首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The variations of δ17O and δ18O in recent meteoric waters and in ice cores have proven to be an important tool for investigating the present and past hydrologic cycle. In order to close significant information gaps in the present distribution of δ17O and δ18O of meteoric water, we have run precise measurements, with respect to VSMOW, on samples distributed globally from low to high latitudes. Based on the new and existing data, we present the Global Meteoric Water Line (GMWL) for δ17O and δ18O as:
  相似文献   

2.
Recently, a new method has been introduced for the estimation of photosynthetic oxygen production from the triple isotope composition (δ17O and δ18O) of dissolved O2 in the ocean and of air O2 in ice cores. This method is based on the deviations (17Δ) from mass dependent respiratory fractionation, the major process affecting the isotopic composition of air O2. To apply this method, the slope in the 17O/16O vs. 18O/16O relationship used for 17Δ calculation must be known with high accuracy. Using numerical simulations and closed system experiments, we show how the respiratory slope is manifested in the 17Δ of O2 in situations where respiration is the only process affecting oxygen isotopic composition (kinetic slope), and in systems in steady state between photosynthesis and respiration (steady state slope). The slopes of the fractionation line in these two cases are different, and the reasons of this phenomenon are discussed. To determine the kinetic respiratory slope for the dominant O2 consumers in aquatic systems, we have conducted new experiments using a wide range of organisms and conditions and obtained one universal value (0.5179 ± 0.0006) in ln(δ17O + 1) vs. ln(δ18O + 1) plots. It was also shown that the respiratory fractionations under light and dark are identical within experimental error. We discuss various marine situations and conclude that the kinetic slope 0.518 should be used for calculating 17Δ of dissolved O2. In contrast, a steady state fractionation slope should be used in global mass balance calculations of triple isotope ratios of O2 in air records of ice cores.  相似文献   

3.
Six authigenic feldspars and three detrital feldspars in limestones and dolostones of Eocene to Preeambrian ages were analyzed for their O18O16 content. The difference in δO18 between the authigenic feldspars (δO18range = + 18.2 to + 24.7%.) and carbonate host rocks, both limestones and dolostones, was found to be ?0.5 to ?1.4%. Detrital feldspars (δO18 = + 11.2, + 22.5 and + 17.0%.) exhibit Δfeldsparcarbonate values of ?12.0, ?2.4 and ?1.6‰, respectively, and appear to have undergone increased isotopic exchange as a function of decreased grain size under solid-state conditions.  相似文献   

4.
5.
The addition of phosphorus to H2O-saturated and initially subaluminous haplogranitic (Qz–Ab–Or) compositions at 200 MPa(H2O) promotes expansion of the liquidus field of quartz, a marked decrease of the solidus temperature, increased solubility limits of H2O in melt at low phosphorus concentrations, and fractionation of melt out of the haplogranite plane (projected along an Or28 isopleth) toward a peralkaline, silica-poor but quartz-saturated minimum composition. The partition coefficient for P2O5 between aqueous vapor and melt with an ASI (aluminum saturation index, mol Al/[mol Na+K])=1 is negligible (0.06), and consequently so are the effects of phosphorus on other melt-vapor relations involving major components. Phosphorus becomes more soluble in vapor, however, as the concentration of a NaPO3 component increases via the fractionation of melt by crystallization of quartz and feldspar. The experimental results here corroborate existing concepts regarding the interaction of phosphorus with alkali aluminosilicate melt: phosphorus has an affinity for alkalis and Al, but not Si. Phosphorus is incorporated into alkali feldspars by the exchange component AlPSi-2. For subaluminous compositions (ASI=1), the distribution coefficient of phosphorus between alkali feldspar and melt, D[P]Af/m, is 0.3. This value increases to D[P]Af/m=1.0 at a melt ASI value of 1.3. The increase in D[P]Af/m with ASI is expected from the fact that excess Al promotes the AlPSi-2 exchange. With this experimental data, the P2O5 content of feldspars and whole rocks can reveal important facets of crystallization and phosphorus geochemistry in subaluminous to peraluminous granitic systems.  相似文献   

