首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Running across the urban areas of Changzhou, Wuxi and Suzhou, the NW-trending Su-Xi-Chang Fault is an important buried fault in Yangtze River Delta. In the respect of structural geomorphology, hilly landform is developed along the southwest side of the Su-Xi-Chang Fault, and a series of lakes and relatively low-lying depressions are developed on its northeast side, which is an important landform and neotectonic boundary line. The fault controlled the Jurassic and Cretaceous stratigraphic sedimentary and Cenozoic volcanic activities, and also has obvious control effects on the modern geomorphology and Quaternary stratigraphic distribution. Su-Xi-Chang Fault is one of the target faults of the project "Urban active fault exploration and seismic risk assessment in Changzhou City" and "Urban active fault exploration and seismic risk assessment in Suzhou City". Hidden in the ground with thick cover layer, few researches have been done on this fault in the past. The study on the activity characteristics and the latest activity era of the Su-Xi-Chang Fault is of great significance for the prevention and reduction of earthquake disaster losses caused by the destructive earthquakes to the cities of Changzhou, Wuxi and Suzhou. Based on shallow seismic exploration and drilling joint profiling method, Quaternary activities and distribution characteristics of the Su-Xi-Chang Fault are analyzed systematically. Shallow seismic exploration results show that the south branch of the Su-Xi-Chang Fault in Suzhou area is dominated by normal faulting, dipping to the north-east, with a dip angle of about 60° and a displacement of 3~5m on the bedrock surface. The north branch of the Su-Xi-Chang Fault in Changzhou area is dominated by normal faulting, dipping to the south, with a dip angle of about 55°~70° and a displacement of 4~12m on the bedrock surface. All breakpoints of Su-Xi-Chang Fault on the seismic exploration profiles show that only the bedrock surface was dislocated, not the interior strata of the Quaternary. On the drilling joint profile in the Dongqiao site of Suzhou, the latest activity of the south branch of Su-Xi-Chang Fault is manifested as reverse faulting, with maximum displacement of 2.9m in the upper part of Lower Pleistocene, and the Middle Pleistocene has not been dislocated by the fault. The fault acts as normal fault in the Pre-Quaternary strata, with a displacement of 3.7m in the Neogene stratum. On the drilling joint profile in the Chaoyang Road site of Changzhou, the latest activity of the north branch of Su-Xi-Chang Fault is manifested as reverse faulting too, with maximum displacement of 2.8m in the bottom layer of the Middle Pleistocene. The fault acts as normal fault in the Pre-Quaternary strata, with a displacement of 10.2m in the bedrock surface. Combining the above results, we conclude that the latest activity era of Su-Xi-Chang Fault is early Middle Pleistocene. The Su-Xi-Chang Fault was dominated by the sinistral normal faulting in the pre-Quaternary period, and turned into sinistral reverse faulting after the early Pleistocene, with displacement of about 3m in the Quaternary strata. The maximum magnitude of potential earthquake on the Su-Xi-Chang Fault is estimated to be 6.0.  相似文献   

2.
Existing achievements about Baotou Fault demonstrate it as a buried eastern boundary of the Baiyanhua Basin in Hetao active fault subsidence zone,striking NE.More data is needed to assess its activity.Located in the relay ramp between Wulashan Fault and Daqingshan Fault,Baotou Fault's activity is of great importance to discuss the linkage mode and the response to the earthquake of the adjacent fault.Also it is necessary to the knowledge of the characteristic of the seismic tectonic in local area.Recently it is prevalent to combine shallow seismic profile and composite drilling section to study the activity of the buried fault.Shallow seismic profile indicates that Baotou Fault is a normal fault,inclining to NW.The displacement of the Tg at 75m underground is 25m.Composite drilling section indicates that it is a growth fault,the up-break point of which is 45.6m underground and ends in brownish red clay strata of early Pleistocene.In comparison,the upper Late Pleistocene strata are out of the influences of the tectonic subsidence zone.Baotou Fault's activity is limited to the early Pleistocene.  相似文献   

