首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seepage from a tailings dam is the major source of groundwater pollution in the Selebi-Phikwe area, where mining of sulphidic nickel–copper–cobalt ore started in 1973 and will continue until 2014. The seepage water has a pH in the range of 1.7–2.8 and is strongly enriched in SO4 2− (5,680 g/L) and heavy metals (6,230 μg/L Ni, 1,860 μg/L Cu and 410 μg/L Co). The fracture aquifer affected by pollution from the dam exhibits a remarkable capacity of heavy-metal sorption. Most of the Ni, Cu and Co is scavenged at less than 500 m distance downgradient from the polluting source, whereas SO4 2− is not immobilized significantly. The heavy-metal sorption process is assumed to be due to surface complexation, which is supported by a relatively high groundwater pH (in the range of 6.2–7.8 at >200 m distance from the tailings dam). The objective of this study is to demonstrate that the sorption process can be incorporated into a realistic three-dimensional reactive-transport groundwater model that is implicitly charge-balanced. The simulations are performed with the PHAST1.2 program, which is based on the HST3D flow and transport code and the hydrochemical PHREEQC2.12 code.  相似文献   

2.
Hand-pump wells in the Tarkwa gold mining district and the geologically similar Bui area were chemically analysed and compared in an effort to determine whether groundwaters in the Tarkwa area have been affected by mining. Significant chemical differences attributed to mine water discharges have been observed in streams in the Tarkwa area. Groundwater chemistry from hand-pump wells in Tarkwa and Bui areas reveal similar hydrochemical facies, predominantly Ca–Na–Mg–HCO3–Cl. However, except for SO42–, ionic concentrations of groundwaters from Bui are greater than those from Tarkwa probably due to differences in (1) water availability during sedimentation (2) water-rock interactions and/or residence times for water. No demonstrable impact of mining on groundwaters from hand-pumped wells in the Tarkwa area has been noted. Hydrogeological inference suggests that the main streams which receive mine water discharges are both gaining and are groundwater divides. The overwhelming majority of population centres and mining operations are located on opposite sides of these groundwater divides, therefore, it is unlikely aquifers tapped for drinking by these communities would be affected by mining.  相似文献   

3.
The assessment of groundwater quality and its environmental implications in the region of the abandoned Cunha Baixa uranium mine (Central Portugal) was carried out from 1995 to 2004. Shallow groundwater is the major water supply source for irrigation in the neighbourhood of Cunha Baixa village. Water samples from the mine site as well as from private wells were collected in order to identify the mining impact on water composition, the extent of contamination and the seasonal and temporal groundwater quality variations. Some of the sampled private wells contain waters having low pH (<4.5–5) and high values of EC, TDS, SO4, F, Ca, Mg, Al, Mn, Ni, U, Zn and 226Ra. The wells located through the ESE–WSE groundwater flow path (1 km down gradient of the mining site) display the most contaminated water. In the summer season, the levels of SO4, Al, Mn, and U were 50–120 times higher than those registered for uncontaminated waters and exceeded the quality limits for irrigation purposes, presenting soil degradation risks. Nevertheless, this study indicates that groundwater contamination suffered a small decrease from 1999 to 2004. The bioaccumulation of toxic metals such as Al, Mn, and U within the food chain may cause a serious health hazard to the Cunha Baixa village inhabitants.  相似文献   

