首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Five years of hydrogeological monitoring and field activities performed in the complex hydrogeological system of the Acque Albule basin (AAB) were conducted to define the hydrogeological setting, the relationship between deep and shallow aquifers and a conceptual groundwater flow model of this exploited area using conventional quantitative techniques. The basin, which is located close to Rome (Italy) on the west side of the Apennine chain and just north of the Colli Albani volcano, subsided after development of a north–south fault system (about 115 000 y bp). The AAB experiences intense hydrothermal activity, which has produced a large travertine deposit (80‐m thick). The travertine deposit constitutes a fractured aquifer that is the final destination of more than 5 m3 s‐1 of water and is strongly dewatered by quarry activities. The complex hydrogeology of this basin was investigated, revealing two main hydraulically connected aquifers, one thermalised and partly confined into the limestone bedrock and one unconfined in the travertine. The two aquifers are separated by a non‐continuous clayey aquiclude. The hydrogeological survey and geological characterisation contributed to the development of the groundwater flow conceptual model. Analysis and comparison of the monitored levels highlighted the pattern of flow between the deep and shallow parts of the flow system. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
因地下水过量开采而引起的地面沉降是重要的地质灾害和生态环境问题,据最新统计资料,全国96个城市或地区发生了不同程度的地面沉降。苏南太湖流域由于城镇用水和工业用水的迅速增加,大量开采地下水,导致区域内出现了5000km^2的地区地面沉降,有些地区累计沉降量超过2.0m。地面沉降已经影响到区域的供水安全和生态安全,增加了基础设施建设成本,加快区域供水步伐,调整工业结构,加强水资源综合规划和管理是防治地面沉降的重要措施。  相似文献   

3.
在分析了浙江北部地区地下水类型、特征、地下水开采现状和水位变化基础上,通过对不同类型地下水深井样品测试数据的研究,查明了区域地下水高氟和高砷的分布特点。高氟区主要出现于妙西花岗岩裂隙水和白雀岩溶水分布区,高砷区主要位于南浔第Ⅱ承压含水层局部区域。研究认为高氟和高砷地下水分布区与区域土壤和浅层地下水中总氟和总砷含量没有直接联系,深井地下水中的高氟和高砷主要与深部断裂构造有关。研究地区的这种高氟和高砷地下水目前仍然为很多居民所饮用,作者认为长期饮用这种高氟和高砷地下水容易导致地方病的产生,建议在高氟和高砷地下水分布区停止生活用水开采,有条件的企事业单位应实行改水方案。  相似文献   

4.
Groundwater in the Bengal Basin is badly polluted by arsenic (As) which adversely affects human health. To provide low‐As groundwater for As mitigation, it was sought across 235 km2 of central West Bengal, in the western part of the basin. By drilling 76 boreholes and chemical analysis of 535 water wells, groundwater with <10 µg/L As in shallow aquifers was found under one‐third of a study area. The groundwater is in late Pleistocene palaeo‐interfluvial aquifers of weathered brown sand that are capped by a palaeosol of red clay. The aquifers form two N‐S trending lineaments that are bounded on the east by an As‐polluted deep palaeo‐channel aquifer and separated by a shallower palaeo‐channel aquifer. The depth to the top of the palaeo‐interfluvial aquifers is mostly between 35 and 38 m below ground level (mbgl). The palaeo‐interfluvial aquifers are overlain by shallow palaeo‐channel aquifers of gray sand in which groundwater is usually As‐polluted. The palaeosol now protects the palaeo‐interfluvial aquifers from downward migration of As‐polluted groundwater in overlying shallow palaeo‐channel aquifers. The depth to the palaeo‐interfluvial aquifers of 35 to 38 mbgl makes the cost of their exploitation affordable to most of the rural poor of West Bengal, who can install a well cheaply to depths up to 60 mbgl. The protection against pollution afforded by the palaeosol means that the palaeo‐interfluvial aquifers will provide a long‐term source of low‐As groundwater to mitigate As pollution of groundwater in the shallower, heavily used, palaeo‐channel aquifers. This option for mitigation is cheap to employ and instantly available.  相似文献   