3.
The Daxing Fault is an important buried fault in the Beijing sub-plain, which is also the boundary fault of the structural unit between Langgu sub-sag and Daxing sub-uplift. So far, there is a lack of data on the shallow tectonic features of the Daxing Fault, especially for the key structural part of its northern section where it joins with the Xiadian Fault. In this paper, the fine stratigraphic classifications and shallow tectonic features of the northern section in the main Daxing Fault are explored by using three NW-trending shallow seismic reflection profiles. These profiles pass through the Daxing earthquake(M6¾)area in 1057AD and the northern section of the main Daxing Fault. The results show that seven strong reflection layers(T01—T03, TQ and T11—T13)are recognized in the strata of Neogene and Quaternary beneath the investigated area. The largest depth of strong reflection layer(T13)is about 550~850ms, which is interpreted as an important surface of unconformity between Neogene and Paleogene or basement rock. The remaining reflection layers, such as T01 and TQ, are interpreted as internal interfaces in Neogene to Quaternary strata. There are different rupture surfaces and slip as well as obviously different structural features of the Daxing Fault revealed in three shallow seismic reflection profiles. The two profiles(2-7 and 2-8)show obvious rupture surfaces, which are the expression of Daxing Fault in shallow strata. Along the profile(2-6), which is located at the end of the Daxing fault structure, a triangle deformation zone or bending fracture can be identified, implying that the Daxing Fault is manifested as bending deformation instead of rupture surfaces at its end section. This unique structural feature can be explained by a shearing motion at the end of extensional normal fault. Therefore, the Daxing Fault exhibits obviously different tectonic features of deformation or displacement at different structural locations. The attitude and displacement of the fault at the shallow part are also different to some extent. From the southwest section to the northeast section of the fault, the dip angle gradually becomes gentler(80°~60°), the upper breakpoint becomes deeper(160~600m), and the fault displacement in Neogene to Quaternary strata decreases(80~0m). Three shallow seismic reflection profiles also reveal that the Daxing Fault is a normal fault during Neogene to early Quaternary, and the deformation or displacement caused by the activity of the fault reaches the reflection layer T02. This depth is equivalent to the sedimentary strata of late Early-Pleistocene. Therefore, the geometry and morphology of the Daxing Fault also reveal that the early normal fault activity has continued into the Early Pleistocene, but the evidence of activity is not obvious since the late Pleistocene. The earthquakes occurring along the Daxing Fault, such as Daxing earthquake(M6¾)in 1057AD, may not have much relation with this extensional normal fault, but with another new strike-slip fault. A series of focal mechanism solutions of modern earthquakes reveal that the seismic activity is closely related to the strike-slip fault. The Daxing Fault extends also downwards into the lower crust, and may be cut by the steeply dipping new Xiadian Fault on deep seismic reflection profile. The northern section of the Daxing Fault strikes NNE, with a length of about 23km, arranged in a right step pattern with the Xiadian Fault. Transrotational basins have been developed in the junction between the northern Daxing Fault and the southern Xiadian Fault. Such combined tectonic features of the Daxing Fault and Xiadian Fault evolute independently under the extensional structure background and control the development of the Langgu sub-sag and Dachang sub-sag, respectively.  相似文献   