4.
T. Praharaj  D. Fortin   《Applied Geochemistry》2008,23(12):3728-3740
Several studies have shown that SO4-reducing bacteria (SRB) are active in acidic sulfide-rich mine tailings and sediments impacted by mining activities. SRB activity in acidic tailings has been shown to vary with seasons as a result of fluctuating in situ physico-chemical conditions. Iron-reducing bacteria (FeRB) also play an important role in Fe cycling in sediments impacted by mining activities, but their activity in mine tailings is poorly understood, despite the fact that geochemical evidence indicates that they might be active. The present study was undertaken to assess the seasonal changes in SRB and FeRB abundance and activity in alkaline Pb–Zn mine tailings (Calumet tailings) located near Ottawa, ON, Canada. Results showed that FeRB and SRB populations were present throughout the year at two different sampling sites at the Calumet tailings, but SO4 reduction rates (SRR) were lower in the spring than in the summer, indicating that SRB activity was affected by organic C availability and/or temperature. Surface agricultural runoff at one site provided ample nutrients and organic C to the tailings, but SRB activity remained lower than the site not impacted by nutrient runoff, suggesting that the type of organic C was different between the two sites and that less labile organic substrates were available to SRB in the organic-rich site. High SRB activity in the site containing low organic C inhibited the abundance of FeRB, and possibly their activity, as a result of abiotic reduction of Fe(III)-rich minerals by biogenic sulfides, which lowered the pool of final electron acceptors. The abiotic reduction pathway was consistent with the porewater data which showed that sulfide was consumed and SO4 produced, along with Fe(II). These results show a strong interdependence between SRB and FeRB activity, as observed in other environments, such as saltmarsh sediments. Low temperature did not appear to hinder FeRB abundance in alkaline tailings. Finally, despite evidence that SRB populations were active at both sites, the |S isotopic composition of the AVS and CRS fractions were not representative of biogenic sulfides, indicating that the overall S-isotope signature of mine tailings is more representative of abiotic sulfides originating from the ore body.  相似文献   

5.
With depleted coal resources or deteriorating mining geological conditions, some coal mines have been abandoned in the Fengfeng mining district, China. Water that accumulates in an abandoned underground mine (goaf water) may be a hazard to neighboring mines and impact the groundwater environment. Groundwater samples at three abandoned mines (Yi, Er and Quantou mines) in the Fengfeng mining district and the underlying Ordovician limestone aquifer were collected to characterize their chemical and isotopic compositions and identify the sources of the mine water. The water was HCO3·SO4-Ca·Mg type in Er mine and the auxiliary shaft of Yi mine, and HCO3·SO4-Na type in the main shaft of Quantou mine. The isotopic compositions (δD and δ18O) of water in the three abandoned mines were close to that of Ordovician limestone groundwater. Faults in the abandoned mines were developmental, possibly facilitating inflows of groundwater from the underlying Ordovician limestone aquifers into the coal mines. Although the Sr2+ concentrations differed considerably, the ratios of Sr2+/Ca2+ and 87Sr/86Sr and the 34S content of SO42? were similar for all three mine waters and Ordovician limestone groundwater, indicating that a close hydraulic connection may exist. Geochemical and isotopic indicators suggest that (1) the mine waters may originate mainly from the Ordovician limestone groundwater inflows, and (2) the upward hydraulic gradient in the limestone aquifer may prevent its contamination by the overlying abandoned mine water. The results of this study could be useful for water resources management in this area and other similar mining areas.  相似文献   

6.
Hydrogeochemical surveys were carried out in SW Sardinia (Italy) to investigate the impact of past mining activities on the quality of groundwater. The chemistry of waters from flooded galleries, adits and dumps has been compared with that of springs and wells in the same area at sites relatively far from any mine legacy. A feature, common to all waters, is the circumneutral pH, since the carbonate formations in the area neutralise the acidity produced by the oxidation of Fe-bearing sulphide minerals in the mine impacted water. However, groundwater interacting with mine workings is degraded in quality; it shows high dissolved SO4, Zn, Cd and Pb contents. In some cases groundwater exceeds the limit established by the guidelines of the World Health Organization for Pb content in drinking water, so that groundwater is mixed before entering the local aqueducts. Results from this study suggest that more attention needs to be paid to the impact on the streams from contaminated water flowing out from some mine areas because during the dry season these streams are only fed by mine groundwater. We recommend focusing efforts to reduce the chemical contamination prior to discharge.  相似文献   