6.
The system albite-celsian-water was investigated at isothermal sections of 670, 760, 800, 900, 1000 and 1100° C at 1 Kbar. At temperatures above about 950° C the existence of a solid solution series could be shown. In the condensed part of the 930° C/1 Kbar section the partition of barium between melt and coexisting crystals was measured using an electron probe microanalyzer. The barium content of crystals grown in equilibrium with a melt is always higher than the barium content of the starting composition, so albite-celsian shows an ascending type solid solution series at low total water pressures. In the subsolidus region two types of solvi are existent, which show different ways of phase unmixing. The relatively low barium contents of natural albites are interpreted as being due to geochemical reasons rather than crystalchemical reasons.

Meinem hochverehrten Lehrer, Herrn Prof. Dr. K. Jasmund, danke ich für sein lebhaftes Interesse während der Durchführung dieser Arbeit und für die kritische Durchsicht des Manuskripts. Mein Dank gilt ferner Herrn Dr. H. A. Seck für die Einarbeitung in die experimentellen Methoden der Hydrothermalsynthese und für kritische Anmerkungen zum Manuskript. Fräulein Dr. M. Corlett danke ich für wertvolle Informationen zur Messung mit der Elektronenstrahl-Mikrosonde.

Die Untersuchung wurde mit Hilfe von Personal- und Sachmitteln durchgeführt, die Herrn Professor Dr. K. Jasmund von der Deutschen Forschungsgemeinschaft zur Verfügung gestellt worden waren.  相似文献   

7.
According to the compositions of the underground gasfield brines in the west of Sichuan Basin,the phase equilibria in the ternary systems KBr-K2B4O7-H2O and KCl-K2B4O7-H2O at 373 K were studied using the isothermal dissolution equilibrium method.The solubilities of salts and the densities of saturated solutions in these ternary systems were determined.Using the experimental data,phase diagrams and density-composition diagrams were constructed.The two phase diagrams were simple co-saturation type,each having an invariant point,two univariant curves and two crystallization regions.The equilibrium solid phases in the ternary system KBr-K2B4O7-H2O are potassium bromide (KBr) and potassium tetraborate tetrahydrate (K2B4O7·4H2O),and those in the ternary system KCl-K2B4O7-H2O are potassium chloride (KCl) and potassium tetraborate tetrahydrate (K2B4O7·4H2O).Comparisons of the phase diagrams of the two systems at different temperatures show that there is no change in the crystallization phases,but there are changes in the size of the crystallization regions.As temperature increases,the solubility of K2B4O7·4H2O increases rapidly,so the crystallization field of K2B4O7·4H2O becomes smaller.  相似文献   

8.
Zusammenfassung Im System KFeSi3O8–KAlSi3O8 wird eine Mischungslücke gefunden, welche den Bereich von 10–60 Mol. % K-Fe-Feldspat umfaßt. Die Mischkristalle links und rechts der Mischungslücke verhalten sich ähnlich wie ihre benachbarten Endglieder. Das Fehlen von intermediären Phasen auf der Eisenseite und die Mischungslücke machen es wahrscheinlich, daß das Verhalten des K-Fe-Feldspates nicht auf das Verhalten des K-Al-Feldspates extrapoliert werden darf.
Summary In the system KFeSi3O8–KAlSi3O8 a miscibility-gap is found from 10 to 60 Mol.% K-Fe-felspar. The mixed crystals on the right and left side of the miscibility-gap show a behaviour similar to the corresponding end-members. The lack of intermediate phases on the iron-side and the miscibility-gap make probable that one cannot extrapolate the behaviour of the K-Fe-felspar to the behaviour of the K-Al-felspar.