4.
The NE-trending regional deep fault, i.e. the Jintan-Rugao Fault, is a boundary fault between the Subei depression and Nantong uplift, and its research has always received broad attention because of its importance and complexity. For the absence of definite proof, there is little consensus regarding the structure and spatial distribution of the fault among geoscientists, and its latest active time is ambiguous. The study of Quaternary activity characteristics of the Jintan-Rugao Fault is of great significance for earthquake trend prediction and engineering safety evaluation, and for earthquake prevention and disaster reduction in Jiangsu Province. In order to investigate the spatial location, characteristics and tectonic features and redefine the activity of the NE-segment of the Jintan-Rugao Fault, and on the basis of likely location and marker beds derived from petroleum seismic exploration sections, we collect and arrange 4 shallow seismic exploration profiles crossing the fault to conduct high-resolution seismic reflection imaging, following the working concept of ‘from known to unknown, from deep to shallow’. In this study, an observation system with trace intervals of 4~6m, shot intervals of 12~18m, and channels of 90~256 and 15~36 folds is used. In addition, by introducing different tonnage vibroseis to suppress the background noise, the raw data with high SNR(signal-noise ratio)can be obtained. By using the above working method and spread geometry, we obtained clear imaging results of the subsurface structure and fault structure in the coverage area of the survey lines. This exploration research accurately locates the NE-segment of Jintan-Rugao Fault, and further shows that it is not a single fault but a fault zone consisting of two normal faults with N-dipping and NE-striking within the effective detection depth. The shallow seismic profiles reveal that the up-breakpoint on the south branch with stronger activity is at depth of 235~243m, which offsets the lower strata of lower Pleistocene. Combining drilling data around the survey lines, we infer the activity time of this fault is early Pleistocene. The results of this paper provide reliable seismological data for determining the location and activity evaluation of the NE-segment of Jintan-Rugao Fault. In eastern China, where the sedimentary layer is thicker, the latest active age of faults can not be determined entirely according to the latest faulted strata. For a fault passing through the thicker area of new deposits, its latest active age should be based on the tectonic background, seismic activity, present tectonic stress field, topographic deformation, structural micro-geomorphological characteristics, sedimentary thickness of new strata, controlling effect of faults on new strata and the latest strata of faults, and combined with upper breakpoints, morphology, structure and occurrence of faults, the active state of the target concealed faults should be analyzed. If the activity of the fault is judged only by the upper faulted point, it may lead to overestimating the age of the fault activity.  相似文献   

5.
渭河断裂带古地震研究   总被引:3,自引:3,他引:3  
史料记载和涵洞路槽开挖表明,在距今9110a以来渭河断裂带窑店—张家湾段曾发生1次历史地震、3次古地震事件。其中历史地震即第Ⅳ期地震的发震时间在公元1487—1568年之间;事件Ⅰ为距今(9110±90)a,事件Ⅱ和事件Ⅲ距今时间不详。第Ⅰ,Ⅱ,Ⅲ期地震事件的同震垂直位移量分别为0.5,0.5,0.2m。涵洞路槽开挖也表明,渭河断裂窑店—张家湾段为全新世活动断裂  相似文献   

6.
The Hetao depression zone, located to the north of Ordos block, is a complex depression basin that consists of two sub-uplifts and three sub-depressions. The depression zone is subject to the regional extensional stress field driven by the Indo-Asian continental collision and the westward subduction of the Pacific Plate. The Baotou uplift that separates the Baiyanhua sub-depression and Huhe sub-depression is mainly composed of Archean gneiss and is overlaid by Quaternary sedimentary strata. The two sub-depressions are bordered by the Wula Mountains and Daqing Mountains to the north, respectively. The bedrock exhumed in Wula Mountains and Daqing Mountains consists mostly of Precambrian granitic gneiss, and the piedmont depressions are infilled by thick Cenozoic strata. The Wulashan piedmont fault and Daqingshan piedmont fault extend along the range front of Wula Mountains and Daqing Mountains, respectively. The subsidence is controlled by the two boundary faults. Previous studies have preliminarily documented the characteristics of the northwest boundary fault of Baotou uplift. Combining shallow seismic exploration, active fault mapping, and geological drilling, this paper presents a detailed study on the tectonic characteristics of the Baotou uplift. The shallow seismic exploration reveals that the Baotou uplift is an asymmetrical wedge with a steep southeast wing and a gentle dipping northwest wing. The Baotou uplift is wider in the northeastern part and narrows down towards the southwest. In seismic profiles, the Baiyanhua sub-depression and the Huhe sub-depression manifest as asymmetric dustpan-like depressions with south-dipping controlling faults. Baotou uplift is bounded by the Xishawan-Xingsheng Fault to the northwest and Daqingshan piedmont fault to the southeast. The two faults exhibit significant difference in many aspects, such as fault geometry, fault displacement, the latest active time, and so on. The southeast boundary fault of Baotou uplift is the Baotou section of the Daqingshan piedmont fault which is a Holocene active fault and the major boundary fault of Huhe sub-depression. East of Wanshuiquan, the fault strikes EW-NEE; west of Wanshuiquan, the strike changes to NW. The Daqingshan piedmont fault appears as a south-dipping listric fault in seismic profiles whose dip decreases with depth and cuts through all the sedimentary strata in Huhe sub-depression; the fault extends along the late Pleistocene lacustrine platform at surface with prominent geomorphological evidences. The Xishawan-Xingsheng Fault is a buried high-angle normal fault that mainly dips to the northwest and strikes NE. The fault strike changes to NNE at the eastern tip. Based on the results of seismic exploration and geological drilling, the Xishawan-Xingsheng buried fault is an early to middle Pleistocene Fault capped by late Pleistocene lacustrine strata. We reckon that the Xishawan-Xingsheng Fault is one of the synthetic faults that dip towards the main boundary fault of Baiyanhua sub-depression. Similarities in lithology, geometry, and structural characteristics of south boundary faults all indicate that Baotou uplift is the western extension of Daqing Mountains. Multiple factors may contribute to the formation of Baotou uplift, such as tectonic subsidence and the development of large-scale river system and mega-lake. We suggest that the upwelling of asthenosphere may play a primary role in the evolution of Wulanshan piedmont fault and Daqingshan piedmont fault. Separated by the Baotou uplift, the Wulashan piedmont fault and Daqingshan piedmont fault can be regarded as independent seismogenic faults. The Hetao depression zone is featured by complex inner structures, and many scientific issues are subject to further researches. Thus, more attention should be paid to the secondary structures within the depression zone for a better understanding on the formation and evolution of Hetao depression zone.  相似文献   