7.
《Applied Geochemistry》2000,15(9):1383-1397
Water pollution arising from base metal sulphide mines is problematic in many countries, yet the hydrogeology of the subsurface contaminant sources is rarely well-characterized. Drainage water pumped from an active F–Pb mine in northern England has unusual chemistry (alkaline with up to 40 mg.l−1 Zn) which profoundly impacts the ecology of the receiving watercourse. Detailed in-mine surveys of the quantity and quality of all ground water inflows to the mine were made. These revealed major, temporally persistent heterogeneities in ground water quality, with three broad types of water identified as being associated with distinct hydrostratigraphic units. Type I waters (associated with the Firestone Sill aquifer) are cool (<10°C), Ca–HCO3–SO4 waters, moderately mineralized (specific electrical conductance (SEC)≤410 μS.cm−1) with <4 mg.l−1 Zn. Type II waters (associated with the Great Limestone aquifer) are warmer (≈15°C), of Ca–SO4 facies, highly mineralized (SEC≤1500 μS.cm−1) with ≤40 mg.l−1 Zn. Type III waters (in the deepest workings) are tepid (>18°C), of Ca–HCO3–SO4 facies, intermediately mineralized (SEC≤900 μS.cm−1) with ≤13 mg.l−1 Zn, and with significant Fe (≤12 mg.l−1) and Pb (≤8 mg/l). Monotonic increases in temperature and Cl concentration with depth contrast with peaks in total mineralization, SO4 and Zn at medium depth (in Type II waters). Sulphate, Pb and Zn are apparently sourced via oxidation of galena and sphalerite, which would release each metal in stoichiometric equality with SO4. However, molal SO4 concentrations typically exceed those of Pb and Zn by 2–3 orders of magnitude, which mineral equilibria suggest is due to precipitation of carbonate “sinks” for these metals. Contaminant loading budgets demonstrate that, although Type II waters amount to only 25% of the total ground water inflow to the mine, they account for almost 60% of the total Zn loading. This observation has important management implications for both the operational and post-abandonment phases of the mine life cycle.  相似文献   

8.
The San Pedro River (SPR) is located in northern Sonora (Mexico) and southeastern Arizona (USA). SPR is a transboundary river that develops along the Sonora (Mexico) and Arizona (USA) border, and is considered the main source of water for a variety of users (human settlements, agriculture, livestock, and industry). The SPR originates in the historic Cananea mining area, which hosts some of the most important copper mineralizations in Mexico. Acid mine drainage derived from mine tailings is currently reaching a tributary of the SPR near Cananea City, resulting in the contamination of the SPR with heavy metals and sulfates in water and sediments. This study documents the accumulation and distribution of heavy metals in surface water along a segment of the SPR from 1993 to 2005. Total concentrations of Cd, Cu, Fe, Mn, Pb, and Zn in surface waters are above maximum permissible levels in sampling sites near mine tailing deposits. Nevertheless, a significant decrease in the Fe and SO4 2− in surface water (SO4 2−: 7,180–460.39 mg/L; Fe: 1,600–9.51 mg/L) as well as a gradual decrease in the heavy and transition metal content were observed during the period from 1994 to 2005. Approximately 2.3 km downstream of the mine tailings, the heavy metal content of the water drops quickly following an increase in pH values due to the discharging of wastewater into the river. The attenuation of the heavy metal content in surface waters is related to stream sediment precipitation (accompanied by metal coprecipitation and sorption) and water dilution. Determining the heavy metal concentration led to the conclusion that the Cananea mining area and the San Pedro River are ecosystems that are impacted by the mining industry and by untreated wastewater discharges arising from the city of Cananea (Sonora, Mexico).  相似文献   

9.
《Applied Geochemistry》1997,12(4):507-516
Concentrations of electron acceptors, electron donors, and H2 in groundwater were measured to determine the distribution of terminal electron-accepting processes (TEAPs) in an alluvial aquifer having multiple contaminant sources. Upgradient contaminant sources included two separate hydrocarbon point sources, one of which contained the fuel oxygenate methyl tertbutyl ether (MTBE). Infiltrating river water was a source of dissolved NO3, SO4 and organic carbon (DOC) to the downgradient part of the aquifer. Groundwater downgradient from the MTBE source had larger concentrations of electron acceptors (dissolved O2 and SO4) and smaller concentrations of TEAP end products (dissolved inorganic C, Fe2+ and CH4) than groundwater downgradient from the other hydrocarbon source, suggesting that MTBE was not as suitable for supporting TEAPs as the other hydrocarbons. Measurements of dissolved H2 indicated that SO4 reduction predominated in the aquifer during a period of high water levels in the aquifer and river. The predominant TEAP shifted to Fe3+ reduction in upgradient areas after water levels receded but remained SO4 reducing downgradient near the river. This distribution of TEAPs is the opposite of what is commonly observed in aquifers having a single contaminant point source and probably reflects the input of DOC and SO4 to the aquifer from the river. Results of this study indicate that the distribution of TEAPs in aquifers having multiple contaminant sources depends on the composition and location of the contaminants and on the availability of electron acceptors.  相似文献   

