemical extraction methods. Such methods are basically empirically defined and calibrated against various synthetic iron oxides. However, in natural sediments, iron oxides are present as part of a complex mixture of iron oxides with variable crystallinity, clays and organics etc. Such a mixture is more accurately described by a reactive continuum covering a range from highly reactive iron oxides to non-reactive iron oxide. The reactivity of the pool of iron oxides in sediment can be determined by reductive dissolution in 10 mM ascorbic acid at pH 3. Parallel dissolution experiments in HCl at pH 3 reveal the release of Fe(II) by proton assisted dissolution. The difference in Fe(II)-release between the two experiments is attributed to reductive dissolution of iron oxides and can be quantified using the rate equation J/m0 = k′(m/m0)γ, where J is the overall rate of dissolution (mol s−1), m0 the initial amount of iron oxide, k′ a rate constant (s−1), m/m0 the proportion of undissolved mineral and γ a parameter describing the change in reaction rate over time. In the Rømø aquifer, Denmark, the reduction of iron oxides is an important electron accepting process for organic matter degradation and is reflected by the steep increase in aqueous Fe2+ over depth. Sediment from the Rømø aquifer was used for reductive dissolution experiments with ascorbic acid. The rate parameters describing the reactivity of iron oxides in the sediment are in the range k′ = 7·10−6 to 1·10−3 s−1 and γ = 1 to 2.4. These values are intermediate between a synthetic 2-line ferrihydrite and a goethite. The rate constant increases by two orders of magnitude over depth suggesting an increase in iron oxide reactivity with depth. This increase was not captured by traditional oxalate and dithionite extractions.  相似文献   

5.
Transformation of vermiculite to hydroxy-interlayered vermiculites (HIV) significantly modifies the physicochemical properties of the original mineral. HIV is a common phase in acid soils, nevertheless its formation remains poorly understood. The main goal of this paper was to clarify the kinetics and process of interlayer aluminization of pure vermiculite using an experimental design. For this purpose, we monitored the dissolution of Na-saturated vermiculite in dilute HCL at pH 2.7, at 50 °C for 672 h in stirred flow-through reactors. Both reacted samples at different dissolution steps, and the leaching of elements, were investigated. The main result was a rapid change to hydroxy-interlayered vermiculite, with a decrease in CEC and a progressive displacement of d(0 0 1) reflection near 1.4 nm after K saturation, resulting from formation of hydroxy-interlayer material. Vermiculite was found to dissolve non-stoichiometrically for 500 h; after that, the release rate for Si, Mg and Al became stoichiometric with respect to vermiculite chemistry. By contrast, Fe sustained non-stoichiometric release throughout the whole experiment. At the steady state, i.e., after 500 h, a dissolution rate of 8.8 ± 0.1 × 10−11 mol vermiculite m−2 s−1 was found with respect to Si. Both Al and Fe precipitated in the interlayer space, and their amounts calculated at the end of the experiment were 3.74 × 10−4 mol g−1 of vermiculite for Al and 8.74 × 10−5 for Fe. The rate of interlayer aluminization increased for 60 h and then regularly decreased. Al-interlayering stopped after 288 h, but Fe still precipitated in the interlayer space.A comparison with the same mineral incubated for three years in acid soils revealed that the reaction was proton-promoted. The same pattern of CEC decrease and interlayer aluminization was observed, but the kinetics were slower due to soil environmental conditions.  相似文献   