Mit 3 Textabbildungen

Herrn Professor Dr.F. Machatschki zum 70. Geburtstag gewidmet.  相似文献   

9.
The stability of coexisting orthopyroxene, sillimanite and quartz and the composition of orthopyroxene in this assemblage has been determined in the system MgO-FeO-Fe2O3-Al2O3-SiO2-H2O as a function of pressure, mainly at 1,000° C, and at oxygen fugacities defined mostly by the hematite-magnetite buffer. The upper stability of the assemblage is terminated at 17 kbars, 1,000° C, by the reaction opx+Al-silicate gar+qz, proceeding toward lower pressures with increasing Fe/(Fe+Mg) ratio in the system. The lower stability is controlled by the reaction opx+sill+qz cord, which occurs at 11 kbars in the iron-free system but is lowered to 9 kbars with increasing Fe/(Fe+Mg). Spinel solid solutions are stabilized, besides quartz, up to 14 kbars in favour of garnet in the iron-rich part of the system (Fe/(Fe+Mg)0.30). Ferric-ferrous ratios in orthopyroxene are increasing with increasing ferro-magnesian ratio. At least part of the generally observed increase in Al content with Fe2+ in orthopyroxene is not due to an increased solubility of the MgAlAlSiO6 component but rather of a MgFe3+AlSiO6 component. The data permit an estimate of oxygen fugacity from the composition of orthopyroxene in coexistence with sillimanite and quartz.  相似文献   

10.
The morphological theory of Hartman and Perdok (1955, 1956) allows to deduce the character of a growth form {hkl} on the basis of structural data alone. Its application to the structure of whewellite leads to the identification of forms {100}, {010}, {021}, {011}, {12 \(\bar 1\) } and {121} which show during the growth a flat surface profile (flat forms F). These forms occur very frequently in the crystals we grew from pure aqueous solutions at supersaturation β≦1,90. Other forms, {001} and {10 \(\bar 1\) }, possibly show a double character (F or S, where S stays for related faces showing a stepped profile during the growth) according to the bonds assumed within some periodic bond chains (PBCs). Alternative ways of bonding water molecules lead to different structures of the same PBC. The different energy corresponding to these structures may explain the complex morphology of both natural and synthetic crystals grown at high β values.  相似文献   

11.
Boron-bearing kornerupine was synthesized in the simplest possible model system at fluid pressures and temperatures both within and outside the stability field of boron-free kornerupine. Best conditions for synthesis of single-phase products are 7 kb and 830 °C. Microprobe and wet chemical analyses as well as X-ray studies indicate compositional variations of kornerupines regarding all five constituent components: Increasing B-contents (from 0.37 to 3.32 wt% B2O3) are correlated with decreasing OH? values largely according to the Eq. B3+?3 H+; the ratio MgO∶Al2O3SiO2 varies from 4∶3∶4 in the direction towards 1∶1∶1. Thus kornerupine exhibits an at least ternary range of solid solution in the system studied. Crystallochemically speaking it is significant that, although the Mg∶Al∶Si ratio of kornerupine may remain constant with increasing boron contents, the total number of cations per formula unit increases beyond the ideal number of 14.0 as given by Moore and Bennett (1968). Considering the presence of an additional structural site at (000) it is suggested that the introduction of boron initiates a sequence of substitutions such as $$B^{[4]} \to Si^{[4] } \to A1^{[4]} \to Mg^{[6]} \to \square$$ . The filling of this site, empty in boron-free kornerupine, by Mg is connected with a loss of hydrogen located near this site. Petrologically speaking an exchange reaction relation exists between kornerupine and its coexisting fluid according to the equation Boron-free kornerupine+B2O3=boron-kornerupine+H2O. The molar fractions $$X_{B_2 O_3 } = B_2 O_3 /\left( {B_2 O_3 + H_2 O} \right)$$ of kornerupines exceed those of their coexisting fluids by about one order of magnitude. Fluids with relatively low XB 2 O 3 lead to the coexistence of kornerupine with boron-free minerals such as enstatite and sapphirine, fluids with relatively high XB 2 O 3 produce the boron-minerals grandidierite, sinhalite, and tourmaline (in the present system without Na!) in addition to kornerupine.  相似文献   

