首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Lunar mare basalts are a product of partial melting of the lunar mantle under more reducing conditions when compared to those expected for the Earth’s upper mantle. Alongside Fe, Ti can be a major redox sensitive element in lunar magmas, and it can be enriched by up to a factor of ten in lunar basaltic glasses when compared to their terrestrial counterparts. Therefore, to better constrain the oxidation state of Ti and its coordination chemistry during lunar magmatic processes, we report new X-ray absorption near edge structure (XANES) spectroscopy measurements for a wide range of minerals (pyroxene, olivine, Fe–Ti oxides) and basaltic melt compositions involved in partial melting of the lunar mantle. Experiments were conducted in 1 bar gas-mixing furnaces at temperatures between 1100 and 1300 °C and oxygen fugacities (fO2) that ranged from air to two orders of magnitude below the Fe–FeO redox equilibrium. Run products were analysed via electron microprobe and XANES Ti K-edge. Typical run products had large (>?100 µm) crystals in equilibrium with quenched silicate glass. Ti K-edge XANES spectra show a clear shift in energy of the absorption edge features from oxidizing to reducing conditions and yield an average valence for Fe–Ti oxides (armalcolite and ilmenite) of 3.6, i.e., a 40% of the overall Ti is Ti3+ under fO2 conditions relevant to lunar magmatism (IW ??1.5 to ??1.8). Pyroxenes and olivine have average Ti valence of 3.75 (i.e., 25% of the overall Ti is trivalent), while in silicate glasses Ti is exclusively tetravalent. Pre-edge peak intensities also indicate that the coordination number of Ti varies from an average V-fold in silicate glass to VI-fold in the Fe–Ti oxides and a mixture between IV and VI-fold coordination in the pyroxenes and olivine, with up to 82% [IV]Ti4+ in the pyroxene. In addition, our results can help to better constrain the Ti3+/∑Ti of the lunar mantle phases during magmatic processes and are applied to provide first insights into the mechanisms that may control Ti mass-dependent equilibrium isotope fractionation in lunar mare basalts.  相似文献   

2.
Solubility experiments for nitrogen and noble gases (Ar and Ne) in silicate melts were conducted using two experimental configurations: one was conducted at 1 atmospheric pressure, T =1300°C and oxygen fugacity (fO2) of IW + 0.9 (i.e., 0.9 log units higher than the iron-wüstite buffer) and the other at high pressures (Ptotal ∼ 2 × 108 Pa), 1500°C and fO2 ∼ IW + 6. For the former experiment, isotopically labeled-nitrogen (15N15N-enriched) was used to distinguish dissolved nitrogen from contaminating atmospheric or organic nitrogen and to examine dissolution mechanisms of nitrogen in silicate melts. The results obtained for the two series of experiments are consistent with each other, suggesting that Henry's law is satisfied for fN2 of up to ∼250 atm (2.5 × 107 Pa). The results are also consistent with our earlier results (Miyazaki et al., 1995) obtained at highly oxidizing conditions (fO2 ∼ IW + 10). All these results support physical dissolution of nitrogen as N2 molecules in silicate melts for fO2 from ∼IW + 10 down to ∼IW. The observed solubility (Henry's constant) of nitrogen (3-5 × 10−9 mol/g/atm) is comparable to that of Ar (2-4 × 10−9 mol/g/atm), and much lower than that of Ne (11-14 × 10−9 mol/g/atm) at 1300°C. A preliminary experiment was also performed for partitioning of nitrogen and noble gases between clinopyroxene (cpx) and basaltic melt using a piston cylinder-type apparatus at 1.5 GPa and at 1270 to 1350°C. The obtained cpx/melt partition coefficient of nitrogen is 0.06, slightly lower than those of noble gases (∼0.1 for Ne to Xe), suggesting that nitrogen is as incompatible as or even slightly more incompatible than noble gases. The present results imply that a large nitrogen/Ar fractionation would not be produced by magmatic processes. Therefore, the two orders of magnitude difference between the N2/36Ar ratios in the Earth's atmosphere (∼104) and that in the mantle (∼106) must be explained by some other processes, such as incomplete segregation of metal blobs into the core and their later oxidation.  相似文献   