6.
The dissolution kinetics of five chemically complex and five chemically simple sodium silicate glass compositions (Na-Si±Al±B) were determined over a range of solution saturation values by varying the flow-through rates (1-100 mL/d) in a dynamic single-pass flow-through (SPFT) apparatus. The chemically complex borosilicate glasses are representative of prospective hosts for radioactive waste disposal and are characterized by relatively high molar Si/(Si + Al) and Na/(Al + B) ratios (>0.7 and >1.0, respectively). Analysis by X-ray absorption spectroscopy (XAS) indicates that the fraction of ivB to iiiB (N4) varies from 0.66 to 0.70. Despite large differences in bulk chemistry, values of δ29Si peak shift determined by MAS-NMR varies only by about 7 ppm (δ29Si = −94 to −87 ppm), indicating small differences in polymerization state for the glasses. Forward rates of reaction measured in dynamic experiments converge (average log10 rate [40 °C, pH 9] = −1.87 ± 0.79 [g/(m2 d)]) at high values of flow-rate (q) to sample surface area (S). Dissolution rates are independent of total Free Energy of Hydration (FEH) and this model appears to overestimate the impact of excess Na on chemical durability. For borosilicate glass compositions in which molar Na > Al + B, further addition of Na appears to stabilize the glass structure with respect to hydrolysis and dissolution. Compared to other borosilicate and aluminosilicate glasses, the glass specimens from this study dissolve at nearly the same rate (0-∼56×) as the more polymerized glasses, such as vitreous reedmergnerite (NaBSi3O8), albite, and silica. Dissolution of glass follows the order: boroaluminosilicate glass > vitreous reedmergnerite > vitreous albite > silica glass, which is roughly the same order of increasingly negative 29Si chemical shifts. The chemical shift of 29Si is a measure of the extent of bond overlap between Si and O and correlates with the forward rate of reaction. Thus, dissolution appears to be rate-limited by rupture of the Si-O bond, which is consistent with the tenants of Transition State Theory (TST). Therefore, dissolution at far from equilibrium conditions is dependent upon the speed of the rate-controlling elementary reaction and not on the sum of the free energies of hydration of the constituents of boroaluminosilicate glass.  相似文献   

7.
We investigate the sensitivity of U/Ca, Mg/Ca, and Sr/Ca to changes in seawater [CO32−] and temperature in calcite produced by the two planktonic foraminifera species, Orbulina universa and Globigerina bulloides, in laboratory culture experiments. Our results demonstrate that at constant temperature, U/Ca in O. universa decreases by 25 ± 7% per 100 μmol [CO32−] kg−1, as seawater [CO32−] increases from 110 to 470 μmol kg−1. Results from G. bulloides suggest a similar relationship, but U/Ca is consistently offset by ∼+40% at the same environmental [CO32−]. In O. universa, U/Ca is insensitive to temperature between 15°C and 25°C. Applying the O. universa relationship to three U/Ca records from a related species, Globigerinoides sacculifer, we estimate that Caribbean and tropical Atlantic [CO32−] was 110 ± 70 μmol kg−1 and 80 ± 40 μmol kg−1 higher, respectively, during the last glacial period relative to the Holocene. This result is consistent with estimates of the glacial-interglacial change in surface water [CO32−] based on both modeling and on boron isotope pH estimates. In settings where the addition of U by diagenetic processes is not a factor, down-core records of foraminiferal U/Ca have potential to provide information about changes in the ocean’s carbonate concentration.Below ambient pH (pH < 8.2), Mg/Ca decreased by 7 ± 5% (O. universa) to 16 ± 6% (G. bulloides) per 0.1 unit increase in pH. Above ambient pH, the change in Mg/Ca was not significant for either species. This result suggests that Mg/Ca-based paleotemperature estimates for the Quaternary, during which surface-ocean pH has been at or above modern levels, have not been biased by variations in surface-water pH. Sr/Ca increased linearly by 1.6 ± 0.4% per 0.1 unit increase in pH. Shell Mg/Ca increased exponentially with temperature in O. universa, where Mg/Ca = 0.85 exp (0.096*T), whereas the change in Sr/Ca with temperature was within the reproducibility of replicate measurements.  相似文献   