12.
Liquidus phase equilibria have been determined in the system CaAl2Si2O8-NaAlSi3O8-KAlSi3O8-NaAlSiO4-KAlSiO4 (An-Ab-Or-Ne-Ks) at a pressure of water of 5 kb, for low anorthite contents. The main effects of increasing anorthite content on phase relationships in the system Ab-Or-Ne-Ks include the expansion of the plagioclase stability field towards the potassium-rich part of the system, and an accompanying contraction of the alkali feldspar, leucite, nepheline and kalsilite stability fields; and an increase in liquidus temperatures throughout most of the compositional range. Two quaternary invariant points have been identified in the system, one a reaction point between the fields of alkali feldspar, plagioclase, nepheline and kalsilite at approximately An4, and the other probably a quaternary eutectic between the fields of alkali feldspar, plagioclase, leucite and kalsilite at approximately An6. A shallow minimum trough in liquidus temperatures occurs on the two-feldspar surface, and this would be expected to control the paths of liquids cooling under equilibrium conditions. Phase relationships in this quaternary system have been applied to the interpretation of the histories of the potassium-rich rocks of the Roman Volcanic Region, Italy. Differentiation of the phonolitic series in this region may have occurred by two-feldspar fractionation.  相似文献   

13.
Five new biotite reference materials were calibrated at the SwissSIMS laboratory (University of Lausanne) for oxygen isotope determination by secondary ion mass spectrometry (SIMS) and are available to the scientific community. The oxygen isotope composition of the biotites, UNIL_B1 to B5, was determined by laser‐heating fluorination to be 11.4 ± 0.11‰, 8.6 ± 0.15‰, 6.1 ± 0.04‰, 7.1 ± 0.05‰ and 7.6 ± 0.04‰, respectively. SIMS analyses on spots smaller than 20 μm gave a measurement repeatability of 0.3‰ (2 standard deviation, 2s). The matrix effect due to solid solution in natural biotite could be expressed as a linear function of XMg and XF for biotite. No effect was found for different crystallographic orientations. SIMS analysis allows the oxygen isotope composition of biotite to be measured with a measurement uncertainty of 0.3–0.4‰ (2s) for biotites with similar major element compositions. A measurement uncertainty of 0.5‰ (2s) is realistic when F poor biotites (lower than 0.2% m/m oxides) within the compositional range of XMg of 0.3–0.9 were compared from different sessions. The linear correlation with F content offers a reasonable working curve for F‐rich biotites, but additional reference materials are needed to confirm the model.  相似文献   

14.
Dumortierite, generally simplified as Al7BSi3O18, was synthesized in the pure system Al2O3–B2O3–SiO2–H2O (ABSH) using gels with variable Al/Si ratios mixed with H3BO3 and H2O in known proportions as starting materials. Synthesis conditions ranged from 3 to 5 and 15 to 20 kbar fluid pressure at 650° to 880°C. On the basis of analyses, synthetic dumortierite shows relatively narrow homogeneity ranges with regard to Al/Si which, however, vary as a function of pressure: at low pressures (3–5 kbar) Al/Si is 2.77–2.94 versus 2.33–2.55 at high pressures (15–20 kbar). Outside of these homogeneity limits, dumortierite was found to coexist with quartz or corundum, depending on the starting composition. Whereas synthetic dumortierite invaribly contains 1.0 boron atom per formula unit (p.f.u.) based on 18 oxygens, the water contents vary drastically as a function of pressure and temperature (1.32–2.30 wt.% H2O or 0.85–1.47 H p.f.u.). H2O is an essential component in dumortierite. Structural formulae based on complete chemical analyses of the dumortierites synthesized reveal that there is invariably an Si-deficiency against the ideal number of 3.0 p.f.u. In the calculation procedure used here, this deficiency is balanced by assuming tetrahedral Al. The remaining Al, taken to occupy the octahedral sites, is always below the ideal number of 7.0 p.f.u. Charge-balancing the structure with the hydrogen found analytically leads to two different mechanisms of H incorporation: (1) 3H+ + octahedral vacancy for Al[6]; (2) H+ + tetrahedral Al for Si[4]. Dumortierite synthesized at high fluid pressure contains little Al[4] and, thus, little H+ of type 2; its hydrogen is predominantly present as type 1. Conversely, dumortierite formed at low fluid pressures is high in Al[4] and hydrogen type 2. The amounts of hydrogen type 1 in low-pressure dumortierites decrease with rising temperatures of synthesis. Typical structural formulae are: (Al6.670.33)[Al0.49Si2.51–O13.53(OH)1.47](BO3) for a low-pressure product, and (Al6.680.32)[Al0.09Si2.91O13.94(OH)1.06](BO3) for a high-pressure product. Independently of the synthesis conditions, dumortierite was found always to be orthorhombic, with b0/a0 deviating slightly, but significantly from the valid for hexagonal lattice geometry. As a function of increasing Al/Si in the synthetic crystals, their a0, c0, and V0 rise, whereas b0 decreases. Thus b0/a0 decreases most sensitively with rising Al/Si and also with growing Al[4]. More experimentation is required before the compositional variations of dumortierite found here can be applied successfully to geothermobarometry of natural rocks.  相似文献   

