首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
We quantified soil nutrients and biological crust cover (bryophytes and lichens) under the canopies of three species of Mojave Desert shrubs and in interspaces between shrubs at three elevations to determine the effects of shrub species, soil crust, and elevation on islands of soil fertility. Means of pH, organic matter, total Kjeldahl nitrogen, nitrogen mineralization, and gravimetric soil moisture are significantly greater in soils under Ambrosia dumosa (Gray) Payne, Larrea tridentata Cov., and Coleogyne ramosissima Torr. than soils from adjacent interspace microhabitats. Although soil moisture and soil organic matter increase by a factor of 1.5 from the low elevation to the high elevation site, the ratio of shrub to interspace concentrations, or the difference in mean soil variables between shrubs and interspaces, is effectively constant and independent of elevation. Total bryophyte and lichen cover is relatively low (24.5%), however, there are 11 species of bryophytes and two species of lichens distributed across three elevations with the highest species richness and cover at the low-elevation site. Bryophyte and lichen cover is correlated with silt but is not related, consistently, to soil nutrients. Overall, the balance of processes controlling spatial aggregation of soil nutrients under shrubs is remarkably insensitive to potential differences in organic inputs among elevations, shrub species, and soil crust surfaces.  相似文献   

2.
With the aim to seek evidences on the possible trade off between hydraulic efficiency and hydraulic safety, from both an evolutionary and an acclimation point of view, we compared root xylem anatomy and derived functional properties for seedlings of six Patagonian shrub species grown in a greenhouse under two levels of water availability (control and drought). Root central cylinder area, vessel diameter (b) and double-wall thickness (t) were measured; from these data, the sum of vessel radii to the fourth power and wall strength [(t/b)2] were calculated as indicators of hydraulic efficiency and safety respectively. Across species, we observed only a weak negative correlation between hydraulic efficiency and hydraulic safety. Within species, Lycium chilense, the species with the most mesic leaves of the group, showed significant acclimation to drought for both functional attributes, lowering efficiency and increasing safety by developing a higher proportion of small and more resistant xylem vessels.  相似文献   

3.
On a local scale, topography influences microclimate, vegetation structure and the morpho-physiological attributes of plants. We studied the effects of microclimatic differences between NE- and SW-facing slopes on the water relations and hydraulic properties of two dominant shrubs of the Patagonian steppe in Argentina (Retanilla patagonica and Colliguaja integerrima). The NE-facing slope had higher irradiance and air saturation deficits and lower soil water availability and wind speed than the SW-facing slope. Predawn and midday ΨL and osmotic potentials were significantly lower in shrubs on the NE-facing slope. Osmotic adjustment and more elastic cell walls helped the plants to cope with a more xeric environment on NE-facing slope. Higher water deficits on NE-facing slope were partially compensated by a higher leaf and stem water storage. While stem hydraulic efficiency did not vary between slopes, leaf hydraulic conductance was between 40% and 300% higher on the NE-facing slope. Changes observed in leaf size and in SLA were consistent with responses to mechanical forces of wind (smaller and scleromorphic leaves on SW-facing slope). Morpho-physiological adjustments observed at a short spatial scale allow maintenance of midday ΨL above the turgor loss point and demonstrate that leaves are more responsive to microclimatic selective pressures than stems.  相似文献   

4.
The success of riparian restoration projects in the arid southwestern U.S. is often measured in terms of vegetation characteristics such as growth, cover, and structure. Among low-elevation riverine environments within the Colorado River watershed, restoration is typically conducted to improve degraded habitats for birds of conservation concern by replacing the exotic tamarisk (Tamarix ramosissima) with native cottonwoods (Populus spp.) and willows (Salix spp.). The working assumption for many restoration practitioners is that replacing exotic plants with native plants will improve habitat quality and will, therefore, benefit birds. Based on data collected at exotic and restored (i.e., native) sites along the Las Vegas Wash, Nevada, not all birds benefit from restoration. Broad measures of community benefit, including benefits to birds of conservation concern and riparian obligate/dependent birds, were not detected. There were, however, some species-specific benefits. Some environmental variables that were associated with exotic and native sites were significant in explaining the composition of the bird community. For example, the richness of forbs and grass-like plants (a proxy of soil moisture), invertebrate mass, and percent shade (a proxy for canopy characteristics) were important. Considering our results and depending on restoration goals, tamarisk replacement projects may not inherently provide benefits to birds.  相似文献   