5.
The biosphere reserve Schorfheide-Chorin is a scenic region with many lakes. Hydraulic coupling between lakes and groundwater is difficult to assess due to the very heterogeneous Pleistocene deposits with a complex layering of different aquifers, part of them being confined. Thus, a principal component analysis of time series of groundwater and lake water levels was performed. The first two principal components provided a quantitative measure of damping of the input signal, i.e., the extent to which time series of groundwater pressure heads or lake water levels are smoothed and delayed with respect to the input signal, i.e., groundwater recharge or precipitation minus evapotranspiration, respectively. The lakes differed substantially with respect to damping behaviour, indicating different impacts of deep groundwater contribution. For most of the groundwater wells, damping increased linearly with mean depth to water table. In contrast, some wells exhibited nearly identical behaviour independent of depth. High-pass filtered data of water table level from these wells were strongly and inversely correlated with those of barometric pressure fluctuations, pointing to a confined aquifer which was evidently not connected to the adjacent lake.  相似文献   

6.
Abstract

This paper presents the results of a survey carried out in 2010 aimed at evaluating the type and quality of the groundwater resources of the Bangui region of the Central African Republic. This work is the first step towards the development of groundwater resources in the Central African Republic in order to find alternatives to direct pumping from the Ubangi River and provide the population of the suburbs with a safer drinking water supply from deep boreholes. By combining both geological and hydrogeochemical approaches, it appears that the geology of Bangui is favourable to the development of a secure and sustainable water supply from groundwater provided that the conditions of exploitation would be constrained by the local authorities. The deep Precambrian carbonate aquifers, known as the Bimbo and Fatima formations, are identified as target resources in view of the relatively good quality of their water from the chemical point of view, and the semi-confined structure of the aquifers that prevents the mixing with shallow aquifers that are already strongly affected by domestic and industrial pollution. The main difficulty in terms of exploitation is to appreciate the depth of the resource and the more or less fractured/palaeo-karstified type of the porosity.

Editor Z.W. Kundzewicz

Citation Djebebe-Ndjiguim, C.L., Huneau, F., Denis, A., Foto, E., Moloto-a-Kenguemba, G., Celle-Jeanton, H., Garel, E., Jaunat, J., Mabingui, J., and Le Coustumer, P., 2013. Characterization of the aquifers of the Bangui urban area, Central African Republic, as an alternative drinking water supply resource. Hydrological Sciences Journal, 58 (8), 1760–1778.  相似文献   

7.
In the southern San Juan Basin, New Mexico, strata of Permian and younger age dip gently toward the center of the basin. Most previous investigators believed that recharge to these strata occurred by precipitation on the outcrops and groundwater flowed downdip to the north and northeast. Recent water-level measurements in an undeveloped part of the basin near Prewitt, New Mexico, show that groundwater at shallow depths in alluvium and bedrock flows southward, opposite to the dip direction, and toward a major ephemeral drainage in a strike valley. North of this area, groundwater in deep bedrock aquifers does appear to flow northward. This information suggests that there are two groundwater circulation patterns; a shallow one controlled by topography and a deeper one controlled by geologic structure.Significant amounts of recharge to sandstone aquifers by infiltration through outcrops is unlikely due to the near-vertical exposures on cliffs, the gentle dip of the strata, and small annual precipitation. Numerical model results suggest that recharge to bedrock aquifers may be from downward leakage via aquitards over large areas and leakage from narrow alluvial aquifers in the subcrop area. The recharge mechanism is controlled by the hydraulic conductivity of the strata.As the flow path is controlled by hydraulic conductivity contrasts, geologic structure, and topography, contamination movement from surface impoundments is likely to be difficult to predict without a thorough hydrogeological site investigation.  相似文献   