7.
Beijing plain area has been always characterized by the tectonic subsidence movement since the Pliocene. Influenced and affected by the extensional tectonic environment, tensional normal faulting occurred on the buried NE-trending faults in this area, forming the "two uplifts and one sag" tectonic pattern. Since Quaternary, the Neocathaysian stress field caused the NW-directed tensional shear faulting, and two groups of active faults are developed. The NE-trending active faults include three major faults, namely, from west to east, the Huangzhuang-Gaoliying Fault, Shunyi Fault and Xiadian Fault. The NW-trending active faults include the Nankou-Sunke Fault, which strikes in the direction of NW320°~330°, with a total length of about 50km in the Beijing area. The northwestern segment of the fault dips SW, forming a NW-directed collapse zone, which controls the NW-directed Machikou Quaternary depression. The thickness of the Quaternary is more than 600 meters; the southeastern segment of the fault dips NE, with a small vertical throw between the two walls of the fault. Huangzhuang-Gaoliying Fault is a discontinuous buried active fault, a boundary line between the Beijing sag and Xishan tectonic uplift. In the Beijing area, it has a total length of 110km, striking NE, dipping SE, with a dip angle of about 50~80 degrees. It is a normal fault, with the maximum fault throw of more than 1 000m since the Tertiary. The fault was formed in the last phase of Yanshan movement and controls the Cretaceous, Paleogene, Neogene and Quaternary sediments.There are four holes drilled at the junction between Nankou-Sunhe Fault and Huangzhuang-Gaoliying Fault in Beijing area. The geographic coordinates of ZK17 is 40°5'51"N, 116°25'40"E, the hole depth is 416.6 meters. The geographic coordinates of ZK18 is 40°5'16"N, 116°25'32"E, the hole depth is 247.6 meters. The geographic coordinates of ZK19 is 40°5'32"N, 116°26'51"E, the hole depth is 500.9 meters. The geographic coordinates of ZK20 is 40°4'27"N, 116°26'30"E, the hole depth is 308.2 meters. The total number of paleomagnetism samples is 687, and 460 of them are selected for thermal demagnetization. Based on the magnetostratigraphic study and analysis on the characteristics of sedimentary rock assemblage and shallow dating data, Quaternary stratigraphic framework of drilling profiles is established. As the sedimentation rate of strata has a good response to the activity of the basin-controlling fault, we discussed the activity of target fault during the Quaternary by studying variations of deposition rate. The results show that the fault block in the junction between the Nankou-Sunhe Fault and the Huangzhuang-Gaoliying Fault is characteristic of obvious differential subsidence. The average deposition rate difference of fault-controlled stratum reflects the control of the neotectonic movement on the sediment distribution of different tectonic units. The activity of Nankou-Sunhe Fault shows the strong-weak alternating pattern from the early Pleistocene to Holocene. In the early Pleistocene the activity intensity of Huangzhuang-Gaoliying Fault is stronger than Nankou-Sunhe Fault. After the early Pleistocene the activity intensity of Nankou-Sunhe Fault is stronger than Huangzhuang-Gaoliying Fault. The activity of the two faults tends to consistent till the Holocene.  相似文献   