8.
Laboratory determined mineral weathering rates need to be normalised to allow their extrapolation to natural systems. The principle normalisation terms used in the literature are mass, and geometric- and BET specific surface area (SSA). The purpose of this study was to determine how dissolution rates normalised to these terms vary with grain size. Different size fractions of anorthite and biotite ranging from 180-150 to 20-10 μm were dissolved in pH 3, HCl at 25 °C in flow through reactors under far from equilibrium conditions. Steady state dissolution rates after 5376 h (anorthite) and 4992 h (biotite) were calculated from Si concentrations and were normalised to initial- and final- mass and geometric-, geometric edge- (biotite), and BET SSA. For anorthite, rates normalised to initial- and final-BET SSA ranged from 0.33 to 2.77 × 10−10 molfeldspar m−2 s−1, rates normalised to initial- and final-geometric SSA ranged from 5.74 to 8.88 × 10−10 molfeldspar m−2 s−1 and rates normalised to initial- and final-mass ranged from 0.11 to 1.65 molfeldspar g−1 s−1. For biotite, rates normalised to initial- and final-BET SSA ranged from 1.02 to 2.03 × 10−12 molbiotite m−2 s−1, rates normalised to initial- and final-geometric SSA ranged from 3.26 to 16.21 × 10−12 molbiotite m−2 s−1, rates normalised to initial- and final-geometric edge SSA ranged from 59.46 to 111.32 × 10−12 molbiotite m−2 s−1 and rates normalised to initial- and final-mass ranged from 0.81 to 6.93 × 10−12 molbiotite g−1 s−1. For all normalising terms rates varied significantly (p ? 0.05) with grain size. The normalising terms which gave least variation in dissolution rate between grain sizes for anorthite were initial BET SSA and initial- and final-geometric SSA. This is consistent with: (1) dissolution being dominated by the slower dissolving but area dominant non-etched surfaces of the grains and, (2) the walls of etch pits and other dissolution features being relatively unreactive. These steady state normalised dissolution rates are likely to be constant with time. Normalisation to final BET SSA did not give constant ratios across grain size due to a non-uniform distribution of dissolution features. After dissolution coarser grains had a greater density of dissolution features with BET-measurable but unreactive wall surface area than the finer grains. The normalising term which gave the least variation in dissolution rates between grain sizes for biotite was initial BET SSA. Initial- and final-geometric edge SSA and final BET SSA gave the next least varied rates. The basal surfaces dissolved sufficiently rapidly to influence bulk dissolution rate and prevent geometric edge SSA normalised dissolution rates showing the least variation. Simple modelling indicated that biotite grain edges dissolved 71-132 times faster than basal surfaces. In this experiment, initial BET SSA best integrated the different areas and reactivities of the edge and basal surfaces of biotite. Steady state dissolution rates are likely to vary with time as dissolution alters the ratio of edge to basal surface area. Therefore they would be more properly termed pseudo-steady state rates, only appearing constant because the time period over which they were measured (1512 h) was less than the time period over which they would change significantly.  相似文献   

9.
10.
11.
The concentrations of twenty four chemical elements in the surface layer of natural desert soils and the cultivated farmland soils were measured at a desert-oasis ecotone in the middle of Heihe river basin, north-west China. Background values were estimated for (a) major elements (Si 335.3 g kg− 1, Al 49.4 g kg− 1, Fe 19.1 g kg− 1, Ca 29.4 g kg− 1, Mg 8.9 g kg− 1, K 20.1 g kg− 1, Na 17.5 g kg− 1 and P 0.338 g kg− 1), (b) heavy metals and non-metals (Cr 55.8 mg kg− 1, Mn 404.8 mg kg− 1, Ni 17.7 mg kg− 1, Cu 5.1 mg kg− 1, Zn 33.7 mg kg− 1, Pb 15.5 mg kg− 1 and As 5.2 mg kg− 1) and (c) other trace elements (Ti 2.0 mg kg− 1, V 55.3 mg kg− 1, Co 5.7 mg kg− 1, Rb 82.4 mg kg− 1, Sr 232.9 mg kg− 1, Y 14.7 mg kg− 1, Zr 194.9 mg kg− 1, Nb 7.8 mg kg− 1 and Ba 720.6 mg kg− 1). After natural desert soil was cultivated for agricultural use, significant changes in element concentrations occurred under tillage, irrigation and fertilisation management. Compared to natural soil, the for the levels of Si, K, Na, Sr, Zr and Ba decreased, and no changes were observed for Rb, while the values of the other 17 elements increase in agricultural soil from 1.2 to 3.5 times. However, their absolute concentrations are still low, suggesting that the arable soil in this region remains comparatively a clean soil. The increased silt, clay and organic carbon content, under long-term irrigation, enriched the fine-grained materials, and application of fertilisers and manure contributed to the accumulation of most elements in arable soil. The accumulation of elements in agricultural soil increased with increasing cultivation years and extent of soil development.  相似文献   