8.
A recently developed approach to carbon isotope methodology (process recognition via isotope diagrams) is applied in a multidisciplinary study of precipitation‐recharged aquifers of the lowlands–plains area of the Manawatu (south‐west North Island). Urban and rural areas rely on groundwater from the upper levels of a deep basin sequence comprising marine and terrestrial sediments of Pleistocene age. Hydrochemical and isotopic (18O, 3H, 13C and 14C) data are merged with known details of geology and hydrogeology to reveal two separate confined aquifers within the depth range to 200 m. The shallower of these, below unconfined, locally recharged groundwater, is recharged on the foothills of the Ruahine Range to the north‐east of the study area; flow direction is NE–SW. The deeper confined aquifer is recharged on the Tararua Range to the immediate east; flow direction essentially is transverse (SE–NW) to that in the shallower aquifer. Two processes are identified as dominant contributors to concentration and isotopic composition of dissolved inorganic carbon (DIC), namely addition of CO2 from decay of organic materials and carbonate dissolution. Limitations of carbon isotope methods in determining residence times are illustrated by the data. Although the confined groundwater is essentially tritium‐free, only a few samples showed conclusive evidence of significant ageing on the time‐scale of 14C. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

9.
Running across the urban areas of Changzhou, Wuxi and Suzhou, the NW-trending Su-Xi-Chang Fault is an important buried fault in Yangtze River Delta. In the respect of structural geomorphology, hilly landform is developed along the southwest side of the Su-Xi-Chang Fault, and a series of lakes and relatively low-lying depressions are developed on its northeast side, which is an important landform and neotectonic boundary line. The fault controlled the Jurassic and Cretaceous stratigraphic sedimentary and Cenozoic volcanic activities, and also has obvious control effects on the modern geomorphology and Quaternary stratigraphic distribution. Su-Xi-Chang Fault is one of the target faults of the project "Urban active fault exploration and seismic risk assessment in Changzhou City" and "Urban active fault exploration and seismic risk assessment in Suzhou City". Hidden in the ground with thick cover layer, few researches have been done on this fault in the past. The study on the activity characteristics and the latest activity era of the Su-Xi-Chang Fault is of great significance for the prevention and reduction of earthquake disaster losses caused by the destructive earthquakes to the cities of Changzhou, Wuxi and Suzhou. Based on shallow seismic exploration and drilling joint profiling method, Quaternary activities and distribution characteristics of the Su-Xi-Chang Fault are analyzed systematically. Shallow seismic exploration results show that the south branch of the Su-Xi-Chang Fault in Suzhou area is dominated by normal faulting, dipping to the north-east, with a dip angle of about 60° and a displacement of 3~5m on the bedrock surface. The north branch of the Su-Xi-Chang Fault in Changzhou area is dominated by normal faulting, dipping to the south, with a dip angle of about 55°~70° and a displacement of 4~12m on the bedrock surface. All breakpoints of Su-Xi-Chang Fault on the seismic exploration profiles show that only the bedrock surface was dislocated, not the interior strata of the Quaternary. On the drilling joint profile in the Dongqiao site of Suzhou, the latest activity of the south branch of Su-Xi-Chang Fault is manifested as reverse faulting, with maximum displacement of 2.9m in the upper part of Lower Pleistocene, and the Middle Pleistocene has not been dislocated by the fault. The fault acts as normal fault in the Pre-Quaternary strata, with a displacement of 3.7m in the Neogene stratum. On the drilling joint profile in the Chaoyang Road site of Changzhou, the latest activity of the north branch of Su-Xi-Chang Fault is manifested as reverse faulting too, with maximum displacement of 2.8m in the bottom layer of the Middle Pleistocene. The fault acts as normal fault in the Pre-Quaternary strata, with a displacement of 10.2m in the bedrock surface. Combining the above results, we conclude that the latest activity era of Su-Xi-Chang Fault is early Middle Pleistocene. The Su-Xi-Chang Fault was dominated by the sinistral normal faulting in the pre-Quaternary period, and turned into sinistral reverse faulting after the early Pleistocene, with displacement of about 3m in the Quaternary strata. The maximum magnitude of potential earthquake on the Su-Xi-Chang Fault is estimated to be 6.0.  相似文献   

