首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
五峰山-西来桥断裂和丹徒-建山断裂是镇江地区2条主要的NW向断裂,可能与镇江多次破坏性地震相关。文中通过浅层地震勘探和钻孔联合剖面探测方法,对五峰山-西来桥断裂和丹徒-建山断裂的展布特征及第四纪活动性进行了系统研究。五峰山-西来桥断裂在浅层地震剖面上倾向NE,倾角约为60°,断距约为5~9m,以正断活动为主;大路镇场地上,该断裂断错的最新地层为中更新统底部,位错量为2m,判断五峰山-西来桥断裂的最新活动时代为中更新世早期。丹徒-建山断裂在浅层地震剖面上倾向SW,倾角约为50°~55°,断距约为2~7m,以正断活动为主;访仙镇场地上,中更新统之上的地层没有被断错的迹象,中更新统底部可能被断层影响,判断丹徒-建山断裂的最新活动时代为早更新世—中更新世早期。  相似文献   

2.
The NE-trending regional deep fault, i.e. the Jintan-Rugao Fault, is a boundary fault between the Subei depression and Nantong uplift, and its research has always received broad attention because of its importance and complexity. For the absence of definite proof, there is little consensus regarding the structure and spatial distribution of the fault among geoscientists, and its latest active time is ambiguous. The study of Quaternary activity characteristics of the Jintan-Rugao Fault is of great significance for earthquake trend prediction and engineering safety evaluation, and for earthquake prevention and disaster reduction in Jiangsu Province. In order to investigate the spatial location, characteristics and tectonic features and redefine the activity of the NE-segment of the Jintan-Rugao Fault, and on the basis of likely location and marker beds derived from petroleum seismic exploration sections, we collect and arrange 4 shallow seismic exploration profiles crossing the fault to conduct high-resolution seismic reflection imaging, following the working concept of ‘from known to unknown, from deep to shallow’. In this study, an observation system with trace intervals of 4~6m, shot intervals of 12~18m, and channels of 90~256 and 15~36 folds is used. In addition, by introducing different tonnage vibroseis to suppress the background noise, the raw data with high SNR(signal-noise ratio)can be obtained. By using the above working method and spread geometry, we obtained clear imaging results of the subsurface structure and fault structure in the coverage area of the survey lines. This exploration research accurately locates the NE-segment of Jintan-Rugao Fault, and further shows that it is not a single fault but a fault zone consisting of two normal faults with N-dipping and NE-striking within the effective detection depth. The shallow seismic profiles reveal that the up-breakpoint on the south branch with stronger activity is at depth of 235~243m, which offsets the lower strata of lower Pleistocene. Combining drilling data around the survey lines, we infer the activity time of this fault is early Pleistocene. The results of this paper provide reliable seismological data for determining the location and activity evaluation of the NE-segment of Jintan-Rugao Fault. In eastern China, where the sedimentary layer is thicker, the latest active age of faults can not be determined entirely according to the latest faulted strata. For a fault passing through the thicker area of new deposits, its latest active age should be based on the tectonic background, seismic activity, present tectonic stress field, topographic deformation, structural micro-geomorphological characteristics, sedimentary thickness of new strata, controlling effect of faults on new strata and the latest strata of faults, and combined with upper breakpoints, morphology, structure and occurrence of faults, the active state of the target concealed faults should be analyzed. If the activity of the fault is judged only by the upper faulted point, it may lead to overestimating the age of the fault activity.  相似文献   

3.
青岛沧口断裂的地质构造特征与第四纪活动性研究   总被引:1,自引:1,他引:0  
本文根据青岛市活断层探测与地震危险性评价项目初查阶段第四纪地层分析、遥感影像解译、地球化学探测、地质地貌调查与探槽开挖、浅层地震勘探与钻孔探测、地质年代测定等获得的丰富的第一手资料,对青岛沧口断裂的地质构造特征和第四纪活动性进行了详细分析与综合研究,结果表明:沧口断裂经历多期构造变动,是本区的重要断裂之一,它由多支断层组成,控制了中生代的火山活动、盆地沉积和岩浆侵入以及晚第四纪的盆地沉积、山体隆升和水系发育;第四纪以来,沧口断裂的主要活动发生于中更新世晚期至晚更新世早期,表现出中高角度向南东倾的逆冲活动特点,错断了上更新统底面1—6m,而最新活动时代为晚更新世中期,以走滑活动为主,垂直错距0.2—1.1m。  相似文献   