12.
Mineral dissolution rates have been rationalized in the literature by surface complexation models (SCM) and morphological and geometric models (GM), and reconciliation of these conceptually different yet separately highly successful models is an important goal. In the current work, morphological alterations of the surface are observed in real time at the microscopic level by atomic force microscopy (AFM) while dissolution rates are simultaneously measured at the macroscopic level by utilizing the AFM fluid cell as a classic flow-through reactor. Rhodochrosite dissolution is studied from pH = 2 to 11 at 298 K, and quantitative agreement is found between the dissolution rates determined from microscopic and macroscopic observations. Application of a SCM model for the interpretation of the kinetic data indicates that the surface concentration of >CO3H regulates dissolution for pH < 7 while the surface concentration of >MnOH2+ regulates dissolution for pH > 7. A GM model explains well the microscopic observations, from which it is apparent that dissolution occurs at steps associated with anisotropic pit expansion. On the basis of the observations, we combine the SCM and GM models to propose a step-site surface complexation model (SSCM), in which the dissolution rates are quantitatively related to the surface chemical speciation of steps. The governing SSCM equation is as follows: R = χ1/2(kco + kca)[>CO3H] + χ1/2(kmo + kma)[>MnOH2+ ], where R is the dissolution rate (mol m−2 s−1), 2χ1/2 is the fraction of surface sites located at steps, [>CO3H] and [>MnOH2+ ] are surface concentrations (mol m−2), and kco, kca, kmo, and kma are the respective dissolution rate coefficients (s−1) for the >CO3H and the >MnOH2+ surface species on obtuse and acute steps. We find kco = 2.7 s−1, kca = 2.1 × 10−1 s−1, kmo = 4.1 × 10−2 s−1, kma = 3.7 × 10−2 s−1, and χ1/2 = 0.015 ± 0.005. The rate coefficients quantify the net result of complex surface step processes, including double-kink initiation and single-kink propagation. We propose that the SSCM model may have general applicability for dissolution far from equilibrium of flat mineral surfaces of ionic crystals, at least those that dissolve by step retreat.  相似文献   

13.
The effect of pH and Gibbs energy on the dissolution rate of a synthetic Na-montmorillonite was investigated by means of flow-through experiments at 25 and 80 °C at pH of 7 and 9. The dissolution reaction took place stoichiometrically at 80 °C, whereas at 25 °C preferential release of Mg over Si and Al was observed. The TEM-EDX analyses (transmission electronic microscopy with quantitative chemical analysis) of the dissolved synthetic phase at 25 °C showed the presence of newly formed Si-rich phases, which accounts for the Si deficit. At low temperature, depletion of Si concentration was attributed to incongruent clay dissolution with the formation of detached Si tetrahedral sheets (i.e., alteration product) whereas the Al behaviour remains uncertain (e.g., possible incorporation into Al-rich phases). Hence, steady-state rates were based on the release of Mg. Ex situ AFM measurements were used to investigate the variations in reactive surface area. Accordingly, steady-state rates were normalized to the initial edge surface area (11.2 m2 g−1) and used to propose the dissolution rate law for the dissolution reactions as a function of ΔGr at 25 °C and pH∼9:
  相似文献   

14.
79Se is a potentially mobile long-lived fission product, which may make a dominant contribution to the long-term radiation exposure resulting from deep geological disposal of radioactive waste. Its mobility is affected by sorption on minerals. Selenium sorption processes have been studied mainly by considering interaction with a single mineral surface. In the case of multi-component systems (e.g. soils), it is difficult to predict the radioelement behaviour only from the mineral constituents. This study contributes to the understanding of multi-component controls of Se concentrations towards predicting Se behaviour in soils after migration from a disposal site. This goal was approached by measuring selenite sorption on mono and multi-phase systems physically separated by dialysis membranes. To the best of the authors’ knowledge, very few studies have used dialysis membranes to study the sorption competition of selenite between several mineral phases. Other workers have used this method to study the sorption of pesticides on montmorillonite in the presence of dissolved organic matter. Indeed, this method allows measurement of individual Kd in a system composed of several mineral phases. Dialysis membranes allowed (i) determination of the competition of two mineral phases for selenite sorption (ii) and determination of the role of humic acids (HAs) on selenite sorption in oxidising conditions. Experimental results at pH 7.0 show an average Se(IV) sorption distribution coefficient (Kd) of approximately 125 and 9410 L kg−1 for bentonite and goethite, respectively. The average Kd for goethite decreases to 613 L kg−1 or 3215 L kg−1 in the presence of bentonite or HA, respectively. For bentonite, the average Kd decreases slightly in the presence of goethite (60 L kg−1) and remains unchanged in the presence of HA. The experimental data were successfully modelled with a surface complexation model using the PHREEQC geochemical code. The drastic decrease in Se(IV) sorption on goethite in a multi-phase system is attributed to competition with dissolved silica released by bentonite. As with Si the HA compete with Se for sorption sites on goethite.  相似文献   