3.
Testing the Ballhaus–Berry–Green Ol–Opx–Sp oxybarometer (BBG) on independent experimental data indicates that it overestimates the oxygen fugacity by 0.6–1.3 log units under mildly reduced conditions (near the C–CO buffer) and by as much as 2–3 log units under reduced conditions (at the IW buffer and below it). A newly developed oxibarometer is suggested to minimize this effect and enhance the capabilities of redoxometry of low-pressure mineral associations, including magmatic melts undersaturated with respect to orthopyroxene (Opx). The new empirical equation of the oxybarometer is applicable to a wide range of mafic–ultramafic magmas of normal alkalinity, including terrestrial, lunar, and meteoritic systems under pressures of 0.001–25 kbar and oxygen fugacity ranging from IW–3 to NNO + 1. The derived regression fits the ΔQFM values of the calibration dataset (154 experiments) accurate to ~0.5 log units. The new oxybarometer eliminates systematic errors when redox parameters are evaluated for the reduced region (from IW–3 to C–CO) and for crystallization of magmas without Opx on the liquidus. The efficiency of the suggested model is demonstrated by its application to natural rocks: (1) low-Ti lunar basalts, (2) tholeiites from the Shatsky Rise, (3) Siberian flood basalts, (4) rocks of the layered series of the Yoko-Dovyren intrusion, and (5) mantle xenoliths collected in southern Siberia, Mongolia, China, and the southern Russian Far East. The values yielded by such oxybarometers for intrusive rocks, which underwent long-lasting cooling and postcumulus reequilibration, should be regarded with reserve.  相似文献   

4.
The influence of oxygen fugacity (fO2) and temperature on the valence and structural state of iron was experimentally studied in glasses quenched from natural aluminosilicate melts of granite and pantellerite compositions exposed to various T-fO2 conditions (1100–1420°C and 10?12–10?0.68 bar) at a total pressure of 1 atm. The quenched glasses were investigated by Mössbauer spectroscopy. It was shown that the effect of oxygen fugacity on the redox state of iron at 1320–1420°C can be described by the equation log(Fe3+/Fe2+) = k log(fO2) + q, where k and q are constants depending on melt composition and temperature. The Fe3+/Fe2+ ratio decreases with decreasing fO2 (T = const) and increasing temperature (fO2 = const). The structural state of Fe3+ depends on the degree of iron oxidation. With increasing Fe3+/Fe2+ ≥ 1, the dominant coordination of Fe3+ changes from octahedral to tetrahedral. Ferrous iron ions occur in octahedral (and/or five-coordinated) sites independent of Fe3+/Fe2+.  相似文献   

5.
Samarium-neodymium isotopic analysis of the martian meteorite Dar al Gani 476 yields a crystallization age of 474 ± 11 Ma and an initial εNd143 value of +36.6 ± 0.8. Although the Rb-Sr isotopic system has been disturbed by terrestrial weathering, and therefore yields no age information, an initial 87Sr/86Sr ratio of 0.701249 ± 33 has been estimated using the Rb-Sr isotopic composition of the maskelynite mineral fraction and the Sm-Nd age. The Sr and Nd isotopic systematics of Dar al Gani 476, like those of the basaltic shergottite QUE94201, are consistent with derivation from a source region that was strongly depleted in incompatible elements early in the history of the solar system. Nevertheless, Dar al Gani 476 is derived from a source region that has a slightly greater incompatible enrichment than the QUE94201 source region. This is not consistent with the fact that the parental magma of Dar al Gani 476 is significantly more mafic than the parental magma of QUE94201, and underscores a decoupling between the major element and trace element-isotopic systematics observed in the martian meteorite suite.Combining the εNd142Nd143 isotopic systematics of the martian meteorites yields a model age for planetary differentiation of 4.513+0.033−0.027 Ga. Using this age, the parent/daughter ratios of martian mantle sources are calculated assuming a two-stage evolutionary history. The calculated sources have very large ranges of parent/daughter ratios (87Rb/86Sr = 0.037-0.374; 147Sm/144Nd = 0.182-0.285; 176Lu/177Hf = 0.028-0.048). These ranges exceed the ranges estimated for terrestrial basalt source regions, but are very similar to those estimated for the sources of lunar mare basalts. In fact, the range of parent/daughter ratios calculated for the martian meteorite sources can be produced by mixing between end-members with compositions similar to lunar mare basalt sources. Two of the sources have compositions that are similar to olivine and pyroxene-rich mafic cumulates with variable proportions of a Rb-enriched phase, such as amphibole, whereas the third source has the composition of liquid trapped in the cumulate pile (i.e. similar to KREEP) after ∼99% crystallization. Correlation between the proportion of trapped liquid in the meteorite source regions and estimates of fO2, suggest that the KREEP-like component may be hydrous. The success of these models in reproducing the martian meteorite source compositions suggests that the variations in trace element and isotopic compositions observed in the martian meteorites primarily reflect melting of the crystallization products of an ancient magma ocean, and that assimilation of evolved crust by mantle derived magmas is not required. Furthermore, the decoupling of major element and trace element-isotopic systematics in the martian meteorite suite may reflect the fact that trace element and isotopic systematics are inherited from the magma source regions, whereas the major element abundances are limited by eutectic melting processes at the time of magma formation. Differences in major element abundances of parental magma, therefore, result primarily from fractional crystallization after leaving their source regions.  相似文献   