4.
王纪强  王冬雷  鹿子林  张建民 《地震》2020,40(4):115-128
利用地质地貌调查、 探槽、 工程探测以及年代测试等方法, 对双山—李家庄断裂的地表破裂形态、 最新活动性以及古地震事件展开研究。 结果表明: ① 双山—李家庄断裂的最新活动时代为晚更新世, 在 (17.0±0.85) ka~(21.4±1.7) ka B.P.之间, 总体以左旋走滑正断为主, 局部逆断。 依据第四纪活动特征和破裂形式, 从南往北可分为两段, 即南段(双山—大马山)和北段(大马山—五里)。 其中南段又可分为3个小段: 双山—丹河水库小段表现为左阶斜列状展布的两条断层, 以左行走滑兼正断活动为主; 丹河水库—营子小段表现为两条相交的断裂, 东支在剖面上则表现为正断活动, 第四纪以来不活动; 西支在剖面上以逆冲破裂为主, 最新活动时代为晚更新世; 营子—大马山小段隐伏于第四系之下, 具有正断走滑破裂特征。 北段总体表现为多条近平行的断裂构造系, 破裂形式以逆断为主。 ② 双山—李家庄断裂晚第四纪以来可能发生过两次古地震事件, 分别发生在(17.0±0.85) ka~(21.4±1.7) ka B.P.和(77.0±3.8) ka~(84.0±4.2) ka B.P.。 ③ 1829年青州、 临朐61/4级地震的发生与上五井断裂和双山—李家庄断裂构成的“X”型共轭构造密切相关, 双山—李家庄断裂很可能就是这次地震的发震构造。 鲁西断块内发育的多条与双山—李家庄断裂相似的NW向晚更新世活动断裂, 均具有发生6级左右地震的构造条件, 因此, 今后应加强这些断裂的活动断层探测和地震监测研究, 为地震防御工作提供可靠依据。  相似文献   

5.
滇西北通甸-巍山断裂中段的晚第四纪滑动速率   总被引:2,自引:0,他引:2       下载免费PDF全文
通甸-巍山断裂属于红河断裂带的分支断裂,目前对该断裂中段的晚第四纪活动特征研究较少。野外地质地貌调查和年代学研究结果表明,通甸-巍山断裂中段是以右旋走滑运动为主,兼有张性正断的全新世活动断裂,其最新活动时代距今约2.2ka。晚更新世中晚期以来断裂中段平均水平滑动速率为1.25mm/a,全新世晚期以来垂直运动趋于增强。该研究不仅为该断裂的地震危险性评价工作提供了基础资料,而且有助于理解川滇菱形块体西南边界构造变形的空间分配特点  相似文献   

6.
Because of the frequent seismic activity in Songyuan in recent years, the modes of tectonic movement in this area since the Quaternary have attracted increasing consideration. This paper selects the Gudian Fault which locates between the southeast uplift and central depression of Songliao Basin as the research object. We discussed the Quaternary structural characteristics of the Gudian Fault using growth strata. Using the data of deep seismic reflection prospecting for oil, we determined the location, geometry and kinematics characteristics of the Gudian Fault. And using the shallow seismic reflection prospecting data, the combined drilling exploration data and TL data, we determined precisely the inversion tectonics feature of the fault since late Cenozoic. Based on the above data, we believe that the Gudian Fault is dominated mainly by thrust-folding since Quaternary. A set of growth strata is recognized by shallow seismic reflection exploration data. According to the overlap of growth strata and the relationship between deposition rate and uplift rate, we confirm that the uplift rate of Gudian Fault in the early of Early Pleistocene is less than 0.15mm/a. And according to the offlap of growth strata and the relationship between deposition rate and uplift rate, the uplift rate of the Gudian Fault is more than 0.091mm/a in the late of Early Pleistocene and more than 0.052mm/a in middle Pleistocene. According to the chronological data, it is determined that the uplift rate of the Gudian Fault is 0.046mm/y since 205ka.  相似文献   