10.
A synthesis of groundwater ages, recharge rates and information on processes affecting groundwater quality in northern China highlights the major challenges faced for sustainable management of the region's groundwater. Direct recharge rates range from hundreds of millimetres per year in the North China Plain, to tens of millimetres per year in the Loess Plateau to less than 4 mm/year in the arid northwest. Recharge rates and mechanisms to deep semiconfined and confined aquifers are poorly constrained; however, on the basis of available data, these are likely to be mostly negligible. Severe groundwater level declines (0.5–3 m/year) have occurred throughout northern China in the last three to four decades, particularly in deep aquifers. Radiocarbon dating, stable isotope and noble gas data show that the most intensively extracted deep groundwater is palaeowater, recharged under different climate and land cover conditions to the present. Reservoir construction has reduced surface runoff in mountain‐front areas that would naturally recharge regional Quaternary aquifers in many basins. In combination with intensive irrigation practices, this has resulted in the main recharge source shifting from surface runoff and mountain‐front recharge to irrigation returns. This has reduced infiltration of fresh recharge at basin margins and rapidly increased nitrate concentrations and overall mineralisation in phreatic groundwater over wide areas (in some cases to >400 mg/l and >10 g/l, respectively). In some basins, there is evidence that poor quality shallow water has leaked into deep layers (>200 m) via preferential flow, mixing with palaeowaters stored in semiconfined aquifers. High concentrations of naturally occurring fluoride and arsenic (locally >8.5 and >4 mg/l, respectively) have recently lead to the abandonment of numerous supply wells in northern China, creating further pressure on stressed water resources. Increasing water demand from direct and indirect consumption poses major challenges for water management in northern China, which must consider the full water cycle. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
Regional groundwater flow in deep aquifers adds advective components to the surface heat flow over extensive areas within the Great Plains province. The regional groundwater flow is driven by topographically controlled piezometric surfaces for confined aquifers that recharge either at high elevations on the western edge of the province or from subcrop contacts. The aquifers discharge at lower elevations to the east. The assymetrical geometry for the Denver and Kennedy Basins is such that the surface areas of aquifer recharge are small compared to the areas of discharge. Consequently, positive advective heat flow occurs over most of the province. The advective component of heat flow in the Denver Basin is on the order of 15 mW m−2 along a zone about 50 km wide that parallels the structure contours of the Dakota aquifer on the eastern margin of the Basin. The advective component of heat flow in the Kennedy Basin is on the order of 20 mW m−2 and occurs over an extensive area that coincides with the discharge areas of the Madison (Mississippian) and Dakota (Cretaceous) aquifers. Groundwater flow in Paleozoic and Mesozoic aquifers in the Williston Basin causes thermal anomalies that are seen in geothermal gradient data and in oil well temperature data. The pervasive nature of advective heat flow components in the Great Plains tends to mask the heat flow structure of the crust, and only heat flow data from holes drilled into the crystalline basement can be used for tectonic heat flow studies.  相似文献   

12.
The interactions between old abandoned wellbores of suspect well integrity with hydraulic fracturing (HF), enhanced oil recovery (EOR), or salt water disposal (SWD) operations can result in upward leakage of deep aqueous liquids into overlying aquifers. This potential for upward fluid migration is largely unquantified as monitoring abandoned wells is rarely done, and leakage may go unnoticed especially when in deeper aquifers. This study performs a proximity analysis between old abandoned wells and HF, EOR, and SWD wells, and identifies commingled old abandoned wellbores, which are those wells where groundwater may flow from one aquifer to one or more other aquifers, to identify the locations with the greatest potential for upward aqueous fluid migration at three study sites in the Western Canadian Sedimentary Basin. Our analysis indicates that at all three study sites there are several locations where HF, EOR, or SWD operations are located in close proximity to a given old abandoned well. Much of this overlap occurs in formations above typically produced hydrocarbon reservoirs but below exploited potable aquifers, otherwise known as the intermediate zone, which is often connected between abandonment plugs in old abandoned wells. Information on the intermediate zone is often lacking, and this study suggests that unanticipated alterations to groundwater flow systems within the intermediate zone may be occurring. Results indicate the need for more field-based research on the intermediate zone.  相似文献   