10.
Environmental geochemistry of the Guanajuato Mining District, Mexico   总被引:1,自引:0,他引:1  
The Guanajuato Mining District, once one of the major silver producers in the world, has been exploited for silver and gold from low-sulfidation quartz- and calcite-rich epithermal veins since 1548. Currently, there are some 150 million tonnes of low-grade ore piles and mine-waste material (mostly tailings) piles, covering a surface area of 15 to 20 km2 scattered in a 100-km2 region around the city of Guanajuato. Most of the historic tailings piles were not deposited as formal tailings impoundments. They were deposited as simple valley-filling piles without concern for environmental issues. Most of those historical tailings piles are without any vegetation cover and undergo strong eolian and hydrologic erosion, besides the natural leaching during the rainy season (which can bring strong thunderstorms and flash flows). There is public concern about possible contamination of the local aquifer with heavy metals (Fe, Mn, Zn, As and Se) derived from the mining activities.Experimental and field data from this research provide strong geochemical evidence that most of the mine-waste materials derived from the exploitation of the epithermal veins of the region have very low potential for generation of acid mine drainage due to the high carbonate/sulfide ratio (12:1), and very low potential for leaching of heavy metals into the groundwater system. Furthermore, geochemical evidence (experimental and modeled) indicates that natural processes, like metal adsorption onto Fe-oxy-hydroxides surfaces, control the mobility of dissolved metals. Stable isotope data from surface water, groundwater wells (150-m depth) and mine-water (300- to 500-m depth) define an evaporation line (δD=5.93 δ18O=13.04), indicating some deep infiltration through a highly anisotropic aquifer with both evaporated water (from the surface reservoirs) and meteoric water (not evaporated). Zinc concentrations in groundwater (0.03 to 0.5 ppm) of the alluvial aquifer, some 15 km from the mineralized zone, are generally higher than Zn concentrations in experimental tailings leachates that average less than 0.1 ppm. Groundwater travel time from the mineralized area to the alluvial valley is calculated to range from 50 to several hundred years. Thus, although there has been enough time for Zn sourced from the tailings to reach the valley, Zn concentrations in valley groundwater could be due to natural dissolution processes in the deep portions of the epithermal veins.  相似文献   

11.
Phosphate mining in southeastern Idaho has historically resulted in the release of dissolved metals and inorganics to groundwater and surface water, primarily due to leachate from waste rock in backfilled pits and overburden storage piles. Selenium (Se) is of particular concern due to its high concentration in leachate and its limited attenuation downgradient of source zones under oxic conditions. Assessments of potential groundwater/surface water impacts from waste rock typically involve laboratory characterization using saturated and unsaturated flow columns packed with waste rock. In this study, we compare the results of saturated and unsaturated column tests with groundwater quality data from the Mountain Fuel, Champ, South and Central Rasmussen Ridge Area (SCRRA), Smoky Canyon, Ballard, Henry, and Enoch Valley Mines, to understand the release and attenuation of Se in different geochemical environments. Column studies and field results demonstrate that the ratio of aqueous Se to aqueous sulfate (Se:SO4 ratio) is a useful metric for understanding Se release and attenuation, where the extent of sulfate reduction is much less than Se reduction. Comparison of dissolved Se and sulfate results suggests that the net leachability of Se from unsaturated waste rock is variable. Overall, Se concentrations in groundwater directly beneath waste rock dumps is not as high as would be predicted from unsaturated columns. Lower Se:SO4 ratios are observed immediately beneath waste rock dumps and backfilled pits relative to areas receiving shallow waste rock runoff. It is hypothesized that Se released in the oxic upper portions of the waste rock is subsequently attenuated via reductive precipitation at depth in unsaturated, low-oxygen portions of the waste rock. This highlights an important mechanism by which Se may be naturally attenuated within waste rock piles prior to discharge to groundwater and surface water. These results have important implications for mining practices in the region. A better understanding of Se dynamics can help drive waste rock management during active mining and capping/water management options during post-mining reclamation.  相似文献   