8.
The Zhuyangguan-Xiaguan fault is a major fault in the Nanyang Basin. Together with the the Shangxian-Danfeng fault in the south and the Tieluzi fault in the north, it serves as the north boundary of the East Qingling Mountains, as well as the dividing line between North China and South China blocks. This work studied the spatial extension, activity and shallow structure of Zhuyangguan-Xiaguan Fault by combination of shallow seismic exploration of three profiles across the fault and a composite drilling cross-section data. The anti-interference and high resolution shallow seismic reflection exploration method based on Vibseis techniques was used in the seismic survey. The results show the existence of the main fault and its southern branch. It can be determined that the the Zhuyangguan-Xiaguan fault is a NWW-trending normal fracture. The composite drilling cross-section reveals that the buried depth of the fault's up-breakpoint is about 17.6 to 20.5 meters and the latest active time is the late Middle Pleistocene. As one of the major buried faults in the Nanyang Basin, the Zhuyangguan-Xiaguan fault has restricted the development of Nanyang City for a long time due to its unclear location and activity characteristics. The results of this study can provide geological and geophysical evidence for seismic risk assessment and site selection for the major lifeline projects in Nanyang City.  相似文献   

9.
Because of the frequent seismic activity in Songyuan in recent years, the modes of tectonic movement in this area since the Quaternary have attracted increasing consideration. This paper selects the Gudian Fault which locates between the southeast uplift and central depression of Songliao Basin as the research object. We discussed the Quaternary structural characteristics of the Gudian Fault using growth strata. Using the data of deep seismic reflection prospecting for oil, we determined the location, geometry and kinematics characteristics of the Gudian Fault. And using the shallow seismic reflection prospecting data, the combined drilling exploration data and TL data, we determined precisely the inversion tectonics feature of the fault since late Cenozoic. Based on the above data, we believe that the Gudian Fault is dominated mainly by thrust-folding since Quaternary. A set of growth strata is recognized by shallow seismic reflection exploration data. According to the overlap of growth strata and the relationship between deposition rate and uplift rate, we confirm that the uplift rate of Gudian Fault in the early of Early Pleistocene is less than 0.15mm/a. And according to the offlap of growth strata and the relationship between deposition rate and uplift rate, the uplift rate of the Gudian Fault is more than 0.091mm/a in the late of Early Pleistocene and more than 0.052mm/a in middle Pleistocene. According to the chronological data, it is determined that the uplift rate of the Gudian Fault is 0.046mm/y since 205ka.  相似文献   

10.
浅层地震勘探资料揭示汤东断裂特征   总被引:2,自引:2,他引:0  
汤东断裂是汤阴地堑的东界断裂,也是太行山山前一条重要的隐伏活动断裂。为了查明汤东断裂的产状、性质及其浅部构造特征,跨断裂开展了高分辨率浅层地震剖面探测,获得了高信噪比的浅层地震反射波叠加剖面。本文根据浅层地震剖面结果并结合研究区地质资料和已有深地震探测成果,对汤东断裂的浅部构造特征进行了分析和讨论。结果表明:汤东断裂为1条走向NNE、倾向NWW的铲型正断层,其浅部表现为由2—3条断层组成的Y字形构造,并错断了埋深约30—50m第四纪地层,断裂向下延伸至上地壳底部,属晚第四纪以来的隐伏活动断裂。汤东断裂两侧新生代沉积差异明显,断裂上升盘内黄隆起一侧,新生代沉积层较薄,其底界埋深约480m,下降盘汤阴地堑一侧,沉积了巨厚的新生代地层。研究结果为确定汤东断裂位置、评价断裂的活动性提供了基础资料。  相似文献   