6.
A series of liquidus determinations is reported for a primitive arc basalt (15.4 wt % MgO, 45.5 wt % SiO2) from Grenada, Lesser Antilles, at anhydrous, H2O-undersaturated and H2O-saturated conditions in the pressure range 1 atm to 1.7 GPa. \(\hbox{Fe}^{3+}/\Upsigma\hbox{Fe}\) of high-pressure experimental glasses as measured by μXANES ranges from 0.44 to 0.86, corresponding to oxygen fugacities (fO2) between 3.2 and 7.8 log units above the nickel–nickel oxide redox buffer (NNO). 1-atm experiments conducted from NNO ? 2.5 to + 3.8 show that increasing fO2 mainly increases the forsterite content (Fo) of olivine and has little effect on phase relations. The crystallisation sequence at lower crustal pressures for all water contents is forsteritic olivine + Cr-rich spinel followed by clinopyroxene. The anhydrous liquidus is depressed by 100 and 120 °C in the presence of 2.9 and 3.8 wt % H2O, respectively. H2O-undersaturated experiments at NNO + 3.2 to + 4.5 produce olivine of equivalent composition to the most primitive olivine phenocrysts in Grenadan picrites (Fo91.4). We conclude that direct mantle melts originating beneath Grenada could be as oxidised as ~NNO + 3, consistent with the uppermost estimates from olivine–spinel oxybarometry of high Mg basalts. μXANES analyses of olivine-bearing experimental glasses are used to develop a semi-empirical oxybarometer based on the value of \({{K}_{D}}_{\rm ol-melt}^{\rm Fe-Mg}\) when all Fe is assumed to be in the Fe2+ state (\({K}_{D}^{{\rm Fe}_T}\)). The oxybarometer is tested on an independent data set and is able to reproduce experimental fO2 to ≤1.2 log units. Experiments also show that the geochemically and petrographically distinct M- and C-series lavas on the island can be produced from hydrous melting of a common picritic source. Low pressures expand the olivine stability field at the expense of clinopyroxene, enriching an evolving melt in CaO and forcing differentiation to take place along a C-series liquid line of descent. Higher pressure conditions allow early and abundant clinopyroxene crystallisation, rapidly depleting the melt in both CaO and MgO, and thus creating the M-series.  相似文献   

7.
The partitioning of V between orthopyroxene-liquid and spinel-liquid has been investigated in synthetic and natural mafic and ultramafic compositions as a function of temperature and oxygen fugacity (fO2) at 100 kPa and in one experiment at higher pressure. The purpose of the experiments was to understand redox relationships for V in silicate melts with a view to deriving an empirical oxygen barometer for geochemically altered mafic and ultramafic magmas in the geologic record. Partitioning data for both orthopyroxene-liquid and spinel-liquid show profound changes at an fO2 approximately 3 orders of magnitude below the nickel-nickel oxide (NNO) buffer, suggesting changes in the dominant valence state of V in silicate liquids from V3+ to V4+, near this fO2.The results of the experiments on orthopyroxene-liquid are combined with published data for olivine-liquid and are applied to suites of mafic and ultramafic magmas that have equilibrated with a harzburgite residue in the mantle. The results show that Archean alumina-undepleted komatiites could have formed at fairly high oxygen fugacities, near ΔNNO ∼ 0, somewhat higher than Cretaceous komatiites and related picrites in the Caribbean region (between ΔNNO ∼ −1 to −3), and plume-related picrites from West Greenland (ΔNNO ∼ − 3). Picrites and boninites from convergent margins record the highest fO2’s by this method, (ΔNNO = +1 to +2), consistent with other petrological estimates of their redox states. The approach developed in this study can thus provide estimates for the redox states of altered, mantle-derived magmas in the geological record, to which more conventional methods of oxygen barometry cannot be applied.  相似文献   

8.
Plagioclase-melt partition coefficients (D) for 34 trace elements at natural concentration levels were determined experimentally in a natural MORB composition at atmospheric pressure using thin Pt-wire loops. Experiments were carried out at three temperatures (1,220, 1,200, and 1,180°C), and at three different oxygen fugacities (fO2 = IW, QFM, air) in order to assess the effect of fO2 on the partitioning of elements with multiple valence (Fe, Eu, Cr). Run products were analyzed by laser-ablation ICP-MS. Most trace element Ds increase slightly as temperature decreases, except for D Zr, D Fe, D Eu and D Cr that vary systematically with fO2. Applying the Lattice Strain Model to our data suggests the presence of Fe2+ entirely in the octahedral site at highly to moderate reducing conditions, while Fe3+ was assigned wholly to the tetrahedral site of the plagioclase structure. Furthermore, we provide a new quantitative framework for understanding the partitioning behaviour of Eu, which occurs as both 2+ and 3+ cations, depending on fO2and confirm the greater compatibility of Eu2+, which has an ionic radius similar to Sr, relative to Eu3+ in plagioclase and the higher Eu2+/ Eu3+ under reducing conditions. For petrogenetic basaltic processes, a combined fractionation of Eu2+–Sr and Fe–Mg by plagioclase has considerable potential as an oxybarometer for natural magmatic rocks.  相似文献   