7.
The NE-trending Xinyi-Lianjiang fault zone is a tectonic belt, located in the interior of the Yunkai uplift in the west of Guangdong Province, clamping the Lianjiang synclinorium and consisting of the eastern branch and the western branch. The southwestern segment of the eastern branch of Xinyi-Lianjiang fault zone, about 34km long, extends from the north of Guanqiao, through Lianjiang, to the north of Hengshan. However, it is still unclear about whether the segment extends to Jiuzhoujiang alluvial plain or not, which is in the southwest of Hengshan. If it does, what is about its fault activity? According to ‘Catalogue of the Modern Earthquakes of China’, two moderately strong earthquakes with magnitude 6.0 and 6.5 struck the Lianjiang region in 1605 AD. So it is necessary to acquire the knowledge about the activity of the segment fault, which is probably the corresponding seismogenic structure of the two destructive earthquakes. And the study on the fault activity of the segment can boost the research on seismotectonics of moderately strong earthquakes in Southeast China. In order to obtain the understanding of the existence of the buried fault of the southwestern segment, shallow seismic exploration profiles and composite borehole sections have been conducted. The results indicate its existence. Two shallow seismic exploration profiles show that buried depth of the upper breakpoints and vertical throw of the buried fault are 60m and 4~7m(L5-1 and L5-2 segment, the Hengshan section), 85m and 5~8m(L5-3 segment), 73m and 3~5m(Tiantouzai section), respectively and all of them suggest the buried fault has offset the base of the Quaternary strata. Two composite borehole sections reveal that the depth of the upper breakpoints and vertical throws of the buried segment are about 66m and 7.5m(Hengshan section) and 75m and 5m(Tiantouzai section), respectively. The drilling geological section in Hengshan reveals that the width of the fault could be up to 27m. Chronology data of Quaternary strata in the two drilling sections, obtained by means of electron spin resonance(ESR), suggest that the latest activity age of the buried fault of the southwestern segment is from late of early Pleistocene(Tiantouzai section) to early stage of middle Pleistocene(Hengshan section). Slip rates, obtained by Hengshan section and Tiantouzai section, are 0.1mm/a and 0.013mm/a, respectively. As shown by the fault profile located in a bedrock exposed region in Shajing, there are at least two stages of fault gouge and near-horizontal striation on the fault surface, indicating that the latest activity of the southwestern segment is characterized by strike-slip movement. Chronology data suggest that the age of the gouge formed in the later stage is(348±49) ka.  相似文献   

8.
The Hetao depression zone, located to the north of Ordos block, is a complex depression basin that consists of two sub-uplifts and three sub-depressions. The depression zone is subject to the regional extensional stress field driven by the Indo-Asian continental collision and the westward subduction of the Pacific Plate. The Baotou uplift that separates the Baiyanhua sub-depression and Huhe sub-depression is mainly composed of Archean gneiss and is overlaid by Quaternary sedimentary strata. The two sub-depressions are bordered by the Wula Mountains and Daqing Mountains to the north, respectively. The bedrock exhumed in Wula Mountains and Daqing Mountains consists mostly of Precambrian granitic gneiss, and the piedmont depressions are infilled by thick Cenozoic strata. The Wulashan piedmont fault and Daqingshan piedmont fault extend along the range front of Wula Mountains and Daqing Mountains, respectively. The subsidence is controlled by the two boundary faults. Previous studies have preliminarily documented the characteristics of the northwest boundary fault of Baotou uplift. Combining shallow seismic exploration, active fault mapping, and geological drilling, this paper presents a detailed study on the tectonic characteristics of the Baotou uplift. The shallow seismic exploration reveals that the Baotou uplift is an asymmetrical wedge with a steep southeast wing and a gentle dipping northwest wing. The Baotou uplift is wider in the northeastern part and narrows down towards the southwest. In seismic profiles, the Baiyanhua sub-depression and the Huhe sub-depression manifest as asymmetric dustpan-like depressions with south-dipping controlling faults. Baotou uplift is bounded by the Xishawan-Xingsheng Fault to the northwest and Daqingshan piedmont fault to the southeast. The two faults exhibit significant difference in many aspects, such as fault geometry, fault displacement, the latest active time, and so on. The southeast boundary fault of Baotou uplift is the Baotou section of the Daqingshan piedmont fault which is a Holocene active fault and the major boundary fault of Huhe sub-depression. East of Wanshuiquan, the fault strikes EW-NEE; west of Wanshuiquan, the strike changes to NW. The Daqingshan piedmont fault appears as a south-dipping listric fault in seismic profiles whose dip decreases with depth and cuts through all the sedimentary strata in Huhe sub-depression; the fault extends along the late Pleistocene lacustrine platform at surface with prominent geomorphological evidences. The Xishawan-Xingsheng Fault is a buried high-angle normal fault that mainly dips to the northwest and strikes NE. The fault strike changes to NNE at the eastern tip. Based on the results of seismic exploration and geological drilling, the Xishawan-Xingsheng buried fault is an early to middle Pleistocene Fault capped by late Pleistocene lacustrine strata. We reckon that the Xishawan-Xingsheng Fault is one of the synthetic faults that dip towards the main boundary fault of Baiyanhua sub-depression. Similarities in lithology, geometry, and structural characteristics of south boundary faults all indicate that Baotou uplift is the western extension of Daqing Mountains. Multiple factors may contribute to the formation of Baotou uplift, such as tectonic subsidence and the development of large-scale river system and mega-lake. We suggest that the upwelling of asthenosphere may play a primary role in the evolution of Wulanshan piedmont fault and Daqingshan piedmont fault. Separated by the Baotou uplift, the Wulashan piedmont fault and Daqingshan piedmont fault can be regarded as independent seismogenic faults. The Hetao depression zone is featured by complex inner structures, and many scientific issues are subject to further researches. Thus, more attention should be paid to the secondary structures within the depression zone for a better understanding on the formation and evolution of Hetao depression zone.  相似文献   