5.
Forests are highly susceptible to dieback under ongoing climate warming. In degraded forests, dead standing trees, or snags, have become such prominent features that they should be taken into account when setting management interventions. This study investigated (1) the extent and spatial pattern of standing dead stems of Juniperus procera and Olea europaea subsp. cuspidata along an elevational gradient, and (2) the effect of dieback on forest stand structure. We quantified abundance, size, and spatial pattern of tree dieback in 57 plots (50 m × 50 m) established at 100 m intervals along five transects. The snag density and basal area (mean ± SE) of the two species combined were 147 ± 23 stems ha−1 and 5.35 ± 0.81 m2 ha−1, respectively. The percentages of snags were extremely high for both J. procera (57 ± 7%) and O. europaea subsp. cuspidata (60 ± 5%), but showed a decreasing trend with increasing elevation suggesting that restoration is even more urgent at the lower elevations. Snags of the two species accounted for 31 and 45% of total stand density and basal area, respectively. Living stems exhibited truncated inverse-J-shaped diameter and height class distributions, indicating serious regeneration problems of these foundation species in the study area. In addition to direct interventions to assist recruitment of climax tree species, sites with high dieback would probably benefit from snag reduction to prevent fire incidents in the remaining dry Afromontane forests in northern Ethiopia.  相似文献   

6.
Patagonia grasslands are subjected to two main disturbances, fire and grazing, but little information is available about its effects on vegetation. We studied post-fire survival and resprouting ability of two dominant grass species, Stipa speciosa and Festuca pallescens, for four years; evaluated the effect of early post-fire defoliation on both species; and tested whether competition is important in post-fire recovery in San Ramón Ranch, NW Patagonia (Argentina). To simulate grazing, a clipping treatment was applied at the beginning and end of growing seasons. Survival rates were high (>60%) and, after three years, biomass of both species in the burned area was similar to the unburned area. Competition seems to play an important role in the early post-fire recovery of both species, particularly in the case of F. pallescens that increased 87% the biomass production without competition. Fire may improve forage quality by eliminating the standing dead material, but early post-fire grazing might endanger the persistence of F. pallescens. We suggest requiring a resting period before livestock introduction and controlling grazing intensity.  相似文献   

7.
Lichen-dominated soil crusts as arthropod habitat in warm deserts   总被引:2,自引:0,他引:2  
Soil crust lichens can be the dominant vegetation in arid lands, yet their importance as habitat to secondary producers is relatively unknown. This study examines the distribution of arthropod communities in the northern Namib Desert to evaluate whether a lichen-rich area is more or less productive than adjacent habitats in terms of the consumers each supports. Arthropods are diverse and highly endemic in the Namib Desert and lichens dominate this desert's extensive gravel plains. We sampled lichen-rich, dwarf shrub, and unvegetated sites and found distinct arthropod assemblages in the lichen-dominated sites, including species unique to lichen sites. Arthropod assemblages in two of the lichen sites were similar to those found in the dwarf shrub site. In a canonical correspondence analysis, crustose lichens and overall lichen cover were key in driving the variance in arthropod assemblages within the lichen sites. Furthermore, lichen morphotypes, overall lichen cover and species richness, were significantly correlated with the representation of arthropod subgroups and arthropod species richness. These findings provide evidence that lichen-dominated soil crusts in the Namib Desert are important supporters of secondary production, warranting more in-depth studies into the ecology and conservation of this lichen-rich habitat in warm deserts.  相似文献   