9.
The volatilization kinetics of single crystal α-SiC, polycrystalline β-SiC, and SiO2 (cristobalite or glass) were determined in H2-CO2, CO-CO2, and H2-CO-CO2 gas mixtures at oxygen fugacities between 1 log unit above and 10 log units below the iron-wüstite (IW) buffer and temperatures in the range 1151 to 1501°C. Detailed sets of experiments on SiC were conducted at 2.8 and 6.0 log units below IW (IW-2.8 and IW-6.0) at a variety of temperatures, and at 1300°C at a variety of oxygen fugacities. Transmission electron microscopic and Rutherford backscattering spectroscopic characterization of run products shows that the surface of SiC exposed to IW-2.8 is characterized by a thin (<1 μm thick), continuous layer of cristobalite. SiC exposed to IW-6.0 lacks such a layer (or its thickness is <0.01 μm), although some SiO2 was found within pits and along incised grain boundaries.In H2-CO2 gas mixtures above ∼IW-3, the similarity of the SiC volatilization rate and of its dependence on temperature and fO2 to that for SiO2 suggests that SiC volatilization is controlled by volatilization of a SiO2 layer that forms on the surface of the SiC. With decreasing log fO2 from ∼IW-3 to ∼IW-6, the SiC volatilization rate is constant at constant temperature, whereas that for SiO2 increases. The independence of the SiC volatilization rate from the gas composition under these conditions suggests that the rate-controlling step is a solid-solid reaction at the internal SiC/SiO2 interface. For gas compositions more reducing than ∼IW-6, the SiC volatilization rate increases with decreasing fO2, with both bare SiC surfaces and perhaps silica residing in pits and along incised grain boundaries contributing to the overall reaction rate.If the volatilization mechanism and reaction rate in the solar nebula were the same as in our H2-CO2 experiments at IW-6.0, then estimated lifetimes of 1-μm-diameter presolar SiC grains range from several thousand years at ∼900°C, to ∼1 yr at 1100°C, ∼1 d at 1300°C, and ∼1 h at 1400°C. The corresponding lifetimes for 10-μm SiC grains would be an order of magnitude longer. If the supply of oxidants to surfaces of presolar SiC grains were rate limiting—for example, at T > 1100°C for Ptot= 10−6 atm and sticking coefficient = 0.01, then the calculated lifetimes would be about 10 yr for 10-μm-diameter grains, essentially independent of temperature. The results thus imply that presolar SiC grains would survive short heating events associated with formation of chondrules (minutes) and calcium-, aluminum-rich inclusions (days), but would have been destroyed by exposure to hot (≥900°C) nebular gases in less than several thousand years unless they were coated with minerals inert to reaction with a nebular gas.  相似文献   

10.
Low temperature adiabatic calorimetry and high temperature differential scanning calorimetry have been used to measure the heat-capacity of ilmenite (FeTiO3) from 5 to 1000 K. These measurements yield S2980 = 108.9 J/(mol · K). Calculations from published experimental data on the reduction of ilmenite yield Δ2980(I1) = ?1153.9 kJ/(mol · K). These new data, combined with available experimental and thermodynamic data for other phases, have been used to calculate phase equilibria in the system Fe-Ti-O. Calculations for the subsystem Ti-O show that extremely low values of ?O2 are necessary to stabilize TiO, the mineral hongquiite reported from the Tao district in China. This mineral may not be TiO, and it should be re-examined for substitution of other elements such as N or C. Consideration of solid-solution models for phases in the system Fe-Ti-O allows derivation of a new thermometer/oxybarometer for assemblages of ferropseudobrookite-pseudobrookitess and hematite-ilmenitess. Preliminary application of this new thermometer/oxybarometer to lunar and terrestrial lavas gives reasonable estimates of oxygen fugacities, but generally yields subsolidus temperatures, suggesting re-equilibration of one or more phases during cooling.  相似文献   