9.
Existing achievements about Baotou Fault demonstrate it as a buried eastern boundary of the Baiyanhua Basin in Hetao active fault subsidence zone,striking NE.More data is needed to assess its activity.Located in the relay ramp between Wulashan Fault and Daqingshan Fault,Baotou Fault's activity is of great importance to discuss the linkage mode and the response to the earthquake of the adjacent fault.Also it is necessary to the knowledge of the characteristic of the seismic tectonic in local area.Recently it is prevalent to combine shallow seismic profile and composite drilling section to study the activity of the buried fault.Shallow seismic profile indicates that Baotou Fault is a normal fault,inclining to NW.The displacement of the Tg at 75m underground is 25m.Composite drilling section indicates that it is a growth fault,the up-break point of which is 45.6m underground and ends in brownish red clay strata of early Pleistocene.In comparison,the upper Late Pleistocene strata are out of the influences of the tectonic subsidence zone.Baotou Fault's activity is limited to the early Pleistocene.  相似文献   

10.
On the basis of dividing and comparison of the Neogene strata and their bottoms revealed by 7 drill holes in Taikang area, we completed 101 seismic profiles with a total length of 4991km. Seismic data were compared and interpreted. The results indicate that Xinzheng-Taikang Fault, as a blind fault extending from Xinzheng to Taikang, which was considered as an EW striking fault from Xuchang to Taikang before, is the boundary of Taikang uplift and Zhoukou depression, controlling the sedimentation since Neogene Period. So we named the fault the Xinzheng-Taikang Fault, which is composed of two branches, mainly, the east and west branches. The west branch strikes northwest, dipping northeast with steep angles, and the fault plane extending more than 140km in length. As revealed on the seismic profiles, the eastern segment of the west branch is normal fault, while the west segment of the branch shows characteristics of strike-slip fault. The east branch trends NW-NEE, dipping SW-SSE with the length of about 50km. Two branches form a minus flower structure, indicating the strike slip-extension tectonic background. The bottom of Neogene strata is offset about 120m by the east branch, 20m by the west branch, and the bottom of Quaternary is probably offset too. Meanwhile, latest studies suggest that the composite strip of the two branches of Xinzheng-Taikang Fault, which is a tectonic transfer zone, is the subduction zone between the two strike-slip faults. The tectonic stress tends to be released by the east-west branch fault, and the zone should be the seismogenic structure for the recent seismicity in Taikang area. In 2010, the latest earthquake ofMS4.7 occurred in this area, causing 12 people wounded. The seismogenic structure was considered to be the Xinzheng-Taikang Fault. So locating the fault exactly is of great importance to disaster prevention.  相似文献   