13.
G. Stamatis  K. Voudouris 《水文研究》2003,17(12):2327-2345
In this paper the groundwater quality of the southern part of Korinthos region (north‐east Peloponnese) is discussed. The geology is characterized by a thick sequence of Neogene marls alternating with sandstones, overlain by superficial Quaternary deposits. The latter consist of a mixture of loose materials such as conglomerates, marly sandstones, sands and clay to silty sands. The area is crossed by a fault system parallel to the coastline, and the Quaternary sediments have formed extended Tyrrhenian marine terraces. Two aquifers have been identified in the area. The first is unconfined and occurs within the Quaternary sediments whereas the other is a deep confined aquifer occurring within the underlying Neogene marl series. Analysis of hydrochemical evolution over the past 30 years has indicated significant deterioration of quality owing to seawater intrusion and nitrate pollution. The various sources of pollution have rendered, to a large extent, shallow groundwater unsuitable not only for potable water supply but also for irrigation purposes. However, this is not the case for the deeper confined aquifer. Statistical analysis was used to explore the evolution of salinization during the years 1968 and 1998. In view of the alarming conditions caused by the documented groundwater quality deterioration, the need for integrated water resources management is stressed to maintain the socio‐economic growth of the region studied. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
Studies investigating the effects of inland recharge on coastal groundwater dynamics were carried out typically in unconfined aquifers, with few in confined aquifers. This study focused on the groundwater dynamics in confined aquifers with seasonally sinusoidally fluctuated inland groundwater head and constant sea level by numerical simulations. It is known that the mixing zone (MZ) of saltwater wedge in response to the seasonal oscillations of inland groundwater head swings around the steady-state MZ. However, our simulation results indicate that even the most landward freshwater-saltwater interface over a year is seaward from the steady-state location when the hydraulic conductivity K is ≤10−4 m/s under certain boundary conditions with given parameter values. That is, seasonal oscillations of inland groundwater head may reduce seawater intrusion in confined coastal aquifers when K ≤ 10−4 m/s. Sensitivity analysis indicates that for aquifers of K ≤ 10−4 m/s, the larger the inland head fluctuation amplitude is, the less the seawater intrudes. This is probably due to the reason that the seawater intrusion time decreases with the increase of fluctuation amplitude when K ≤ 10−4 m/s. Numerical simulations demonstrate that seasonal inland groundwater head oscillations promote the annual averaged recirculated seawater discharge across the seaward boundary.  相似文献   

15.
In order to model non‐Fickian transport behaviour in groundwater aquifers, various forms of the time–space fractional advection–dispersion equation have been developed and used by several researchers in the last decade. The solute transport in groundwater aquifers in fractional time–space takes place by means of an underlying groundwater flow field. However, the governing equations for such groundwater flow in fractional time–space are yet to be developed in a comprehensive framework. In this study, a finite difference numerical scheme based on Caputo fractional derivative is proposed to investigate the properties of a newly developed time–space fractional governing equations of transient groundwater flow in confined aquifers in terms of the time–space fractional mass conservation equation and the time–space fractional water flux equation. Here, we apply these time–space fractional governing equations numerically to transient groundwater flow in a confined aquifer for different boundary conditions to explore their behaviour in modelling groundwater flow in fractional time–space. The numerical results demonstrate that the proposed time–space fractional governing equation for groundwater flow in confined aquifers may provide a new perspective on modelling groundwater flow and on interpreting the dynamics of groundwater level fluctuations. Additionally, the numerical results may imply that the newly derived fractional groundwater governing equation may help explain the observed heavy‐tailed solute transport behaviour in groundwater flow by incorporating nonlocal or long‐range dependence of the underlying groundwater flow field.  相似文献   