11.
Intrinsic oxygen-fugacity (fO2) measurements were made on five ordinary chondrites, a carbonaceous chondrite, an enstatite chondrite, a pallasite, and a tektite. Results are of the form of linear log fO2 ? 1T plots. Except for the enstatite chondrite, measured results agree well with calculated estimates by others.The tektite produced fO2 values well below the range measured for terrestrial and lunar rocks. The lowpressure atmospheric regime that is reported to follow large terrestrial explosions, coupled with a very high temperature, could produce glass with fO2 in the range measured.The meteorite Salta (pallasite) has low fO2 and lies close to Hvittis (E6). Unlike the other samples, results for Salta do not parallel the iron-wüstite buffer, but are close to the fayalite-quartz-iron buffer in slope.Minor reduction by graphite appears to have taken place during metamorphism of ordinary chondrites. fO2 values of unequilibrated chondrites show large scatter during early heating suggesting that the constituent phases were exposed to a range of fO2 conditions. The samples equilibrated with respect to fO2 in relatively short time on heating. Equilibration with respect to fO2 in ordinary chondrites takes place between grades 3 and 4 of metamorphism. Application of P ? T ? fO2 relations in the system C-CO-CO2 indicates that the ordinary chondrites were metamorphosed at pressures of 3–20 bars, as it appears that they lay on the graphite surface.A steep positive thermal gradient in a meteorite parent body lying at the graphite surface will produce thin reduced exterior, an oxidized near-surface layer, and an interior that is increasingly reduced with depth; a shallow thermal gradient will produce the reverse. A body heated by accretion on the outside will have a reduced exterior and oxidized interior. Meteorites from the same parent body clearly are not required to have similar redox states.  相似文献   

12.
The contents and speciation of nitrogen, carbon, and hydrogen were determined in basalt–basaltic andesite melts in equilibrium with liquid Fe alloys at 1.5 Gpa, 1400°C, and oxygen fugacity (fO2) 1.4–1.9 log units below that of the Fe–FeO buffer (ΔlogfO2(IW) =–1.4 …–1.9). Experiments were carried out on a piston- cylinder type apparatus using welded Pt capsules in the presence of excess С (graphite). Starting mixture consisted of natural ferrobasaltic glass and silicon nitride (Si3N4) as nitrogen source in the system. Experimental quench products representing glasses with spherical inclusions of iron alloy were analyzed using electron microprobe, Raman, and IR spectroscopy. With increase of Si3N4 in the starting mixture and, respectively, decrease of fO2, silicate melt forming during experiments became depleted in FeO and enriched in SiO2. It was established that the nitrogen content in the glasses increases from 0.13 to 0.44 wt % with decrease of ΔlogfO2(IW) from–1.4 to–1.9, whereas C content in the first approximation remains constant within 1.18–1.13 wt %, while the total water content (ОН + Н2О) determined by IR spectroscopy decreases from 4.91 to 1.20 wt %. The N (0.13–0.48 wt %) and C (0.75–2.26 wt %) contents determined in the Fe alloy show no clear correlation with fO2. The IR and Raman spectroscopic study of the glasses indicates the formation of molecules and complexes with bonds N–H (NH3, NH2 ?, NH2 +, NH4 +), Н–О (Н2О, OH), С–Н (СН4) as well as N2 and Н2 molecules in silicate melts. IR spectra also reveal the presence of complexes with С=О, С–N bonds and СО2 molecules. Obtained data are compared with results of previous studies on the solubility and speciation of N, С, and Н in the model FeO–Na2O–SiO2–Al2O3 melts in equilibrium with liquid iron alloys at 1.5 GPa (1400°C) and 4 GPa (1550°C) (Kadik et al., 2011, 2015).  相似文献   

13.
We have determined the Nd3+ diffusion kinetics in natural enstatite crystals as a function of temperature, f(O2) and crystallographic direction at 1 bar pressure and applied these data to several terrestrial and planetary problems. The diffusion is found to be anisotropic with the diffusion parallel to the c-axial direction being significantly greater than that parallel to a- and b-axis. Also, D(//a) is likely to be somewhat greater than D(//b). Diffusion experiments parallel to the b-axial direction as a function of f(O2) do not show a significant dependence of D(Nd3+) on f(O2) within the range defined by the IW buffer and 1.5 log unit above the WM buffer. The observed diffusion anisotropy and weak f(O2) effect on D(Nd3+) may be understood by considering the crystal structure of enstatite and the likely diffusion pathways. Using the experimental data for D(Nd3+), we calculated the closure temperature of the Sm-Nd geochronological system in enstatite during cooling as a function of cooling rate, grain size and geometry, initial (peak) temperature and diffusion direction. We have also evaluated the approximate domain of validity of closure temperatures calculated on the basis of an infinite plane sheet model for finite plane sheets showing anisotropic diffusion. These results provide a quantitative framework for the interpretation of Sm-Nd mineral ages of orthopyroxene in planetary samples. We discuss the implications of our experimental data to the problems of melting and subsolidus cooling of mantle rocks, and the resetting of Sm-Nd mineral ages in mesosiderites. It is found that a cooling model proposed earlier [Ganguly J., Yang H., Ghose S., 1994. Thermal history of mesosiderites: Quantitative constraints from compositional zoning and Fe-Mg ordering in orthopyroxene. Geochim. Cosmochim. Acta 58, 2711-2723] could lead to the observed ∼90 Ma difference between the U-Pb age and Sm-Nd mineral age for mesosiderites, thus obviating the need for a model of resetting of the Sm-Nd mineral age by an “impulsive disturbance” [Prinzhoffer A, Papanastassiou D.A, Wasserburg G.J., 1992. Samarium-neodymium evolution of meteorites. Geochim. Cosmochim. Acta 56, 797-815].  相似文献   