8.
Many studies have focused on positive-plant interactions such as nurse plants, which provide a sheltered subcanopy environment that benefits the nursed species. Most of these studies have focused on plant distribution and association patterns, while the microclimatic benefits are often assumed. This study quantifies 5 a.m. subcanopy temperatures as well as dew points beneath a common nurse tree of the Sonoran Desert, Cercidium microphyllum (palo verde, Fabaceae). Data are collected over 35 days in the winter (January and February) at six locations (at the base of the trunk, midway to the canopy edge, canopy edge, all to the north and to the south of the base of the tree) under each of two trees, as well as a control in the open.It is warmer beneath the tree than in the open, but also, it is warmer in the interior than at the canopy edge, and warmer to the south. Furthermore, differences in temperature between the subcanopy and the open site are greater on colder nights, and less pronounced on warmer winter nights, possibly due to the effect of cloud cover which often results in warmer overnight lows. In addition, variation in 5 a.m. temperature is greatest at the canopy edge and open, and temperature varies less in the interior where temperatures are also warmer. Subcanopy cover was quantified using fish-eye imagery. Results show that there is a significant relationship between 5 a.m. temperature and overlying cover.Dew point temperatures, surprisingly, were lower under the tree than at the canopy edge and in the open. That is, it is relatively dry under the nurse. This pattern can similarly be seen by distance and direction from the base of the tree (drier in the south). This may have to do with the nurse's roots and other vegetation growing beneath the nurse's canopy that compete for water in the ground, which leaves less available water to evaporate into the subcanopy air.  相似文献   

9.
The phenology ofMedicago minimavar.minimaandErodium cicutariumwas studied at two different field sites in the Calden District (approx. 10 million ha), a temperate semi-arid phytogeographical region in central Argentina. One site had been protected from wild and domestic herbivores for the 6 previous years. The other adjacent site had been exposed to continuous grazing by cattle for several decades. A phenological key was made for each species in 1988, and this key was improved during the 1989 growing season when phenological observations were made every 1–3 weeks.The growth cycle ofM. minimaandE. cicutariumwas similar at the two studied sites. Initiation of the cycle occurred in autumn and appeared to be associated with soil water availability. Phenological patterns were very dynamic at the reproductive stage in both species. This stage started earlier and was faster inE. cicutariumthan inM. minima. The end of the growing season occurred during late spring, concomitant with high maximum air temperatures. Our results suggest that these species hasten their development when air temperature increases and soil water availability decreases. This could be an important strategy in these species which allows them to persist as seeds, and produce a new generation under favourable environmental conditions.  相似文献   

10.
The high temperatures and extended droughts that characterize habitat for desert-living reptiles may already approach their physiological tolerances and so could put them at risk due to climate change. Here I examined climate change sensitivity for desert tortoises, Gopherus agassizii, and common chuckwallas, Sauromalus ater, two large-bodied reptiles that occur across the Mojave-Sonoran Desert interface. I employed the Mahalanobis D2 statistic to model their niche spaces and then assessed climate-change sensitivity by altering climate variables along a gradient of increasing temperature and decreasing precipitation. While shifting climate variables, I held terrain and soils variables that otherwise define these species’ preferred habitat constant, providing a more realistic prediction of available niche space. Both reptiles’ modeled niches responded to climate change by shifting to higher elevations and increasingly away from their Sonoran Desert distribution. At moderate predictions of climate change (+2 °C, −50 mm precipitation) desert tortoises’ suitable habitat was reduced by nearly 88% in the Sonoran Desert portions my study area, and nearly 66% in the Mojave Desert regions. Under the same scenario chuckwallas lost nearly 92%, but increased 120% respectively. Within the context of climate change potential increases in drought frequency appear to present the greater challenge for these species.  相似文献   

11.
在西双版纳山地选取3个海拔梯度,对热带季节雨林4种主要树种进行幼苗移栽试验,观测幼树生长、死亡沿海拔梯度的变化,目的在于明确海拔变化对热带季节雨林主要树种幼苗生长、死亡的影响,热带季节雨林主要树种幼苗的生长是否在低海拔地区优于在高海拔地区.结果表明,4种幼苗对海拔变化的反应并不相同.绒毛番龙眼和云南玉蕊幼苗的生长和存活主要是受到温度的限制,随海拔的变化表现出显著的差异,这两种幼苗在低海拔上的生长显著优于在中、高海拔上,而云南肉豆蔻和小叶红光树没有表现出在低海拔上优于中、高海拔的特征,这可能是由于它们不适应强光照的生活环境而造成的.  相似文献   