11.
The Tan-Lu Fault Zone(TLFZ), a well-known lithosphere fault zone in eastern China, is a boundary tectonic belt of the secondary block within the North China plate, and its seismic risk has always been a focus problem. Previous studies were primarily conducted on the eastern graben faults of the Yishu segment where there are historical earthquake records, but the faults in western graben have seldom been involved. So, there has been no agreement about the activity of the western graben fault from the previous studies. This paper focuses on the activity of the two buried faults in the western graben along the southern segment of Yishu through combination of shallow seismic reflection profile and composite drilling section exploration. Shallow seismic reflection profile reveals that the Tangwu-Gegou Fault(F4)only affects the top surface of Suqian Formation, therefore, the fault may be an early Quaternary fault. The Yishui-Tangtou Fault(F3)has displaced the upper Pleistocene series in the shallow seismic reflection profile, suggesting that the fault may be a late Pleistocene active fault. Drilling was implemented in Caiji Town and Lingcheng Town along the Yishui-Tangtou Fault(F3)respectively, and the result shows that the latest activity time of Yishui-Tangtou Fault(F3)is between(91.2±4.4)ka and(97.0±4.8)ka, therefore, the fault belongs to late Pleistocene active fault. Combined with the latest research on the activity of other faults along TLFZ, both faults in eastern and western graben were active during the late Pleistocene in the southern segment of the Yishu fault zone, however, only the fault in eastern graben was active in the Holocene. This phenomenon is the tectonic response to the subduction of the Pacific and Philippine Sea Plate and collision between India and Asian Plate. The two late Quaternary active faults in the Yishu segment of TLFZ are deep faults and present different forms on the surface and in near surface according to studies of deep seismic reflection profile, seismic wave function and seismic relocation. Considering the tectonic structure of the southern segment of Yishu fault zone, the relationship between deep and shallow structures, and the impact of 1668 Tancheng earthquake(M=8(1/2)), the seismogenic ability of moderate-strong earthquake along the Yishui-Tangtou Fault(F3)can't be ignored.  相似文献   

12.
郯庐断裂带莱州湾段的构造特征   总被引:5,自引:1,他引:5  
本文利用海上浅层地震勘探剖面分析了郯庐断裂带莱州湾段的上更新统、全新统和活动构造的某些特征。晚更新世末期发生的构造运动使上更新统产生断裂与褶皱,沿郯庐断裂带东主干断裂发育了狭长的背斜构造,在西主干断裂两侧次级横向(东西向)断裂十分发育,这些横向断裂是一些高角度的张性正断层。  相似文献   

13.
钻探揭示的黄河断裂北段活动性和滑动速率   总被引:5,自引:2,他引:3       下载免费PDF全文
黄河断裂是银川盆地内展布最长、切割最深的一条深大断裂,也是银川盆地的东边界。由于其北段呈隐伏状,因此,该段的活动性和滑动速率长期未知,影响了对盆地演化和地震危险性的认识。文中选择具有石油地震勘探基础的陶乐镇为研究场点,以人工浅层地震勘探结果为依据,在黄河断裂北段布设了一排钻孔联合剖面,并对标志层进行年代测试,获得了断裂的活动时代和滑动速率。结果表明,黄河断裂北段在晚更新世末期或全新世有过活动,在(28.16±0.12)ka BP 以来的累积位移为0.96m,晚第四纪以来的平均滑动速率为0.04mm/a,该值明显低于南段灵武断层(0.24mm/a);尽管向下切割了莫霍面,黄河断裂晚第四纪活动强度和发震能力均要低于切割相对浅的贺兰山东麓断裂;黄河断裂可能在新生代之前已经强烈活动并深切莫霍面,新生代以来,银川盆地的构造活动迁移分解到以贺兰山东麓断裂为主的多条断裂之上,地壳双层伸展模型可解释银川盆地现今深浅部构造活动间的联系。  相似文献   