16.
In variably confined carbonate platforms, impermeable confining units collect rainfall over large areas and deliver runoff to rivers or conduits in unconfined portions of platforms. Runoff can increase river stage or conduit heads in unconfined portions of platforms faster than local infiltration of rainfall can increase groundwater heads, causing hydraulic gradients between rivers, conduits and the aquifer to reverse. Gradient reversals cause flood waters to flow from rivers and conduits into the aquifer where they can dissolve limestone. Previous work on impacts of gradient reversals on dissolution has primarily emphasized individual caves and little research has been conducted at basin scales. To address this gap in knowledge, we used legacy data to assess how a gradient of aquifer confinement across the Suwannee River Basin, north‐central Florida affected locations, magnitudes and processes of dissolution during 2005–2007, a period with extreme ranges of discharge. During intense rain events, runoff from the confining unit increased river stage above groundwater heads in unconfined portions of the platform, hydraulically damming inputs of groundwater along a 200 km reach of river. Hydraulic damming allowed allogenic runoff with SICAL < ?4 to fill the entire river channel and flow into the aquifer via reversing springs. Storage of runoff in the aquifer decreased peak river discharges downstream and contributed to dissolution within the aquifer. Temporary storage of allogenic runoff in karst aquifers represents hyporheic exchange at a scale that is larger than found in streams flowing over non‐karst aquifers because conduits in karst aquifers extend the area available for exchange beyond river beds deep into aquifers. Post‐depositional porosity in variably confined carbonate platforms should thus be enhanced along rivers that originate on confining units. This distribution should be considered in models of porosity distribution used to manage water and hydrocarbon resources in carbonate rocks. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Few studies have investigated large reaches of rivers in which multiple sources of groundwater are responsible for maintaining baseflow. This paper builds upon previous work undertaken along the Fitzroy River, one of the largest perennial river systems in north‐western Australia. Synoptic regional‐scale sampling of both river water and groundwater for a suite of environmental tracers (4He, 87Sr/86Sr, 222Rn and major ions), and subsequent modeling of tracer behavior in the river, has enabled definition and quantification of groundwater input from at least three different sources. We show unambiguous evidence of both shallow “local” groundwater, possibly recharged to alluvial aquifers beneath the adjacent floodplain during recent high‐flow events, and old “regional” groundwater introduced via artesian flow from deep confined aquifers. We also invoke hyporheic exchange and either bank return flow or parafluvial flow to account for background 222Rn activities and anomalous chloride trends along river reaches where there is no evidence of the local or regional groundwater inputs. Vertical conductivity sections acquired through an airborne electromagnetic (AEM) survey provide insights to the architecture of the aquifers associated with these sources and general groundwater quality characteristics. These data indicate fresh groundwater from about 300 m below ground preferentially discharging to the river, at locations consistent with those inferred from tracer data. The results demonstrate how sampling rivers for multiple environmental tracers of different types—including stable and radioactive isotopes, dissolved gases and major ions—can significantly improve conceptualization of groundwater—surface water interaction processes, particularly when coupled with geophysical techniques in complex hydrogeological settings.  相似文献   

18.
The coastal confined aquifer in the Gulf of Urabá (Colombia) is an important water source for the banana agro‐industry as well as for urban and rural communities. However, the main processes controlling recharge and mixing in the aquifer are still poorly understood. Hydrochemical analyses and stable isotope monitoring were conducted to (a) determine groundwater recharge origin, mean groundwater age, and the main processes governing groundwater chemistry and the potential mixing of marine water and the influence of diffusive processes from the two surrounding aquitard layers. Hydrochemical data indicate that the main processes affecting the dissolved chemical composition include cation exchange, dissolution of carbonated and CO2, and silicate weathering. δ18O and δ2H compositions combined with 14C data highlight the differences in climatic conditions between the recharge zone and the confined section of the aquifer, which is close to the Atlantic Ocean. Groundwater samples with 14C ages from recent to 28,300 years BP show a depleted isotopic trend ranging from ?6.43‰ to ?9.14‰ in δ18O and from ?43.2‰ to ?65.7‰ in δ2H. The most depleted δ18O and δ2H compositions suggest a cooler recharge climate than the current conditions (corresponding to the last glacial period of the late Pleistocene). Depleted δ13C values in the total dissolved inorganic carbon indicate the existence of organic material oxidation processes within the geologic formation. These results can be used or transferred to enhance groundwater modelling efforts in other confined coastal aquifers of South America where scarcity of long‐term monitoring data limits water resources planification under a changing climate.  相似文献   