14.
To test a recently developed oxybarometer for silicic magmas based on partitioning of vanadium between magnetite and silicate melt, a comprehensive oxybarometry and thermometry study on 22 natural rhyolites to dacites was conducted. Investigated samples were either vitrophyres or holocrystalline rocks in which part of the mineral and melt assemblage was preserved only as inclusions within phenocrysts. Utilized methods include vanadium magnetite–melt oxybarometry, Fe–Ti oxide thermometry and -oxybarometry, zircon saturation thermometry, and two-feldspar thermometry, with all analyses conducted by laser-ablation ICP–MS. Based on the number of analyses, the reproducibility of the results and the certainty of contemporaneity of the analyzed minerals and silicate melts the samples were grouped into three classes of reliability. In the most reliable (n = 5) and medium reliable (n = 10) samples, all fO2 values determined via vanadium magnetite–melt oxybarometry agree within 0.5 log units with the fO2 values determined via Fe–Ti oxide oxybarometry, except for two samples of the medium reliable group. In the least reliable samples (n = 7), most of which show evidence for magma mixing, calculated fO2 values agree within 0.75 log units. Comparison of three different thermometers reveals that temperatures obtained via zircon saturation thermometry agree within the limits of uncertainty with those obtained via two-feldspar thermometry in most cases, whereas temperatures obtained via Fe–Ti oxide thermometry commonly deviate by ≥50 °C due to large uncertainties associated with the Fe–Ti oxide model at T-fO2 conditions typical of most silicic magmas. Another outcome of this study is that magma mixing is a common but easily overlooked phenomenon in silicic volcanic rocks, which means that great care has to be taken in the application and interpretation of thermometers and oxybarometers.  相似文献   

15.
Experimental investigations have been performed at T = 1200°C, P = 200 MPa and fH2 corresponding to H2O-MnO-Mn3O4 and H2O-QFM redox buffers to study the effect of H2O activity on the oxidation and structural state of Fe in an iron-rich basaltic melt. The analysis of Mössbauer and Fe K-edge X-ray absorption nearedge structure (XANES) spectra of the quenched hydrous ferrobasaltic glasses shows that the Fe3+/ΣFe ratio of the glass is directly related to aH2O in a H2-buffered system and, consequently, to the prevailing oxygen fugacity (through the reaction of water dissociation H2O ↔ H2 + 1/2 O2). However, water as a chemical component of the silicate melt has an indistinguishable effect on the redox state of iron at studied conditions. The experimentally obtained relationship between fO2 and Fe3+/Fe2+ in the hydrous ferrobasaltic melt can be adequately predicted in the investigated range by the existing empiric and thermodynamic models. The ratio of ferric and ferrous Fe is proportional to the oxygen fugacity to the power of ∼0.25 which agrees with the theoretical value from the stoichiometry of the Fe redox reaction (FeO + ¼ O2 = FeO1.5). The mean centre shifts for Fe2+ and Fe3+ absorption doublets in Mössbauer spectra show little change with increasing Fe3+/ΣFe, suggesting no significant change in the type of iron coordination. Similarly, XANES preedge spectra indicate a mixed (C3h, Td, and Oh, i.e., 5-, 4-, and sixfold) coordination of Fe in hydrous basaltic glasses.  相似文献   

16.
The apparent equilibrium constant for the exchange of Fe and Ni between coexisting olivine and sulfide liquid (KD = (XNiS/XFeS)liquid/(XNiSi12O2/XFeSi12O2)olivine; Xi = mole fraction) has been measured at controlled oxygen and sulfur fugacities (fO2 = 10−8.1 to 10−10 and fS2 = 10−0.9 to 10−1.7) over the temperature range 1200 to 1385°C, with 5 to 37 wt% Ni and 7 to 18 wt% Cu in the sulfide liquid. At log fO2 of −8.7 ± 0.1, and log fS2 of −0.9 to −1.7, KD is relatively insensitive to sulfur fugacity, but comparison with previous results shows that KD increases at very low sulfur fugacities. KD values show an increase with the nickel content of the sulfide liquid, but this effect is more complex than found previously, and is greatest at log fO2 of −8.1, lessens with decreasing fO2, and KD becomes independent of melt Ni content at log fO2 ≤ −9.5. The origin of this variation in KD with fO2 and fS2 is most likely the result of nonideal mixing of Fe and Ni species in the sulfide liquid. Such behavior causes activity coefficients to change with either melt oxygen content or metal/sulfur ratio, effects that are well documented for metal-rich sulfide melts.Application of these experimental results to natural samples shows that the relatively large dispersion that exists in KD values from different olivine + sulfide-saturated rock suites can be interpreted as arising from variations in fO2, fS2, and the nickel content of the sulfide liquid. Estimates of fO2 based on KD and sulfide melt composition in natural samples yields a range from fayalite-magnetite-quartz (FMQ)-1 to FMQ-2 or lower, which is in good agreement with previous values determined for oceanic basalts that use glass ferric/ferrous ratios. Anomalously high KD values recorded in some suites, such as Disko Island, probably reflect low fS2 during sulfide saturation, which is consistent with indications of low fO2 for those samples. It is concluded that the variation in KD values from natural samples reflects olivine-sulfide melt equilibrium at conditions within the T-fO2-fS2 range of terrestrial mafic magmas.  相似文献   