11.
2012年6月24日宁蒗-盐源MS5.7地震,位于丽江-小金河断裂西北30km。区域范围内历史上地震频繁,为滇西北地震多发区。震区断裂构造复杂,主要发育NW向、NE向2组断裂,呈棋盘格式展布。经野外实地考察,震中附近发育NW向永宁断裂和NE向日古鲁-岩瓦断裂2条晚更新世活动断裂。永宁断裂由温泉断层、永宁断层和阿拉凹断层组成。在卫星影像上线性特征清晰,断层地貌明显。断裂对永宁、泸沽湖第四纪盆地具有严格的控制作用,沿线多处发育温泉。前所河的多条支流顺断层发育,八七—海衣角一带、日古鲁东山厝附近,多处河流右旋位错。阿拉凹一带断错T2阶地上更新统沉积,被错地层最新年龄(TL)为(21.19±1.80)ka,是一条以右旋走滑兼正断性质的晚更新世活动断层。日古鲁—岩瓦断裂对岩瓦、日古鲁、利家咀等古近纪、新近纪盆地和永宁第四纪盆地有着明显的控制作用,断错中更新世和上更新世地层。中挖都—利家咀一带,有多条小溪呈现出同步左旋位错特征。断裂在晚更新世有着明显的活动迹象,以左旋走滑运动为主。据震源机制解结果,此次地震为正断兼右旋走滑型地震,NW向节面产状与永宁断裂基本吻合,地震破裂型式与永宁断裂运动学特征一致。地震烈度长轴方向、Ⅷ度烈度异常点线性分布以及构造地裂缝方向均与永宁断裂走向一致。分析认为,永宁断裂为此次地震的发震构造。此外,1996年丽江7.0级地震、1976年中甸5.5级地震以及本次5.7级地震,均具有明显的正倾滑分量。这些地震多分布在哈巴雪山和玉龙雪山新构造隆起周缘。根据区域地形条件分析,该地区的正断层运动作用很可能与地形巨大反差引起的重力势能有关。  相似文献   

12.
The east branch fault of Tan-Lu fault zone extends from Fengshan Town of Sihong County on the north shore of the Huaihe River in Jiangsu Province, into Fushan Town of Mingguang City on the south shore of Huaihe River in Anhui Province. The landform changes from Subei plain on the north of Huaihe River to Zhangbaling uplift area on the south of Huaihe River. The terrain rises gradually with larger relief amplitude. The Fushan section of the Tan-Lu fault zone is located in Ziyang to Fushan area of Mingguang City. The fault is shown in the satellite image as a clear linear image, and the fault extends along the east side of a NNE-trending hillock. In this section the Quaternary strata are unevenly distributed, which causes some difficulties in the study of recent fault activity.In recent years, the author has found that the fault of the Fushan section of the Tan-Lu fault zone on the south of the Huaihe River still has a certain control effect on the landform and the Quaternary strata. Based on satellite imagery and geological data, we select the appropriate location in the Fushan section to excavate the Santang trench Tc1 and Fushannan trench Tc2, and clean up the Fushannan profile Pm, which reveals rich phenomena of recent fault activity. Santang trench reveals three faults, and the faulting phenomenon is obvious. One of the faults shows the characteristic of right-lateral strike-slip normal faulting; Fushannan profile reveals one fault, with the same faulting behavior of right-lateral strike-slip normal fault. Comprehensive stratigraphic sample dating results indicate that the fault dislocated the middle Pleistocene strata, late Quaternary strata and early Holocene strata. All our work shows that the fault of Fushan section has intensive activity since late Pleistocene, and the latest active age can reach early Holocene. The latest earthquake occurred at(10.6±0.8)~(7.6±0.5)ka BP. The faults exposed by trenches and profiles show the characteristics of right-lateral strike-slip normal faulting, which reflects the complexity of the tectonic stress field in the area where the fault locates.  相似文献   