15.
Kyser, O'Neil, and Carmichael (1981, 1982) measured the 18O values of coexisting minerals from peridotite nodules in alkali basalts and kimberlites, interpreting the nodules as equilibrium assemblages. Based mainly on the systematics revealed in 18O-olivinevs. 18O-pyroxene diagrams, we have re-interpreted the Kyser et al. data as non-equilibrium phenomena. On such- diagrams, the mantle nodules exhibit data arrays that cut across the 18O=zero line; these arrays strongly resemble the non-equilibrium quartz-feldspar and feldspar-pyroxene 18O arrays that we now know arediagnostic of hydrothermally altered plutonic igneous rocks. Thus, the peridotites appear to have been open systems that underwent metasomatic exchange with an external, oxygen-bearing fluid (CO2 magma, H2O, etc.); during this event, the relatively inert pyroxenes exchanged at a much slower rate than did the coexisting olivines and spinels. This accounts for the correlation between 18O pyroxene-olivine and the whole-rock 18O of the peridotites, which is a major difficulty with the equilibrium interpretation. The metasomatic18O-enrichments of the peridotites can be related to metasomatic enrichments in LIL elements and the development of amphibole and phlogopite. This type of precursor metasomatic activity can explain the development of alkali basalt magmas, as well as leucitites and nephelinites (all of which tend to be slightly18O-rich relative to MORB, with 18O=+6 to +7.5). Fluids with appropriate 18O values to explain the open-system metasomatic effects can be produced by exchange with ancient subducted oceanic crust (eclogite). However, fluid/rock ratios of about 0.4 to 2.5 are required, indicating that this cannot be a mantle-wide phenomenon. Also, these non-equilibrium effects are apparently transient phenomena, probably associated with the eruptive events that brought the nodules to the surface; at characteristic mantle temperatures, the effects would likely disappear in a few tens of millions of years, or less, implying that the ultramafic nodules are not typical samples of the upper mantle.Contribution No. 4156, Publications of the Division of Geological and Planetary Sciences, California Institute of Technology  相似文献   

16.
Phase relations in the system KAlSi3O8-NaAlSi 3O8 have been examined at pressures of 5–23 GPa and temperatures of 700–1200° C. KAlSi3O8 sanidine first dissociates into a mixture of wadeite-type K2Si4O9, kyanite and coesite at 6–7 GPa, which further recombines into KAlSi3O8 hollandite at 9–10 GPa. In contrast, NaAlSi3O8 hollandite is not stable at 800–1200° C near 23 GPa, where the mixture of jadeite plus stishovite directly changes into the assemblage of calcium ferrite-type NaAlSiO4 plus stishovite. Phase relations in the system KAlSi3O8-NaAlSi3O8 at 1000° C show that NaAlSi3O8 component gradually dissolves into hollandite with increasing pressure. The maximum solubility of NaAlSi3O8 in hollandite at 1000° C was about 40 mol% at 22.5 GPa, above which it decreases with pressure. Unit cell volume of the hollandite solid solution decreases with increasing NaAlSi3O8 component. The hollandite solid solution in this system may be an important candidate as a host mineral of K and Na in the uppermost lower mantle  相似文献   