15.
Biotite dissolution under conditions of high pH and high aluminum, sodium, and nitrate concentrations analogous to those found in tank wastes at the Hanford Site was investigated using continuously stirred flow-through reactors at 22 to 25 °C. Experiments were designed to simulate tank leaks into the Hanford vadose zone where Fe(II) from biotite is the dominant reducing agent available to immobilize certain contaminants. Both non-steady-state and steady-state dissolution kinetics were quantified; interest in non-steady-state kinetics derives from the inherently transitory nature of tank leaks. Biotite was conditioned in pH 8 solutions to simulate the alkaline environment of the Hanford sediment, and then reacted in pH 10-14 solutions, some including 0.055 M Al(NO3)3 and/or 2 M or 6 M NaNO3. Initial dissolution transients (intervals of rapid release rates that decay to slower steady-state rates) showed fast preferential release of K followed by near-stoichiometric release of Si, Al, and Mg, and slower release of Fe. Each increase in pH resulted in a second transient with the greatest amounts of Si, Al, and K released at pH 14, followed by pHs 13, 12, 11, and 10. Fe release also was highest at pH 14, but unchanging at pHs 10-13 within experimental error. Transient releases at high pH are attributed to dissolution of amphoteric secondary phases such as ferrihydrite that are inferred from saturation calculations and solid analyses to form during the conditioning interval. Transient release of Si was inhibited by the presence of 0.055 M Al(NO3)3; the effects of Al(NO3)3 and NaNO3 on the release rates of Al, Fe, Mg, and K were variable and generally outweighed by the effect of pH. Quasi-steady-state release rates were slowest at pH 11-12 (10−12.2 mol biotite m−2 s−1 for Si) and increased in either direction in pH away from this minimum (to 10−11.5 at pHs 8 and 14 for Si). Fe release rates at high pH were sufficient to account for observed Cr(VI) reduction at Hanford. The net release rates of the major framework cations, from which the biotite dissolution rate is inferred, may reflect the precipitation of secondary phases or the alteration of biotite to vermiculite. The most extensive solid-phase alterations were observed in Na-enriched solutions.  相似文献   

16.
Mass concentrations of PM10, PM2.5, and black smoke (BS) were measured in April 2003 during a 3-week campaign in a small village and at a nearby background location in the central part of the Czech Republic. In a pilot analysis, concentrations of selected trace elements (Al, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, As, Se, Sr, Cd, Sb, Cs, Pb) in the collected aerosol were determined by means of ICP-MS. Average concentrations of both PM fractions and BS were higher in the village (37, 26 and 26 μg m−3) than at the background location (26, 19 and 11 μg m−3) for PM10, PM2.5 and BS, respectively. Both PM10 and PM2.5 were reasonably correlated in the village (r = 0.80) and also at the background location (r = 0.79). Correlation between same fractions from the village and from the background site were even higher (r = 0.97 and r = 0.95 for the PM10 and PM2.5, respectively) suggesting that most of the aerosol in both locations may be influenced by similar sources. The ratio between PM10 and PM2.5 showed that sources in the village contributed about 33% and 35% to local aerosol concentration for PM10 and PM2.5, respectively. When the data from the two rural locations were compared with corresponding 24-h averages of PM10 concentrations obtained for the period of the campaign from fixed site monitors situated near larger towns, the highest concentration was found in Prague the Czech capital (49 μg m−3) followed by a district town Beroun (41 μg m−3) and the village (37 μg m−3). The lowest PM10 concentration was found in the village background (26 μg m−3). Elemental analysis revealed higher concentrations for most of the elements characteristic of combustion aerosol (namely Zn, Pb, As, Mn and Ti) in the PM collected in the village. The results support the idea that traditional heating in villages may contribute a great extent to local air pollution and may represent an important problem.  相似文献   