12.
The distribution of plant species and relationships between species and soil factors in the east central part of Gurbantunggut Desert was studied to provide more insight into the flora and determine differences in vegetation across various parts of the desert. Two-way Cluster Analysis showed that the vegetation in the area could be divided into three groups, the first group was dominated by the shrub species, Ephedra przewalskii and the grass species, Carex physodes mainly in areas of flat grounds and gentle slopes; the second group was dominated by C. physodes, Artemisia songorica and A. xerophytica mainly on the slope of sand dunes and the third group was dominated by the shrub species, Haloxylon persicum mainly on the top of sand dunes. There was no difference in plant density between Groups 1 and 2 but there was a significant decrease in Group 3. Soil water under vegetation Group 3 was much lower than that in the other two groups at all soil depths. The EC, organic matter, total P and soluble Na, Ca and Mg varied very similarly with soil water. Canonical correspondence analysis (CCA) satisfactorily assessed the species-soil relations in the area. The distribution of plant species was strongly correlated with the soil factors of water content, organic matter, EC and nutrients. The variations in species occurrence explained by the three CCA axes were about 70%, indicating that some explanatory site variables may exist outside our studied parameters. Soil texture is suggested to be included in future studies to improve the explanation of CCA.  相似文献   

13.
Population density and species diversity of microfungal communities were investigated in the rhizosphere soil of the halophytic plant Zygophyllum qatarense inhabiting saline and nonsaline habitats of the arid desert environment of Bahrain. Unlike the nonsaline habitat which is situated in the physiographic zone of multiple escarpment and backslopes, the saline site is located in the coastal lowlands and is featured by high chloride content, electrical conductivity, total soluble salts and low organic matter. Soils of both habitats are sandy, slightly alkaline, poor in nutrient sources, low in water-holding capacity and mainly dominated by a salt-tolerant flora. Quantification of data for the recovery of fungi were based on colony identification and counts by a series of ten-fold dilutions plate method, using various natural, synthetic and selective media. A total of 2780 isolates, fluctuating between 25 and 1109 per sample, were recovered during the present study among all habitats, seasons and plant sizes. Grouping of these isolates has resulted in a maximum of 28 fungal taxa varied between 5 and 15 species, of which 24 were hyphomycetes, 3 ascomycetes and one was an unknown species. All the recorded species in this study, excluding the genus Fusarium, are newly reported from the arid terrestrial habitats of Bahrain. Of the encountered fungi,Cladosporium sphaerospermum was the most dominant and frequent genus, among all plant sizes, followed by Penicillium citrinam and Aspergillus fumigatus, a finding with consistent documented data from similar arid Sahara ecosystems. Examination of data, supported by analysis of relative density values, percentage recovery rates, polar ordination and diversity indices revealed that the nonsaline habitat during the dry period yielded the highest isolate frequency, species abundance, and diversity when compared with the saline habitat. Moreover, a progressive increase in colony occurrence and species diversity was equivalently associated with increment in plant size in the nonsaline habitat. Apparently, the vast majority (moderate to low occurrence class) of the reported species are rhizosphere indigenous saprophytic cellulose-decomposers, whilst the sparse taxa (high occurrence class), e.g. C. sphaerospermum, are regarded as thermo-osmotolerant. Comparison of species richness among samples suggests that small plants inhabiting nonsaline habitats during the wet and dry season were richest in species composition. It is proposed that inter- and intra-specific variation in fungal community between the above habitats reflect not only the influence of plant age and season but also extends to critical multi-soil edaphic and biotic factors involving essentially soil moisture, salinity and root growth dynamic and exudates.  相似文献   