13.
Tanlu fault zone is the largest strike-slip fault system in eastern China. Since it was discovered by aeromagnetics in 1960s, it has been widely concerned by scholars at home and abroad, and a lot of research has been done on its formation and evolution. At the same time, the Tanlu fault zone is also the main seismic structural zone in China, with an obvious characteristic of segmentation of seismicity. Major earthquakes are mostly concentrated in the Bohai section and Weifang-Jiashan section. For example, the largest earthquake occurring in the Bohai section is M7.4 earthquake, and the largest earthquake occurring in the Weifang-Jiashan section is M8.5 earthquake. Therefore, the research on the active structure of the Tanlu fault zone is mainly concentrated in these two sections. With the deepening of research, some scholars carried out a lot of research on the middle section of Tanlu fault zone, which is distributed in Shandong and northern Jiangsu Province, including five nearly parallel fault systems, i.e. Changyi-Dadian Fault(F1), Baifenzi-Fulaishan Fault(F2), Yishui-Tangtou Fault(F3), Tangwu-Gegou Fault(F4) and Anqiu-Juxian Fault(F5). They find that the faults F3 and F5 are still active since the late Quaternary. In recent years, we have got a further understanding of the geometric distribution, active age and active nature of Fault F5, and found that it is still active in Holocene. At the same time, the latest research on the extension of F5 into Anhui suggests that there is a late Pleistocene-Holocene fault existing near the Huaihe River in Anhui Province. The Tanlu fault zone extends into Anhui Province and the extension section is completely buried, especially in the Hefei Basin south of Dingyuan. At present, there is little research on the activity of this fault segment, and it is very difficult to study its geometric structure and active nature, and even whether the fault exists has not been clear. Precisely determining the distribution, active properties and the latest active time of the hidden faults under urban areas is of great significance not only for studying the rupture behavior and segmentation characteristics of the southern section of the Tanlu fault zone, but also for providing important basis for urban seismic fortification. By using the method of shallow seismic prospecting and the combined drilling geological section, this paper carries out a detailed exploration and research on the Wuyunshan-Hefei Fault, the west branch fault of Tanlu fault zone buried in Hefei Basin. Four shallow seismic prospecting lines and two rows of joint borehole profiles are laid across the fault in Hefei urban area from north to south. Using 14C, OSL and ESR dating methods, ages of 34 samples of borehole stratigraphic profiles are obtained. The results show that the youngest stratum dislocated by the Wuyunshan-Hefei Fault is the Mesopleistocene blue-gray clay layer, and its activity is characterized by reverse faulting, with a maximum vertical offset of 2.4m. The latest active age is late Mesopleistocene, and the depth of the shallowest upper breaking point is 17m. This study confirms that the west branch of Tanlu fault zone cuts through Hefei Basin and is still active since Quaternary. Its latest activity age in Hefei Basin is late of Middle Pleistocene, and the latest activity is characterized by thrusting. The research results enrich the understanding of the overall activity of Tanlu fault zone in the buried section of Hefei Basin and provide reliable basic data for earthquake monitoring, prediction and earthquake damage prevention in Anhui Province.  相似文献   

14.
Pangusi-Xinxiang Fault is a great-scale, deep-incising buried active fault in the southern margin of the Taihang Mountains. In order to find out the location, characteristics, structure and activities of Pangusi-Xinxiang Fault, shallow reflection profiles with six lines crossing the buried faults were carried out. In this paper, based on the high-resolution seismic data acquisition technology and high-precision processing technology, we obtained clear images of underground structures. The results show that Pangusi-Xinxiang Fault is a near EW-trending Quaternary active fault and its structural features are different in different segment. The middle part of the fault behaves as a south-dipping normal fault and controls the north boundary of Jiyuan sag; The eastern part of the fault is a north-dipping normal fault and a dividing line of Wuzhi uplift and Xiuwu sag. The shallow seismic profiles reveal that the up-breakpoint of the Pangusi-Xinxiang Fault is at depth of 60~70m, which offsets the lower strata of upper Pleistocene. We infer that the activity time of this fault is in the lower strata of late Pleistocene. In this study, not only the location and characteristics of Pangusi-Xinxiang Fault are determined, but also the reliable geological and seismological evidences for the fault activity estimation are provided.  相似文献   