17.
The dissolution of siderite (FeCO3) and rhodochrosite (MnCO3) under oxic and anoxic conditions is investigated at 298 K. The anoxic dissolution rate of siderite is 10−8.65 mol m−2 s−1 for 5.5 < pH < 12 and increases as [H+]0.75 for pH < 5.5. The pH dependence is consistent with parallel proton-promoted and water hydrolysis dissolution pathways. Atomic force microscopy (AFM) reveals a change in pit morphology from rhombohedral pits for pH > 4 to pits elongated at one vertex for pH < 4. Under oxic conditions the dissolution rate decreases to below the detection limit of 10−10 mol m−2 s−1 for 6.0 < pH < 10.3, and hillock precipitation preferential to steps is observed in concurrent AFM micrographs. X-ray photoelectron spectroscopy (XPS) and thermodynamic analysis identify the precipitate as ferrihydrite. At pH > 10.3, the oxic dissolution rate is as high as 10−7.5 mol m−2 s−1, which is greater than under the corresponding anoxic conditions. A fast electron transfer reaction between solution O2 or [Fe3+(OH)4] species and surficial >FeII hydroxyl groups is hypothesized to explain the dissolution kinetics. AFM micrographs do not show precipitation under these conditions. Anoxic dissolution of rhodochrosite is physically observed as rhombohedral pit expansion for 3.7 < pH < 10.3 and is chemically explained by parallel proton- and water-promoted pathways. The dissolution rate law is 10−4.93[H+] + 10−8.45 mol m−2 s−1. For 5.8 < pH < 7.7 under oxic conditions, the AFM micrographs show a tabular precipitate growing by preferential expansion along the a-axis, though the macroscopic dissolution rate is apparently unaffected. For pH > 7.7 under oxic conditions, the dissolution rate decreases from 10−8.45 to 10−9.0 mol m−2 s−1. Flattened hillock precipitates grow across the entire surface without apparent morphological influence by the underlying rhodochrosite surface. XPS spectra and thermodynamic calculations implicate the precipitate as bixbyite for 5.8 < pH < 7.7 and MnOOH (possibly feitnkechtite) for pH >7.7.  相似文献   

18.
The types and structures of adsorption complexes formed by oxalate at boehmite (γ-AlOOH)/water and corundum (α-Al2O3)/water interfaces were determined using in situ attenuated total reflectance fourier transform infrared (ATR-FTIR) spectroscopy and quantum chemical simulation methods. At pH 5.1, at least four different oxalate species were found at or near the boehmite/water interface for oxalate surface coverages (Γox) ranging from 0.25 to 16.44 μmol/m2. At relatively low coverages (Γox < 2.47), strongly adsorbed inner-sphere oxalate species (IR peaks at 1286, 1418, 1700, and 1720 cm−1) replace weakly adsorbed carbonate species, and a small proportion of oxalate anions are adsorbed in an outer-sphere mode (IR peaks at 1314 and 1591 cm−1). IR peaks indicative of inner-sphere adsorbed oxalate are also observed for oxalate at the corundum/water interface at Γox = 1.4 μmol/m2. With increasing oxalate concentration (Γox > 2.47 μmol/m2), the boehmite surface binding sites for inner-sphere adsorbed oxalate become saturated, and excess oxalate ions are present dominantly as aqueous species (IR peaks at 1309 and 1571 cm−1). In addition to these adsorption processes, oxalate-promoted dissolution of boehmite following inner-sphere oxalate adsorption becomes increasingly pronounced with increasing Γox and results in an aqueous Al(III)-oxalate species, as indicated by shifted IR peaks (1286 → 1297 cm−1 and 1418 → 1408 cm−1). At pH 2.5, no outer-sphere adsorbed oxalate or aqueous oxalate species were observed. The similarity of adsorbed oxalate spectral features at pH 2.5 and 5.1 implies that the adsorption mechanism of aqueous HOx species involves loss of protons from this species during the ligand-exchange reaction. As a consequence, adsorbed inner-sphere oxalate and aqueous Al(III)-oxalate complexes formed at pH 2.5 have coordination geometries very similar to those formed at pH 5.1.The coordination geometry of inner-sphere adsorbed oxalate species was also predicted using quantum chemical geometry optimization and IR vibrational frequency calculations. Geometry-optimized Al8O12 and Al14O22 clusters with the reactive surface Al site coordinated by three oxygens were used as model substrates for corundum and boehmite surfaces. Among the models considered, calculated IR frequencies based on a bidentate side-on structure with a 5-membered ring agree best with the observed frequencies for boehmite/oxalate/water samples at Γox = 0.25 to 16.44 μmol/m2 and pH 2.5 and 5.1, and for a corundum/oxalate/water sample at Γox = 1.4 μmol/m2 and pH 5.1. Based on these results, we suggest that oxalate bonding on boehmite and corundum surfaces results in 5-coordinated rather than 4- or 6-coordinated Al surface sites.  相似文献   