12.
Lack of proper reclamation strategy and indiscriminate mining of various economic resources, particularly coal from Permo-carboniferous Gondwana coalfields affects the groundwater quality of the concerned regions. Leaching from mine-tailings along with seasonal fluctuation of water table caused a significant change in groundwater geochemistry of Raniganj coalfield area. Gondwana sequences, developed in intracratonic rift basin, are characterized by numerous longitudinal and cross faults. This results in the formation of many small aquifer systems which may be interconnected laterally as well as vertically providing the conduit for homogenization of aquifers. Although the predominance of major cations (Ca>Na>Mg>K) and anions (HCO3>Cl>SO4>NO3) remain same irrespective of season, the dominance of Na and SO4 have significantly increased in post-monsoon season. The types of groundwater in pre-monsoon and postmonsoon seasons are CaMgCl and CaHCO3 respectively. Leaching of SO4 from surface sources (mine tailings) has increased TDS in post-monsoon. Base exchange (direct and reverse) reactions have taken place between aquifer materials and groundwater.  相似文献   

13.
The Wilcox aquifer is a major groundwater resource in the northern Gulf Coastal Plain (lower Mississippi Valley) of the USA, yet the processes controlling water chemistry in this clastic aquifer have received relatively little attention. The current study combines analyses of solutes and stable isotopes in groundwater, petrography of core samples, and geochemical modeling to identify plausible reactions along a regional flow path ~300 km long. The hydrochemical facies evolves from Ca-HCO3 upgradient to Na-HCO3 downgradient, with a sequential zonation of terminal electron-accepting processes from Fe(III) reduction through SO4 2? reduction to methanogenesis. In particular, decreasing SO4 2? and increasing δ34S of SO4 2? along the flow path, as well as observations of authigenic pyrite in core samples, provide evidence of SO4 2? reduction. Values of δ13C in groundwater suggest that dissolved inorganic carbon is contributed both by oxidation of sedimentary organic matter and calcite dissolution. Inverse modeling identified multiple plausible sets of reactions between sampled wells, which typically involved cation exchange, pyrite precipitation, CH2O oxidation, and dissolution of amorphous Fe(OH)3, calcite, or siderite. These reactions are consistent with processes identified in previous studies of Atlantic Coastal Plain aquifers. Contrasts in groundwater chemistry between the Wilcox and the underlying McNairy and overlying Claiborne aquifers indicate that confining units are relatively effective in limiting cross-formational flow, but localized cross-formational mixing could occur via fault zones. Consequently, increased pumping in the vicinity of fault zones could facilitate upward movement of saline water into the Wilcox.  相似文献   

14.
《Applied Geochemistry》2002,17(8):1105-1114
Tailings from the Macraes Au mine cyanidation process are stored in an impoundment about 0.6 km2 and 80 m deep whose pH is maintained near 8 by the neutralizing capacity of the gangue minerals. The tailings are sandy (>50 μm particles), have a hydraulic conductivity of about 10−2 m/day, and contain 0.1–1.0 wt.% S and 0.1–1.5 wt.% graphitic C from the primary deposit. Concentrations of As in the pore water of the mixed tailings, which are a combination of various tailings types, range from 0.1 to 20 ppm, HCO3- is 100 to 200 ppm, and dissolved SO4 is 100–1700 ppm. The mixed tailings will be stored in this impoundment in perpetuity after mining ceases. Confidence in the long-term pH stability of these tailings can be gained from examination of mineralogically and chemically similar geological analogues in the immediate vicinity. A sequence, typically about 5 m thick, of sands and gravels derived from the Macraes mineralized zone 12–28 ka ago contains rounded detrital sulfide mineral grains which are unoxidized despite their close proximity to the surface and the occasional incursion of oxygenated waters. These sediments have a hydraulic conductivity of about 10−4 m/day. Saturating water pH is currently 7–8. Sands with 0.2–0.8 wt.% organic C host SO4-reducing bacteria (SRB), and local cementation by authigenic framboidal pyrite has occurred. SRB were found in water-saturated sediments with decreased hydraulic conductivity and alkaline and anoxic conditions. These bacteria are involved in the formation of authigenic framboidal pyrite, reducing the cycling of dissolved Fe in the sediments. Carbon is not a limiting factor in this process as organic matter is present in the sandstone and ground water contains up to 180 ppm HCO3-. Comparison of the 28 ka old sediments with the modern tailings suggests that the chemical behaviour of the two will be similar, possibly with the crystallization of authigenic pyrite in the tailings over the long term. As long as the present slightly anoxic and circumneutral pH environmental conditions are maintained in the mixed tailings impoundment, sulfide decomposition and acidification are unlikely.  相似文献   