15.
The Daxing Fault is an important buried fault in the Beijing sub-plain, which is also the boundary fault of the structural unit between Langgu sub-sag and Daxing sub-uplift. So far, there is a lack of data on the shallow tectonic features of the Daxing Fault, especially for the key structural part of its northern section where it joins with the Xiadian Fault. In this paper, the fine stratigraphic classifications and shallow tectonic features of the northern section in the main Daxing Fault are explored by using three NW-trending shallow seismic reflection profiles. These profiles pass through the Daxing earthquake(M6¾)area in 1057AD and the northern section of the main Daxing Fault. The results show that seven strong reflection layers(T01—T03, TQ and T11—T13)are recognized in the strata of Neogene and Quaternary beneath the investigated area. The largest depth of strong reflection layer(T13)is about 550~850ms, which is interpreted as an important surface of unconformity between Neogene and Paleogene or basement rock. The remaining reflection layers, such as T01 and TQ, are interpreted as internal interfaces in Neogene to Quaternary strata. There are different rupture surfaces and slip as well as obviously different structural features of the Daxing Fault revealed in three shallow seismic reflection profiles. The two profiles(2-7 and 2-8)show obvious rupture surfaces, which are the expression of Daxing Fault in shallow strata. Along the profile(2-6), which is located at the end of the Daxing fault structure, a triangle deformation zone or bending fracture can be identified, implying that the Daxing Fault is manifested as bending deformation instead of rupture surfaces at its end section. This unique structural feature can be explained by a shearing motion at the end of extensional normal fault. Therefore, the Daxing Fault exhibits obviously different tectonic features of deformation or displacement at different structural locations. The attitude and displacement of the fault at the shallow part are also different to some extent. From the southwest section to the northeast section of the fault, the dip angle gradually becomes gentler(80°~60°), the upper breakpoint becomes deeper(160~600m), and the fault displacement in Neogene to Quaternary strata decreases(80~0m). Three shallow seismic reflection profiles also reveal that the Daxing Fault is a normal fault during Neogene to early Quaternary, and the deformation or displacement caused by the activity of the fault reaches the reflection layer T02. This depth is equivalent to the sedimentary strata of late Early-Pleistocene. Therefore, the geometry and morphology of the Daxing Fault also reveal that the early normal fault activity has continued into the Early Pleistocene, but the evidence of activity is not obvious since the late Pleistocene. The earthquakes occurring along the Daxing Fault, such as Daxing earthquake(M6¾)in 1057AD, may not have much relation with this extensional normal fault, but with another new strike-slip fault. A series of focal mechanism solutions of modern earthquakes reveal that the seismic activity is closely related to the strike-slip fault. The Daxing Fault extends also downwards into the lower crust, and may be cut by the steeply dipping new Xiadian Fault on deep seismic reflection profile. The northern section of the Daxing Fault strikes NNE, with a length of about 23km, arranged in a right step pattern with the Xiadian Fault. Transrotational basins have been developed in the junction between the northern Daxing Fault and the southern Xiadian Fault. Such combined tectonic features of the Daxing Fault and Xiadian Fault evolute independently under the extensional structure background and control the development of the Langgu sub-sag and Dachang sub-sag, respectively.  相似文献   

16.
北西走向的桥头集-东关断裂与郯庐断裂带南段相交切,横跨合肥盆地及其东缘的隆起区,在合肥盆地内呈隐伏状态。本研究跨桥头集-东关断裂合肥盆地段布设3条浅层地震勘探测线,揭示断裂浅部构造特征。解译出的FP1、FP2和FP3断层性质相同,倾向一致,上断点深度相近,反映出桥头集-东关断裂合肥盆地段是一条走向NW、倾向SW、具有逆断分量的断裂。3条浅层地震反射剖面中第四系的底界面反射波组TQ呈连续近水平展布,表明桥头集-东关断裂两侧的第四系厚度无明显变化。在浅震剖面解译的基础上,布设了1条跨断层钻孔联合剖面,剖面揭露出的第四系没有被错动。结合本区第四系地层发育情况及钻孔地层年龄分析,认为桥头集-东关断裂中更新世以来不活动。根据本文探测结果,尚不能排除桥头集-东关断裂早更新世有一定的弱活动。  相似文献   