17.
XANES analyses at the sulfur K-edge were used to determine the oxidation state of S species in natural and synthetic basaltic glasses and to constrain the fO2 conditions for the transition from sulfide (S2−) to sulfate (S6+) in silicate melts. XANES spectra of basaltic samples from the Galapagos spreading center, the Juan de Fuca ridge and the Lau Basin showed a dominant broad peak at 2476.8 eV, similar to the spectra obtained from synthetic sulfide-saturated basalts and pyrrhotite. An additional sharp peak at 2469.8 eV, similar to that of crystalline sulfides, was present in synthetic glasses quenched from hydrous melts but absent in anhydrous glasses and may indicate differences in sulfide species with hydration or presence of minute sulfide inclusions exsolved during quenching. The XANES spectra of a basalt from the 1991 eruption of Mount Pinatubo, Philippines, and absarokitic basalts from the Cascades Range, Oregon, USA, showed a sharp peak at 2482.8 eV, characteristic of synthetic sulfate-saturated basaltic glasses and crystalline sulfate-bearing minerals such as hauyne. Basaltic samples from the Lamont Seamount, the early submarine phase of Kilauea volcano and the Loihi Seamount showed unequivocal evidence of the coexistence of S2− and S6+ species, emphasizing the relevance of S6+ to these systems. XANES spectra of basaltic glasses synthesized in internally-heated pressure vessels and equilibrated at fO2 ranging from FMQ − 1.4 to FMQ + 2.7 showed systematic changes in the features related to S2− and S6+ with changes in fO2. No significant features related to sulfite (S4+) species were observed. These results were used to construct a function that allows estimates of S6+/ΣS from XANES data. Comparison of S6+/ΣS data obtained by S Kα shifts measured with electron probe microanalysis (EPMA), S6+/ΣS obtained from XANES spectra, and theoretical considerations show that data obtained from EPMA measurements underestimate S6+/ΣS in samples that are sulfate-dominated (most likely because of photo-reduction effects during analysis) whereas S6+/ΣS from XANES provide a close match to the expected theoretical values. The XANES-derived relationship for S6+/ΣS as a function of fO2 indicates that the transition from S2− to S6− with increasing fO2 occurs over a narrower interval than what is predicted by the EPMA-derived relationship. The implications for natural systems is that small variation of fO2 above FMQ + 1 will have a large effect on S behavior in basaltic systems, in particular regarding the amount of S that can be transported by basaltic melts before sulfide saturation can occur.  相似文献   

18.
The Fe3+/ΣFe ratio of 104 MORB glasses from the Pacific, the Atlantic, the Indian, and the Red Sea spreading centers have been determined using wet chemical Fe2+ analyses and electron microprobe FeOtotal measurements. The data provide a new estimate for the MORB oxygen fugacity (fO2) of 0.41 ± 0.43 (1sigma, N = 100) log units below the fayalite-magnetite-quartz buffer (FMQ), equivalent to a Fe3+/ΣFe = 0.12 ± 0.02 (1sigma, N = 104). This new fO2 estimate is 0.8 log units more oxidized than the average fO2 proposed by Christie et al. (1986) (FMQ-1.20 ± 0.44; Fe3+/ΣFe = 0.07 ± 0.01; N = 87). This slight difference may be related in part to the 3.5% underestimation of the Fe2+ concentration determined by Christie et al. (1986) compared with this study. MORB oxygen fugacity does not display any significant difference between the three main oceanic domains, or between enriched and depleted MORB. Yet, the iron red-ox state ratio shows a broad increase during fractional crystallization. Detailed study of magmatic suites highlights the lack of systematic Fe3+/ΣFe ratio fractionation during differentiation. Despite the large variations of inferred partial melting degrees (from 5 to 20%), the present data set does not provide any evidence of Fe3+/ΣFe relationships with partial melting proxies such as Na8.0.Based on the Fe3+ systematics during partial melting, it is suggested that the oxidation state of MORB reflects a “buffered mantle melting process” resulting in the apparent compatible behavior of Fe3+ during partial melting, and in the relatively constant Fe3+/ΣFe ratio irrespective of the extent of melting. This result implies that partial melting processes may be open relative to oxygen. We propose a model where the Fe3+/ΣFe ratio in the melt is buffered during partial melting. The MORB Fe2O3 systematics can be accounted for by using a fO2 of FMQ-1 that is equivalent to the average fO2 reported for abyssal peridotites.  相似文献   