14.
南黄海北部千里岩断裂活动性初探   总被引:3,自引:1,他引:2  
在南黄海北部海域首次针对千里岩断裂进行了声波探测。根据声波反射剖面所显示的晚第四纪断裂活动性差异,大致以朝连岛断裂为界,可把千里岩断裂分为2段,南段晚更新世以来不活动,在日照东南海域跨断裂的声波剖面上晚更新世地层没有受到断层错断的影响;北段在晚更新世晚期活动,从千里岩岛西侧至石岛湾以东海域,在声波剖面上可见多处上更新统中上部地层错断现象。虽然自建立测震台网以来沿千里岩断裂及附近海域内尚未发生5级及以上地震,也未见小震丛集现象,但是,千里岩断裂的晚更新世活动段长度>100km,具有发生6·5级左右地震的可能性,在地震预报和地震危险性分析中值得进一步研究  相似文献   

15.
应用浅层地震勘探法对宁夏吴忠地区北部的浅部地壳结构和隐伏活动断裂进行研究。结果表明,该区存在2条隐伏断裂,分别为银川主断层南段和新华桥断层。推测银川主断层南段为近SN走向的W倾正断层,断层下盘地层界面一般呈近水平状展布,而在断层上盘,T_Q及其以下的地层界面向断面方向倾伏并显示出逆牵引现象,断层向上错断了第四系内部。钻孔联合地质剖面及浅层地震探测结果共同揭示新华桥断层为一条走向NE,倾向SW的正断层,深、浅地震测线控制的新华桥断层延伸长度9 km左右,向上错断了第四系内部的T_(02)界面。  相似文献   

16.
北西走向的桥头集-东关断裂与郯庐断裂带南段相交切,横跨合肥盆地及其东缘的隆起区,在合肥盆地内呈隐伏状态。本研究跨桥头集-东关断裂合肥盆地段布设3条浅层地震勘探测线,揭示断裂浅部构造特征。解译出的FP1、FP2和FP3断层性质相同,倾向一致,上断点深度相近,反映出桥头集-东关断裂合肥盆地段是一条走向NW、倾向SW、具有逆断分量的断裂。3条浅层地震反射剖面中第四系的底界面反射波组TQ呈连续近水平展布,表明桥头集-东关断裂两侧的第四系厚度无明显变化。在浅震剖面解译的基础上,布设了1条跨断层钻孔联合剖面,剖面揭露出的第四系没有被错动。结合本区第四系地层发育情况及钻孔地层年龄分析,认为桥头集-东关断裂中更新世以来不活动。根据本文探测结果,尚不能排除桥头集-东关断裂早更新世有一定的弱活动。  相似文献   

17.
Along the northern piedmont of Mt. Lishan, the characteristics and locations of the active normal Lishan fault in west of Huaqing Pool provide important evidences for determining the seismotectonic environment, seismic stability evaluation of engineering in the eastern Weihe Basin. After reviewing the results from high-density resistivity method, seismic profile data, geological drillhole section and trenching in west of the Huaqing Pool, it is found that the strike of western normal Lishan Fault changes from EW direction at the eastern part to the direction of N60°W, and the fault consists of two branches, dipping NE with a high dip angle of~75°. The artificial shallow seismic profile data reveals that the attitude of strata near Lishan Fault mainly dips to south, which is presumed to be related to the southward tilt movement of Mt. Lishan since the Cenozoic. The section of geological drillhole reveals that since the late middle Pleistocene, the displacement of the paleo-soil layer S2 is about 10m. And the maximum displacement of western Lishan Fault recorded in the paleo-soil layer S1 reaches 7.8m since the late Pleistocene. In addition, evidences from trench profile show that the western Lishan Fault was active at least 3 times since Malan loess deposition with 14 C dating age(32 170±530)Cal a BP. The multiple activities of the Lishan Fault result in a total displacement about 3.0m in the Malan loess layer L1. The latest activity of the western Lishan Fault produced a displacement of about 0.9m in the early Holocene loess layer L0((8 630±20)Cal a BP)and caused obvious tensile cracks in the Holocene dark leoss layer S0((4 390±20)Cal a BP). Briefly, we have obtained a vertical movement rate of about 0.11~0.19mm/a since the Holocene((8 630±20)Cal a BP)in the western extension of the Lishan Fault, the recurrence interval of earthquakes on the fault is about(10.7±0.5)ka, and the co-seismic surface rupture in a single event is inferred to be about 0.9m.  相似文献   