19.
Experimental evidence for mobility of Zr and other trace elements in soils   总被引:1,自引:0,他引:1  
A Soxhlet extraction was carried out over a period of 27 d on a column comprising 3 cm of quartz overlain by 4 cm of soil from the B horizon and then 1 cm of soil from the A horizon of a granitic podzol. Major and trace elements were leached from the column and accumulated in a reservoir at the base of the column. Total loss of elements from the soil over the course of the experiment ranged from 0.002 to 1 wt% with major elements and the light and heavy rare earth elements (REE) showing the largest percentage losses. Zirconium (0.002%) and then Al (0.008%) showed the lowest percentage loss. The light REE were leached out of the soil preferentially to the mid REE. All elements showed accumulation, by a factor of 2 to 11, in the quartz layers at the base of the column, particularly in the upper first 1 cm of the quartz. Major elements were leached from the column at a rate of 0.02 to 0.59 μmol h−1 whereas Zr, Nd, Sm, Gd, Dy, Rb, and Sr were leached at the rate of 0.5 to 30 × 10−6 μmol h−1. Concentrations of other REE in the reservoir increased over the duration of the experiment, but they were poorly correlated with time, so leaching rates were not calculated. Normalization of the major element leaching rates to take into account the constant flushing of water through the column, the average annual rainfall in the Allt a’Mharcaidh catchment in Scotland from where the soil was sampled, and the cross-sectional area of the soil in the column, together with the temperature of the soil in the column (70°C) compared with the average annual temperature of the Allt a’Mharcaidh catchment (5.7°C), gave major element release rates from the soil of 0.002 to 0.97 mEq m−2 yr−1 (depending on the choice of Ea, the dissolution activation energy), which are generally less than those measured in the field of 0.1 to 40.9 mEq m−2 yr−1.Calculations showed that despite the redistribution and loss of Zr from the column, assumptions of Zr mobility would have had a negligible effect on calculated element release rates of Na, Ca, Fe, and Mg. However, significant underestimates of the release of K (5%), Ti (57%), Al (5%), and Si (10%) as well as some trace elements (e.g., Nd, 23%; Rb, 54%; Sr, 24%) would have occurred. Concentrations of Ca and Sr leached from the column correlated well (RSQ = 0.93, p < 0.01), supporting the idea of the use of Sr release as a proxy for Ca release in weathering rate calculations. The release rates and percentage loss of REE from the soil varied between elements indicating that REE distribution patterns of rocks and soils may not be preserved in drainage waters.  相似文献   

20.
This study reports on the first quantitative assessment of the geochemical cycling of volcanogenic elements, from their atmospheric release to their deposition back to the ground. Etna’s emissions and atmospheric depositions were characterised for more than 2 years, providing data on major and trace element abundance in both volcanic aerosols and bulk depositions. Volcanic aerosols were collected from 2004 to 2007, at the summit vents by conventional filtration techniques. Precipitation was collected, from 2006 to 2007, in five rain gauges, at various altitudes around the summit craters. Analytical results for volcanic aerosols showed that the dominant anions were S, Cl, and F, and that the most abundant metals were K, Ca, Mg, Al, Fe, and Ti (1.5-50 μg m−3). Minor and trace element concentrations ranged from about 0.001 to 1 μg m−3. From such analysis, we derived an aerosol mass flux ranging from 3000 to 8000 t a−1. Most analysed elements had higher concentrations close to the emission vent, confirming the prevailing volcanic contribution to bulk deposition. Calculated deposition rates were integrated over the whole Etna area, to provide a first estimate of the total deposition fluxes for several major and trace elements. These calculated deposition fluxes ranged from 20 to 80 t a−1 (Al, Fe, Si) to 0.01-0.1 t a−1 (Bi, Cs, Sc, Th, Tl, and U). Comparison between volcanic emissions and atmospheric deposition showed that the amount of trace elements scavenged from the plume in the surrounding of the volcano ranged from 0.1% to 1% for volatile elements such as As, Bi, Cd, Cs, Cu, Tl, and from 1% to 5% for refractory elements such as Al, Ba, Co, Fe, Ti, Th, U, and V. Consequently, more than 90% of volcanogenic trace elements were dispersed further away, and may cause a regional scale impact. Such a large difference between deposition and emission fluxes at Mt. Etna pointed to relatively high stability and long residence time of aerosols in the plume.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号