14.
The pattern of carbon (C) allocation among the different pools is an important ecosystem structural feature, which can be modified as a result of changes in environmental conditions that can occur gradually (e.g., climatic change) or abruptly (e.g., management practices). This study quantified the C pools of plant biomass, litter and soil in an arid shrubland in Chile, comparing the natural condition (moderately disturbed by grazing) vs. the afforested condition (two-year-old plantation with Acacia saligna (Labill.) H.L. Wendl.), each represented by a 60 ha plot. To estimate plant biomass, allometric functions were constructed for the four dominant woody species, based on the volume according to their shape, which showed high correlation (R2 > 0.73). The soil was the largest C pool in both natural and afforested conditions (89% and 94%, respectively) and was significantly lower in the afforested than natural condition at all five soil depths. The natural condition had in total 36.5 ton (t) C ha−1 compared to 21.1 t C ha−1 in the afforested condition, mainly due to C loss during soil preparation, prior to plantation of A. saligna. These measurements serve as an important baseline to assess long-term effects of afforestation on ecosystem C pools.  相似文献   

15.
The distribution of plant species and relationships between species and soil factors in the east central part of Gurbantunggut Desert was studied to provide more insight into the flora and determine differences in vegetation across various parts of the desert. Two-way Cluster Analysis showed that the vegetation in the area could be divided into three groups, the first group was dominated by the shrub species, Ephedra przewalskii and the grass species, Carex physodes mainly in areas of flat grounds and gentle slopes; the second group was dominated by C. physodes, Artemisia songorica and A. xerophytica mainly on the slope of sand dunes and the third group was dominated by the shrub species, Haloxylon persicum mainly on the top of sand dunes. There was no difference in plant density between Groups 1 and 2 but there was a significant decrease in Group 3. Soil water under vegetation Group 3 was much lower than that in the other two groups at all soil depths. The EC, organic matter, total P and soluble Na, Ca and Mg varied very similarly with soil water. Canonical correspondence analysis(CCA) satisfactorily assessed the species-soil relations in the area. The distribution of plant species was strongly correlated with the soil factors of water content, organic matter, EC and nutrients. The variations in species occurrence explained by the three CCA axes were about 70%, indicating that some explanatory site variables may exist outside our studied parameters. Soil texture is suggested to be included in future studies to improve the explanation of CCA.  相似文献   

16.
Understanding the role competition intensity and importance play in directing vegetation dynamics is central to developing restoration strategies, especially in resource poor environments. We hypothesized 1) competition would be intense among invasive and native species, but 2) competition would be unimportant in explaining variation in target plant biomass and survivorship relative to other factors driving these variables. We performed a two year addition series field experiment to quantify competition intensity and importance. Densities of two invasive (cheatgrass and medusahead) and two native (Sandberg’s bluegrass and bluebunch wheatgrass) species were arranged in monocultures and mixtures of two, three and four species, producing varying total densities and species proportions. Multiple linear regression models predicting individual plant biomass and survivorship were developed. Based on biomass, competition intensity coefficients ranged from −0.38 to 0.63 with R2 < 0.06. All survivorship data produced poor fitting regression models (R2 < 0.05). Our results suggest neither competition intensity nor importance influenced plant dominance in resource poor environments during the two years of establishment. Land managers may be more successful at restoration of resource poor ecosystems by overcoming abiotic barriers to plant establishment rather than focusing on plant-plant interactions.  相似文献   

17.
大兴安岭北部大白山高山林线动态与气候变化的关系   总被引:3,自引:0,他引:3  
高山林线植被对气候变化十分敏感,已成为全球变化研究的热点.研究了大兴安岭北部大白山高山林线的树木生长和群落更新动态及其与气候变化、火干扰等因素的关系.结果表明,林线树木的生长对气候变化十分敏感,但其敏感性随着海拔的降低而减弱;在高海拔,林线树木的径向生长与上年生长季后期(8月)降水负相关,而与上年初秋(9月)温度正相关,这限制作用随着海拔的降低而逐渐消失;与此相反,低海拔树木生长与当年冬末春初(3月)的温度负相关,但随着海拔上升这种限制作用消失.分析结果还表明,本地区的群落更新主要受火干扰驱动,而与气候变化没有显著关系.不同树种在火灾后更新的时间存在差异,这种差异又因海拔的不同而异,反映出不同树种的更新策略及对环境变化适应能力的差异.大兴安岭北部的高山林线在树木生长对气候变化的敏感性、与气候因子的关系及群落更新动态等方面均与干旱区林线有明显的差异,这些差异与气候条件、树种、更新驱动力等方面的不同有密切的关系.  相似文献   