18.
上海两条隐伏第四纪断裂的研究   总被引:3,自引:0,他引:3  
以浅层地震勘探为主要方法 ,研究了上海两条主要断裂 (太仓 -奉贤断裂和枫泾 -川沙断裂 )的第四纪活动性。结果表明 ,断裂的最新活动一般在早更新世 -中更新世 ,个别区段的活动可延续至晚更新世  相似文献   

19.
利用地震剖面研究夏垫断裂西南段的活动性   总被引:5,自引:1,他引:4  
地震方法是针对厚覆盖区城市直下型活动断裂的一种不可替代的探测技术,对于不同的探测深度需采用不同的排列长度。为研究夏垫断裂在远离三河-平谷8.0级地震震源区的活动性,我们在该震源区SW方向约30km处开展了中浅层反射地震探测试验,并跨过中浅层地震探测到的夏垫断裂进行了浅层反射地震探测试验。浅层和中浅层地震探测的试验结果表明,在5m道间距的地震剖面上,在200m深度以下夏垫断裂得到了较好的反映,在该深度以上,该断裂反映不明显;在2m道间距的地震剖面上,夏垫断裂错断明显,但剖面上的最浅一组反射波(深度约30m)却没有发生明显错断。由此得出:距1679年三河-平谷8.0级地震震源位置SW方向约30km处,夏垫断裂的活动性减弱  相似文献   

20.
Anqiu-Juxian Fault is an important fault in the Tanlu fault zone, with the largest seismic risk, the most recent activity date and the most obvious surface traces. It is also the seismogenic fault of the Tancheng M8 1/2 earthquake in 1668. There are many different views about the southern termination location of surface rupture of the Tancheng earthquake and the Holocene activity in Jiangsu segment of this fault. Research on the latest activity time of the Jiangsu segment of Anqiu-Juxian Fault, particularly the termination location of surface rupture of the Tancheng earthquake, is of great significance to the assessment of its earthquake potential and seismic risk. Based on trench excavation on the Jiangsu segment of Anqiu-Juxian Fault, we discuss the time and characteristics of its latest activity. Multiple geological sections from southern Maling Mountain to Chonggang Mountain indicate that there was an ancient seismic event occurring in Holocene on the Jiangsu segment of Anqiu-Juxian Fault. We suggest the time of the latest seismic event is about(4.853±0.012)~(2.92±0.3)ka BP by dating results. The latest activity is characterized by thrust strike-slip faulting, with the maximum displacement of 1m. Combined with the fault rupture characteristics of each section, it is inferred that only one large-scale paleo-earthquake event occurred on the Jiangsu segment of Anqiu-Juxian Fault since the Holocene. The upper parts of the fault are covered by horizontal sand layers, not only on the trench in the west of Chonggang mountain but also on the trench in Hehuan Road in Suqian city, which indicates that the main part of the Jiangsu segment of Anqiu-Juxian Fault was probably not the surface rupture zone of the 1668 Tancheng M8 1/2 earthquake. In short, the Jiangsu segment of Anqiu-Juxian Fault has experienced many paleo-earthquake events since the late Pleistocene, with obvious activity during the Holocene. The seismic activities of the Jiangsu segment of Anqiu-Juxian Fault have the characteristics of large magnitude and low frequency. The Jiangsu segment of Anqiu-Juxian Fault has the deep tectonic and seismic-geological backgrounds of big earthquakes generation and should be highly valued by scientists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号