17.
Pairs of alkali feldspars and plagioclases were synthesized at pressures of 1, 5, and 10 kbar and a temperature of 650° C, to study the composition of coexisting feldspars in relation to pressure. Data were obtained mainly from pairs of feldspars crystallized from dehydrated gels in the presence of an aqueous vapor phase. Data obtained were confirmed by exchange reactions in mixtures of synthetic alkali feldspars and plagioclases. The effects of temperature and pressure on the distribution of albite molecule in coexisting feldspars are opposed to each other. An increase in pressure of 10 kbar equals to a decrease in temperature of about 125–150° C, thus posing severe restrictions to the application of the feldspar geothermometer of Barth. Pairs of coexisting feldspars are discussed in terms of their temperature and pressure of formation.

Dem Direktor des Mineralogisch-Petrographischen Instituts der Universität zu Köln, Herrn Prof. Dr. K. Jasmund, danke ich für sein förderndes Interesse an dieser Arbeit sowie die kritische Durchsicht des Manuskripts. Herrn Prof. Dr. M. Okrusch und Herrn Dr. V. Rudert sei ebenfalls für kritische Anmerkungen zum Manuskript gedankt.

Die Untersuchung wurde mit Hilfe von Personal- und Sachmitteln durchgeführt, die Herrn Professor Dr. K. Jasmund von der Deutschen Forschungsgemeinschaft zur Verfügung gestellt worden waren.  相似文献   

18.
The effect of composition and temperature on the relaxed adiabatic bulk modulus of melts in the P2O5-Al2O 3-Na2SiO3 system have been investigated in the temperature range of 1140 to 1450 °C using ultrasonic interferometric methods at frequencies of 3, 5 and 7 MHz. The density of these melts was determined using Pt-double-bob Archimedean densitometry techiques. P2O5 is known to dramatically affect the structure and the chemical and physical properties of granitic and pegmatitic melts as a function of the peralkalinity of the melt. The physical results of the structural changes occurring in Na2O-Al2O3-SiO2 melt upon the addition of P2O5 are observed by variations in the properties such as density and compressibility. For the present peralkaline melts, the bulk modulus and density decrease with addition of 15 mol% P2O5, and increase with the addition of 15 mol% Al2O3. The addition of P2O5 to the present melts results in a larger increase in melt compressibility than that observed with increasing polymerization between Na2SiO3 and Na2Si2O5 melts. This would suggest that not only is the polymerization of the melt increasing with the addition of P2O5 (Mysen et al. 1981; Nelson and Tallant 1984; Gan and Hess 1992), but that the tetrahedrally co-ordinated phosphorus complexes are influencing the bond lengths and energies within the melt structure; resulting in the structure becoming more compressible than expected, although incompressible (Vaughan and Weidner 1987) tetrahedral P2O5 polyhedra (Mysen et al. 1981; Gan and Hess 1992; Toplis et al. 1994) are being added to the melt structure.  相似文献   

19.
In the system CaSiO3-CaMnSi2O6-CaFeSi2O6 extensive miscibility gaps between pyroxenoids and clinopyroxenes are observed. The miscibility gap between Mn-bustamite and Mn-wollastonite has been determined experimentally by a hydrothermal technique between 400° and 1200° C at P f= 2 kbar. Further experiments have been performed at P f=9 kbar, which revealed a shifting of the miscibility gap towards more Ca-rich compositions. The bustamite phase is stabilized by high pressures and the wollastonite structure is the stable phase at high temperatures.Similar phase relations as along the join CaSiO3-CaMnSi2O6 exist along the join CaSiO3-CaFeSi2O6 but with a more extensive two-phase field of bustamite-clinopyroxene.Possible phase relations along the joins CaSiO3-CaMnSi2O6, CaSiO3-CaFeSi2O6 and CaFeSi2O6-CaMnSi2O6 are given in temperature-composition diagrams for low pressures, based on natural and experimental data.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号