18.
Interrelated, biotic (flora and fauna) and abiotic (pedogenesis and hydrology) processes were examined at four sites (30, and approximately 1000–3000, 7000–12 000, and 125 000 years before present) in the northern Mojave Desert. Data collected at each included floral and faunal surveys; soil texture, structure, and morphology; and soil hydraulic properties. Separate measurements were made in shrub undercanopy and intercanopy microsites. At all sites, shrubs made up greater than 86 percent of total perennial cover, being least on the youngest site (4 percent) and most on the 7000–12 000-year-old site (31 percent). In the intercanopy, winter annual density was highest on the 1000- to 3000-year-old site (249 plants/m2) and lowest on the oldest site (4 plants/m2). Faunal activity, measured by burrow density, was highest on the 1000–3000- and 7000–12 000-year-old sites (0.21 burrows/m2) and density was twice as high in the undercanopy versus the intercanopy. Burrow density was lower at the two oldest sites, although density was not statistically greater in the undercanopy than intercanopy. At the older sites, the soil water balance was increasingly controlled by Av horizons in intercanopy soils in which saturated hydraulic conductivity (Ksat) decreased 95 percent from the youngest to the oldest site. No significant reduction in Ksat in undercanopy soils was observed. Decreases in the intercanopy sites correlated with decreases in annual plant density and bioturbation, suggesting these processes are interrelated with surface age.  相似文献   

19.
Nonstructural carbohydrates(NSC) and nitrogen metabolism strongly influence growth and development in plants. The biosynthesis of cellulose and lignin(structural carbohydrates, SC) depends largely on the supply of NSC. We desire to examine which hypothesis, carbon limitation or growth limitation, best fits the alpine plant response between NSC, SC, carbon(C), nitrogen(N) and altitude. We compared the foliar concentrations of carbohydrates, C and N between the leaves of Picea crassifolia(lower-elevation tree-line species) and Sabina przewalskii(high-elevation tree-line species) in their response to changing elevation. Our site was located in the mid-northern area of Qilian Mountains, China. We found that foliar soluble sugar(SG) concentrations were significantly higher in P. crassifolia than in S. przewalskii at the 2,700–3,400 m level. Foliar NSC levels in P. crassifolia increased at the 2,700–3,100 m level, indicating that growth was limited gradually resulting in a surplus of NSC(to conform to GLH), subsequently decreasing at the 3,100–3,400 m level, the assimilation declined leading to C deficit(to conform to CLH). SC(SC metabolism disorders at 3,100–3,400 m), C, N and starch were significantly lower in P. crassifolia than in S. przewalskii. Conversely, foliar SG concentration shows a fall-rise trend with increasing elevation for S. przewalskii. SC concentration in S. przewalskii leaves decreased with an increase of elevation and has a significantly positive correlation to N concentration marking the assimilation of plants. Therefore, the high-elevation tree-line species(S. przewalskii) utilize or store more foliar SG leading to a decrease of SG concentration for survival and growth/regrowth in an adverse environment, higher total C, N, SC, starch contents and lower NSC level. Also, their change trends along the elevational gradient in leaves of S. przewalskii indicate better assimilation strategies for SG use under environmental stress compared to P. crassifolia. This indicates that foliar C metabolism along the elevation follows the principle of the growth-limitation hypothesis(GLH) or carbon limitation hypothesis(CLH), which depends on the acclimation of different alpine life-forms to the environment.  相似文献   

20.
21世纪上海产业布局模型   总被引:4,自引:0,他引:4  
根据上海经济社会发展战略目标,针对产业布局存在问题,并借鉴世界级国际大都市产业布局经验,认为21世纪上海的产业布局,将形成一个核心、三个圈层、六条发展轴线和八个中等城市为主要特征的网络型的布局模式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号