15.
The Jharia coalfield is the most important and active minig region; it experiences groundwater inflow and affects groundwater levels in overlying aquifers, and it provides the basis for a conceptual model of the hydrogeological impacts of coal mining. The several sandstone aquifers of the overburden are separated by aquitards that limit vertical hydraulic connection, but the inflow responds to seasonal events and seems to be linked to shallow groundwater behavior. The mine drainage behavior suggests a hydraulic connection between the mine and the shallower groundwater system. The greatest declines are directly above the panels, with an immediate response to coal mining. The inflow is localized by natural and induced fracture zones and is mostly into recent workings. The groundwater behavior is controlled by hydraulic property changes caused by mine-induced fracturing. The hydrological and chemical qualities of the shallow groundwater regime in 13 mining collieries in Mukunda Block have been investigated. Water samples collected from 30 shallow monitoring dug wells were chosen for the study. Rainfall, runoff, and infiltration rates have been calculated in the area. The water-quality plottings were used to interpret the distribution of individual chemical parameters and in predicting the water quality. The underground mine water has been classified as: (1) unconfined groundwater in the calcareous siltstone and sandstone—its composition is Na, Ca, SO4 and Na-MgHCO3 with moderate total dissolved solids (TDS) 200–1480 ppm; (2) the deep groundwater originating from the coal seams and associated sediments in the near-surface environments—this is a Na-HCO3 water with higher TDS; and (3) spoil dump waters are essentially Na-HCO3 with high TDS. This article presents some hydrologic results and conclusions relating to the hydrogeological and environmental impacts of the coal mining in the Jharia coalfield.  相似文献   

16.
On 25 April 1998 the tailings dam of the Aznalcóllar mine burst, a great quantity of pyrite waste sludge and acid water was spilled reaching the vicinity of the Doñana National Park. In surface and ground water samples taken a week after dam breaking, metals, trace elements and Pb isotopic ratios (206Pb/207Pb and 208Pb/206Pb) were analysed. In September 1998 a second sampling survey was carried out. The surface waters have a similar isotopic composition as the lead contained in the pyrite from the Aznalcóllar mine. The polluted groundwater of the Guadiamar aquifer also shows the influence of the mining origin of the lead. Lead isotope ratios (206Pb/207Pb and 208Pb/206Pb) in the groundwater of the Almonte-Marismas are very low and they differ clearly from the rest of groundwater samples. A further group of wells has a lead isotope composition intermediate between the Aznalcóllar mine and the atmospheric aerosols of the Iberian Peninsula.  相似文献   

17.
Monitoring of municipal wells near the town of Sidney and domestic wells near Oshkosh in Nebraska's Panhandle indicated the nitrate-nitrogen (NO3-N) levels were increasing and exceeded the maximum contaminant level of 10 mg/l NO3-N in several wells. Both areas are located in narrow stream valleys that are characterized by well-drained soils, highly permeable intermediate vadose zones, shallow depths to groundwater, and intensive irrigated corn production. Both areas also have a large confined cattle feeding operation near the suspected contamination and potentially could be contaminated by more than on nitrate source.At Sidney NO3-N concentrations were measured in 13 monitoring wells installed along an east-west transect im the direction of groundwater flow, 26 private wells, and eight municipal wells. Nitrate-nitrogen concentrations were homogeneous beneath a 5 km by 1.2 km area and averaged 11.3 ± 1.8 mg/l NO3-N. The δ15N-NO3 values in the monitoring and municipal wells had a narrow range from +5.8 to +8.8%. The isotopic ratios are indicative of a mixed source of nitrate contamination, which originates from agronomic (commercial fertilizer N and mineralized N) N and animal waste. Both commercial fertilizer N and animal wastes are applied to the irrigated fields.Nitrate-nitrogen concentrations in two multilevel samplers installed downgradient from irrigated cornfields at the Oshkosh site averaged 20.1 ± 13.3 mg/l NO3-N and 37.3 ± 8.2 mg/l NO3-N. The δ15N-NO3 values spanned a narrow range from +3.5 to +5.9% and averaged +4.0 ± 0.5% and +5.0 ± 0.6%. These low values are indicative of leachates from commercial fertilizer applied to the irrigated fields.  相似文献   