17.
涉县断裂为太行山隆起区内涉县盆地的控盆构造,走向由NE转为近EW向,倾向NW/N,中部在井店东被EW向断裂错断,是控制涉县盆地的一组断裂。本文采用地质地貌调查、河流阶地分析和地质测年等方法,研究了涉县断裂晚第四纪活动特征。研究发现,涉县断裂带由多组断裂构成,带宽约200m,在清漳河两侧表现为山前的陡崖地貌、基岩破碎变形带,具有正断兼走滑特征,在基岩变形带上部发育走向NNE向和NWW向次级滑动面,次级滑动面错断第四系黄土,最新活动到晚更新世;断裂在盆地区通过,地表形成低缓陡坎,断裂错断Q2-3地层,表现为上陡下缓的正断层。通过对涉县断裂两侧清漳河河流阶地、夷平面和地层年龄综合分析,估算涉县断裂晚更新世以来平均垂直滑动速率为0.06~0.08mm/a,中更新世以来平均垂直滑动速率为0.22~0.34mm/a,垂直差异活动主要发生于中更新世期间。  相似文献   

18.
Anqiu-Juxian Fault is an important fault in the Tanlu fault zone, with the largest seismic risk, the most recent activity date and the most obvious surface traces. It is also the seismogenic fault of the Tancheng M8 1/2 earthquake in 1668. There are many different views about the southern termination location of surface rupture of the Tancheng earthquake and the Holocene activity in Jiangsu segment of this fault. Research on the latest activity time of the Jiangsu segment of Anqiu-Juxian Fault, particularly the termination location of surface rupture of the Tancheng earthquake, is of great significance to the assessment of its earthquake potential and seismic risk. Based on trench excavation on the Jiangsu segment of Anqiu-Juxian Fault, we discuss the time and characteristics of its latest activity. Multiple geological sections from southern Maling Mountain to Chonggang Mountain indicate that there was an ancient seismic event occurring in Holocene on the Jiangsu segment of Anqiu-Juxian Fault. We suggest the time of the latest seismic event is about(4.853±0.012)~(2.92±0.3)ka BP by dating results. The latest activity is characterized by thrust strike-slip faulting, with the maximum displacement of 1m. Combined with the fault rupture characteristics of each section, it is inferred that only one large-scale paleo-earthquake event occurred on the Jiangsu segment of Anqiu-Juxian Fault since the Holocene. The upper parts of the fault are covered by horizontal sand layers, not only on the trench in the west of Chonggang mountain but also on the trench in Hehuan Road in Suqian city, which indicates that the main part of the Jiangsu segment of Anqiu-Juxian Fault was probably not the surface rupture zone of the 1668 Tancheng M8 1/2 earthquake. In short, the Jiangsu segment of Anqiu-Juxian Fault has experienced many paleo-earthquake events since the late Pleistocene, with obvious activity during the Holocene. The seismic activities of the Jiangsu segment of Anqiu-Juxian Fault have the characteristics of large magnitude and low frequency. The Jiangsu segment of Anqiu-Juxian Fault has the deep tectonic and seismic-geological backgrounds of big earthquakes generation and should be highly valued by scientists.  相似文献   

19.
基于钻探的芦花台隐伏断层晚第四纪活动特征   总被引:1,自引:0,他引:1  
The Luhuatai fault is one of the important buried tectonics in the Yinchuan basin. Based on the results of shallow seismic exploration, we conducted composite drilling section exploration and dating of the samples from boreholes. Some useful data was obtained, such as the depth of the upper breaking point, the latest activity age, displacement in the late Quaternary, and slip rates, etc. This study shows that the activity is different between the north and south segment along the Luhuatai fault. The north segment is a Holocene fault, while the south segment is a late mid-Pleistocene fault. From north to south along the north segment of Luhuatai fault, the activity has been enhanced, and the faulting is stronger in late Pleistocene than Holocene.  相似文献   

20.
基于钻探的芦花台隐伏断层晚第四纪活动特征   总被引:3,自引:1,他引:2       下载免费PDF全文
芦花台断层是银川盆地内一条重要的隐伏构造。在浅层地震勘探成果的基础上,开展了钻孔联合剖面探测和钻孔样品测试,获得了断层上断点埋深、最新活动时代、晚第四纪累计位移和滑动速率等数据。结果表明:芦花台隐伏断层北段和南段的活动性不同,南段为中更新世末活动断层,北段为全新世活动断层;在北段内,断层活动强度在空间上表现为由北向南增强,在时间上表现为晚更新世活动强于全新世。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号