19.
Despite the strong interaction between surface and subsurface waters, groundwater flow representation is often oversimplified in hydrological models. For instance, the interplay between local or shallow aquifers and deeper regional‐scale aquifers is typically neglected. In this work, a novel hillslope‐based catchment model for the simulation of combined shallow and deep groundwater flow is presented. The model consists of the hillslope‐storage Boussinesq (hsB) model representing shallow groundwater flow and an analytic element (AE) model representing deep regional groundwater flow. The component models are iteratively coupled via a leakage term based on Darcy's law, representing delayed recharge to the regional aquifer through a low conductivity layer. Simulations on synthetic single hillslopes and on a two‐hillslope open‐book catchment are presented, and the results are compared against a benchmark three‐dimensional Richards equation model. The impact of hydraulic conductivity, hillslope plan geometry (uniform, convergent, divergent), and hillslope inclination (0.2%, 5%, and 30%) under drainage and recharge conditions are examined. On the single hillslopes, good matches for heads, hydrographs, and exchange fluxes are generally obtained, with the most significant differences in outflows and heads observed for the 30% slope and for hillslopes with convergent geometry. On the open‐book catchment, cumulative outflows are overestimated by 1–4%. Heads in the confined and unconfined aquifers are adequately reproduced throughout the catchment, whereas exchange fluxes are found to be very sensitive to the hillslope drainable porosity. The new model is highly efficient computationally compared to the benchmark model. The coupled hsB/AE model represents an alternative to commonly used groundwater flow representations in hydrological models, of particular appeal when surface–subsurface exchanges, local aquifer–regional aquifer interactions, and low flows play a key role in a watershed's dynamics. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
Deep basin aquifers are increasingly used in water‐stressed areas, though their potential for sustainable development is inhibited by overlying aquitards and limited recharge rates. Long open interval wells (LOIWs)—wells uncased through multiple hydrostratigraphic units—are present in many confined aquifer systems and can be an important mechanism for deep basin aquifers to receive flow across aquitards. LOIWs are a major control on flow in the deep Cambrian–Ordovician sandstone aquifers of the upper Midwest, USA, providing a source of artificial leakage from shallow bedrock aquifers and equilibrating head within the sandstone aquifers despite differential pumpage. Conceptualizing and quantifying this anthropogenic flow has long been a challenge for groundwater flow modellers, particularly on a regional scale. Synoptic measurements of active production wells and well completion data for northeast Illinois form the basis for a transient, head‐specified MODFLOW model that determines mass balance contributions to the region and estimates LOIW leakage to the aquifers. Using this insight, transient LOIW leakage was simulated using transiently changing KV zones in a traditional, Q‐specified MODFLOW‐USG model, a novel approach that allows the KV in a cell containing a LOIW to change transiently by use of the time‐variant materials (TVM) package. With this modification, we achieved a consistent calibration through time, averaging 19.9 m root mean squared error. This model indicates that artificial leakage via LOIWs contributed a minimum of 10–13% of total flow to the sandstone aquifers through the entire history of pumping, up to 50% of flow around 1930. Removal from storage exceeds 40% of flow during peak withdrawals, much of this flow sourced from units other than the primary sandstone aquifers via LOIWs. As such, understanding the timing and magnitude of LOIW leakage is essential for predicting future water availability in deep basin aquifers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号