18.
Hydraulic fracturing of shale deposits has greatly increased the productivity of the natural gas industry by allowing it to exploit previously inaccessible reservoirs. Previous research has demonstrated that this practice has the potential to contaminate shallow aquifers with methane (CH4) from deeper formations. This study compares concentrations and isotopic compositions of CH4 sampled from domestic groundwater wells in Letcher County, Eastern Kentucky in order to characterize its occurrence and origins in relation to both neighboring hydraulically fractured natural gas wells and surface coal mines. The studied groundwater showed concentrations of CH4 ranging from 0.05 mg/L to 10 mg/L, thus, no immediate remediation is required. The δ13C values of CH4 ranged from −66‰ to −16‰, and δ2H values ranged from −286‰ to −86‰, suggesting an immature thermogenic and mixed biogenic/thermogenic origin. The occurrence of CH4 was not correlated with proximity to hydraulically fractured natural gas wells. Generally, CH4 occurrence corresponded with groundwater abundant in Na+, Cl, and HCO3, and with low concentrations of SO42−. The CH4 and SO42−concentrations were best predicted by the oxidation/reduction potential of the studied groundwater. CH4 was abundant in more reducing waters, and SO42− was abundant in more oxidizing waters. Additionally, groundwater in greater proximity to surface mining was more likely to be oxidized. This, in turn, might have increased the likelihood of CH4 oxidation in shallow groundwater.  相似文献   

19.
《Applied Geochemistry》2001,16(11-12):1369-1375
The heavy metal contamination of soils and waters by metalliferous mining activities in an area of Korea was studied. In the study area of the Imcheon Au–Ag mine, soils and waters were sampled and analyzed using AAS for Cd, Cu, Pb and Zn. Analysis of HCO3, F, NO3 and SO42− in water samples was also undertaken by ion chromatography. Elevated concentrations of the metals were found in tailings. The maximum contents in the tailings were 9.4, 229, 6160 and 1640 mg/kg extracted by aqua regia and 1.35, 26.4, 70.3 and 410 mg/kg extracted by 0.1 N HCl solution for Cd, Cu, Pb and Zn, respectively. These metals are continuously dispersed downstream and downslope from the tailings by clastic movement through wind and water. Because of the existence of sulfides in the tailings, a water sample taken on the tailings site was very acidic with a pH of 2.2, with high total dissolved solids (TDS) of 1845 mg/l and electric conductivity (EC) of 3820 μS/cm. This sample also contained up to 0.27, 1.90, 2.80, 53.4, 4,700 mg/l of Cd, Cu, Pb, Zn and SO42−, respectively. TDS, EC and concentrations of metals in waters decreased with distance from the tailings. The total amount of pulverized limestone needed for neutralizing the acid tailings was estimated to be 46 metric tons, assuming its volume of 45,000 m3 and its bulk density of 1855 kg/m3.  相似文献   

20.
The present study assesses the impact of coal mining on surface and groundwater resources of Korba Coalfield, Central India. Accordingly, water samples collected from various sources are analyzed for major ions, trace elements, and other mine effluent parameters. Results show that the groundwater samples are slightly acidic, whereas river water and mine water samples are mildly alkaline. Elevated concentrations of Ca2+, Na+, HCO3 ?, and SO4 2? alongside the molar ratios (Ca2++Mg2+)/(SO4 2?+HCO3 ?) <1 and Na+/Cl? >1 suggest that silicate weathering (water-rock interaction) coupled with ion exchange are dominant solute acquisition processes controlling the chemistry of groundwater in the study area. The overall hydrogeochemistry of the area is dominated by two major hydrogeochemical facies (i.e., Ca–Cl–SO4 and Ca–HCO3). Analysis of groundwater and river water quality index (GRWQI) elucidates that majority (82%) of samples are of “excellent” to “good” category, and the remaining 12% are of “poor” quality. Similarly, the effluent water quality index (EWQI) indicates that 6 out of 8 samples belong to excellent quality. Concentration of trace element constituents such as As, Zn, Cu, Cr, and Cd is found to be well within the stipulated limits for potable use, except for Fe, Mn, and Pb. Suitability of water samples for irrigation purpose, established using standard tools like Wilcox and USSL diagrams, reveal “excellent to permissible” category for majority of the samples. The present study also substantiates the effectiveness of the measures implemented for the treatment of mine effluent water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号