19.
Experiments have been carried out to determine the temperature, oxygen fugacity (fO2) and compositional dependence of the tracer diffusion coefficient (D) of calcium in olivine. These data constrain the diffusion coefficient over the temperature range 900 to 1500°C for the three principal crystallographic axes. Well constrained linear relationships between the reciprocal of the absolute temperature and log(D) exist at any given oxygen fugacity. There is a strong dependence of the diffusion coefficient on oxygen fugacity with D ∝ fO2(1/3). This makes a knowledge of the T-fO2 path followed by geological samples a prerequisite for modelling Ca diffusion in olivine. The best fitting preexponential factor (Do) and activation energy (E) to the Arrhenius equation log (D) = log [Do exp(−E/RT)] + 0.31Δ log fO2 for Ca diffusion in olivine at a given oxygen fugacity (fO2*) are given by:diffusion along [100]: log [Do (m2/s)] = −10.78 ± 0.43; E = 193 ± 11 kJ/moldiffusion along [010]: log [Do (m2/s)] = −10.46 ± 0.37; E = 201 ± 10 kJ/moldiffusion along [001]: log [Do (m2/s)] = −10.02 ± 0.29; E = 207 ± 8 kJ/molwhere Δ log fO2 = log[fO2*] − log[10−12] with fO2* in units of bars. There is no measurable compositional dependence of the diffusion coefficient between Fo83 and Fo92. Diffusion in Fo100 has a much higher activation energy than in Fe-bearing olivine and has a weaker fO2 dependence.  相似文献   

20.
The compatibility of vanadium (V) during mantle melting is a function of oxygen fugacity (fO2): at high fO2’s, V becomes more incompatible. The prospects and limitations of using the V content of peridotites as a proxy for paleo-fO2 at the time of melt extraction were investigated here by assessing the uncertainties in V measurements and the sensitivity of V as a function of degree of melt extracted and fO2. V-MgO and V-Al2O3 systematics were found to be sensitive to fO2 variations, but consideration of the uncertainties in measurements and model parameters indicates that V is sensitive only to relative fO2 differences greater than ∼2 log units. Post-Archean oceanic mantle peridotites, as represented by abyssal peridotites and obducted massif peridotites, have V-MgO and -Al2O3 systematics that can be modeled by 1.5 GPa melting between FMQ − 3 and FMQ − 1. This is consistent with fO2’s of the mantle source for mid-ocean ridge basalts (MORBs) as determined by the Fe3+ activity of peridotitic minerals and basaltic glasses. Some arc-related peridotites have slightly lower V for a given degree of melting than oceanic mantle peridotites, and can be modeled by 1.5 GPa melting at fO2’s as high as FMQ. However, the majority of arc-related peridotites have V-MgO systematics overlapping that of oceanic mantle peridotites, suggesting that although some arc mantle may melt under slightly oxidizing conditions, most arc mantle does not. The fact that thermobarometrically determined fO2’s in arc peridotites and lavas can be significantly higher than that inferred from V systematics, suggests that V retains a record of the fO2 during partial melting, whereas the activity of Fe3+ in arc peridotitic minerals and lavas reflect subsequent metasomatic overprints and magmatic differentiation/emplacement processes, respectively.Peridotites associated with middle to late Archean cratonic mantle are characterized by highly variable V-MgO systematics. Tanzanian cratonic peridotites have V systematics indistinguishable from post-Archean oceanic mantle and can be modeled by 3 GPa partial melting at ∼FMQ − 3. In contrast, many South African and Siberian cratonic peridotites have much lower V contents for a given degree of melting, suggesting at first glance that partial melting occurred at high fO2’s. More likely, however, their unusually low V contents for a given degree of melting may be artifacts of excess orthopyroxene, a feature that pervades many South African and Siberian peridotites but not the Tanzanian peridotites. This is indicated by the fact that the V contents of South African and Siberian peridotites are correlated with increases in SiO2 content, generating data arrays that cannot be modeled by partial melting but can instead be generated by the addition of orthopyroxene through processes unrelated to primary melt depletion. Correction for orthopyroxene addition suggests that the South African and Siberian peridotites have V-MgO systematics similar to those of Tanzanian peridotites. Thus, if the Tanzanian peridotites represent the original partial melting residues, and if the South African and Siberian peridotites have been modified by orthopyroxene addition, then there is no indication that Archean cratonic mantle formed under fO2’s significantly greater than that of modern oceanic mantle. Instead, the fO2’s inferred from the V systematics in these three cratonic peridotite suites are within range of modern oceanic mantle. This also suggests that the transition from a highly reducing mantle in equilibrium with a metallic core to the present oxidized state must have occurred by late Archean times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号